
Utility Maximizing Routing to Data
Centers

M. Sarwat, J. Shin and S. Kapoor
(Presented by J. Shin)

Sep 26, 2011

0-0



Sep 26, 2011 1

Outline

1. Problem Definition - Data Center Allocation

2. How to construct Data Center Allocation

3. Mathematical Model

4. Greedy Approach - single server (GA-I)

5. Greedy Approach - multiple server (GA-II)

6. Auction Algorithm (Auction)

7. Simulation Results : utility, congestion, exe. time

8. Conclusion



Sep 26, 2011 2

Problem Definition

I Objective : Maximize the utility of users.

I Constraint :

1. Supply Constraint : Each source (or
data/service center) i has a supply of
goods, bounded by a capacity function ai.

2. Budget Constraint : Each sink (or user) j has
a bound on the incoming set of data,
specified by a budget bj .



Sep 26, 2011 3

Problem Definition - Example

��

��

��

��

������

�����

�����

�����

Figure 1: One instance of Data Center Allocation
Problem



Sep 26, 2011 4

Network Topology for Simulation

Figure 2: AT&T Network Topology



Sep 26, 2011 5

To Data Center Allocation Problem

I Convert the original problem into Data Center
Allocation Problem

I Defined on a Weighted Bipartite Graph.

I Given a pair of data center i and user j,
add edge eij between i and j with pij
(pij represents the price of utilizing the path).
One such measure is the number of hops
between i and j.

I uij represents the benefit of using the path.
One such benefit is the minimum capacity
amongst of edges on the path.



Sep 26, 2011 6

Mathematical Model - Primal

P: Maximize
∑

i∈S,j∈T

uijfij subject to

∑
j∈T fij ≤ ai ∀i ∈ S (1)∑

i∈S pijfij ≤ bj ∀j ∈ T (2)

fij ≥ 0 ∀i ∈ S, j ∈ T (3)

I uij , pij : utility and price using i by j

I fij : amount of data from i to j

I ai, bj : capacity function of i and budget
function of j



Sep 26, 2011 7

Mathematical Model - Dual

The dual of (P) is as follows denoted by (D).

D: Minimize
∑
i∈S

αiai +
∑
j∈T

βjbj subject to

αi ≥ uij − pijβj ∀i ∈ S, j ∈ T (4)

αi ≥ 0 ∀i ∈ S (5)

βj ≥ 0 ∀j ∈ T (6)

αi and βj represent dual variables.



Sep 26, 2011 8

GA-I - High Level Idea

I Objective : Selects a data center which
maximizes their utility.

I Constraint: Each user uses at most a single
path.

1: Let us start with j = 1 in a round robin way.
2: Pick i s.t. utility is maximized.
3: Calculate current amount of data from i.
4: Calculate budget of user j.
5: Assign i to j under those constraints.

The algorithm iterates at most nu times.



Sep 26, 2011 9

GA-I - Pseudocode

1: for j = 1→ nu do
2: i := maxk ukj/pkj

3: tf :=
∑

k fik

4: tp :=
∑

k pkjfkj

5: x := min(ai − tf , (bj − tp)/pij)

6: end for



Sep 26, 2011 10

GA-II - High Level Idea

I Objective : Selects a data center maximizing
their utility.

I Constraint: Each user is able to access
multiple servers.

1: Find (i, j) s.t. maximizing utility.
2: Calculate current amount of data from i.
3: Calculate budget of user j.
4: Assign i to j under those constraints.

The algorithm may iterate for all pairs.



Sep 26, 2011 11

GA-II - Pseudocode
1: ∀i, j : visitedij := false

2: for i = 1→ nd do
3: for j = 1→ nu do
4: (si, tj) := argmax(i,j)|visitedij=false uij/pij

5: visitedsitj := true

6: fs :=
∑

k fsik and pt :=
∑

k pktjfktj
7: fsi,tj := min(asi − fs, (btj − pt)/psitj )

8: end for
9: end for



Sep 26, 2011 12

Greedy Approach is Not Enough!

��

��

��

��

������

�����

�����

�����

Figure 3: A counter example of Auction vs. GA-I

Let a1 = a2 = 1, b1 = b2 = 1, p11 = p12 = p21 = p22 = 1.
Let u11 = u22 = 9, u12 = 10 and u21 = 1.

I
∑2

i=1

∑2
j=1 uijfij = 11 vs.

∑2
i=1

∑2
j=1 uijfij = 18



Sep 26, 2011 13

What is Auction?

An auction algorithm is an intuitive method for
solving the classical assignment problem.
Suppose there are n agents with budget ei and m

goods.
At each iteration, an agent will increment his bid to
acquire his preferred good, and it terminates when
each agent are satisfied.

I Users bid up to their own budget allowed to
maximize their utility.

I Data centers assigns a user an edge with
available supply (capacity).



Sep 26, 2011 14

Auction - 1

1: while ∃i s.t. αi > 0 and
∑

j fij < ai do
2: Pick j : maxj(uij − pijβj)

3: if
∑

i pijfij = bj then
4: Find a source i′ : yi′j = β′

j

5: Shift flow from i′ to i

6: else
7: Sink is unsaturated, push max. flow possible
8: Under supply and demand constraint
9: end if

10: end while



Sep 26, 2011 15

Auction - 2

1: if βj = 0 then
2: βj ← ϵmaxi uij/pij

3: else if ∀i : fij > 0, yij = βj then
4: β′

j ← βj

5: βj ← βj(1 + ϵ)

6: else
7: //no update required
8: end if



Sep 26, 2011 16

Simulation Results - Environment

I Environment : A Intel Core 2 Duo(2 GHZ)
processor, 2 GB memory and Windows 32-bit
operating system.

I Compiler : Visual Studio 2008 on a Windows
operating system.

I Parameters : Given ai, bj , pij , uij and ϵ = 0.001.

I Output : average 10 different instances of the
same parameter(utility,congestion,exeTime)



Sep 26, 2011 17

Simulation Results - E-I

����

����

�����

�����

�����

�����

�����

�����

� �� �� 	� �� ��� ���

�

�

�

�

�

�

��	
����������


����� �������� ��������

Figure 4: Auction vs. GA-II vs. GA-I -Utility



Sep 26, 2011 18

Simulation Results - E-I

��

��

��

��

��

��

� �� �� �� �� ��� ���

�

�

�

�

�

�

�

�

	




�

�

�

����������	��	

	
���� ���������

Figure 5: Auction vs. GA-II - Congestion



Sep 26, 2011 19

Simulation Results - E-I

�

����

����

����

����

����

����

���	

���


����

� �� �� �� 
� ��� ���

�

�

�

�

�

�

�

���	�
������
�

������

Figure 6: Execution Time of Auction in Seconds



Sep 26, 2011 20

Simulation Results - E-II

�����

�����

�����

�����

�����

�����

�����

	�����

� 
� �� �� �� 	�� 	
�

�

�

�

�

�

�

��	
����������

������ ��������� ���������

Figure 7: Auction vs. GA-II vs. GA-I - Utility



Sep 26, 2011 21

Simulation Results - E-II

���

���

���

���

���

���

���

���

���

���

� �� �� 	� 
� ��� ���

�

�

�

�

�

�

�

�

�

�

	
�����������

������ ���������

Figure 8: Auction vs. GA-II - Congestion



Sep 26, 2011 22

Simulation Results - E-II

�

���

���

���

���

�

���

���

���

���

�

� �� �� �� �� ��� ���

�

�

�

�

�

�

�

���	�
������
�

�	
���

Figure 9: Execution Time of Auction in Seconds



Sep 26, 2011 23

Conclusion

1. Greedy approach is easy to implement and
fast, but as expected the method does not
match up to the optimal.

2. Since the auction approach is quite efficient,
the usage of the method for optimally routing
data center traffic is also practical.

3. Further improvements in the efficiency of the
algorithm are possible.

4. Future work would extend the algorithm to
non-linear objective functions.


