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Problem Definition

I Objective : Maximize the utility of users.

I Constraint :

1. Supply Constraint : Each source (or
data/service center) i has a supply of
goods, bounded by a capacity function ai.

2. Budget Constraint : Each sink (or user) j has
a bound on the incoming set of data,
specified by a budget bj .
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Problem Definition - Example
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Figure 1: One instance of Data Center Allocation
Problem
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Network Topology for Simulation

Figure 2: AT&T Network Topology
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To Data Center Allocation Problem

I Convert the original problem into Data Center
Allocation Problem

I Defined on a Weighted Bipartite Graph.

I Given a pair of data center i and user j,
add edge eij between i and j with pij
(pij represents the price of utilizing the path).
One such measure is the number of hops
between i and j.

I uij represents the benefit of using the path.
One such benefit is the minimum capacity
amongst of edges on the path.
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Mathematical Model - Primal

P: Maximize
∑

i∈S,j∈T

uijfij subject to

∑
j∈T fij ≤ ai ∀i ∈ S (1)∑

i∈S pijfij ≤ bj ∀j ∈ T (2)

fij ≥ 0 ∀i ∈ S, j ∈ T (3)

I uij , pij : utility and price using i by j

I fij : amount of data from i to j

I ai, bj : capacity function of i and budget
function of j
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Mathematical Model - Dual

The dual of (P) is as follows denoted by (D).

D: Minimize
∑
i∈S

αiai +
∑
j∈T

βjbj subject to

αi ≥ uij − pijβj ∀i ∈ S, j ∈ T (4)

αi ≥ 0 ∀i ∈ S (5)

βj ≥ 0 ∀j ∈ T (6)

αi and βj represent dual variables.
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GA-I - High Level Idea

I Objective : Selects a data center which
maximizes their utility.

I Constraint: Each user uses at most a single
path.

1: Let us start with j = 1 in a round robin way.
2: Pick i s.t. utility is maximized.
3: Calculate current amount of data from i.
4: Calculate budget of user j.
5: Assign i to j under those constraints.

The algorithm iterates at most nu times.
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GA-I - Pseudocode

1: for j = 1→ nu do
2: i := maxk ukj/pkj

3: tf :=
∑

k fik

4: tp :=
∑

k pkjfkj

5: x := min(ai − tf , (bj − tp)/pij)

6: end for
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GA-II - High Level Idea

I Objective : Selects a data center maximizing
their utility.

I Constraint: Each user is able to access
multiple servers.

1: Find (i, j) s.t. maximizing utility.
2: Calculate current amount of data from i.
3: Calculate budget of user j.
4: Assign i to j under those constraints.

The algorithm may iterate for all pairs.
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GA-II - Pseudocode
1: ∀i, j : visitedij := false

2: for i = 1→ nd do
3: for j = 1→ nu do
4: (si, tj) := argmax(i,j)|visitedij=false uij/pij

5: visitedsitj := true

6: fs :=
∑

k fsik and pt :=
∑

k pktjfktj
7: fsi,tj := min(asi − fs, (btj − pt)/psitj )

8: end for
9: end for
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Greedy Approach is Not Enough!
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Figure 3: A counter example of Auction vs. GA-I

Let a1 = a2 = 1, b1 = b2 = 1, p11 = p12 = p21 = p22 = 1.
Let u11 = u22 = 9, u12 = 10 and u21 = 1.

I
∑2

i=1

∑2
j=1 uijfij = 11 vs.

∑2
i=1

∑2
j=1 uijfij = 18
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What is Auction?

An auction algorithm is an intuitive method for
solving the classical assignment problem.
Suppose there are n agents with budget ei and m

goods.
At each iteration, an agent will increment his bid to
acquire his preferred good, and it terminates when
each agent are satisfied.

I Users bid up to their own budget allowed to
maximize their utility.

I Data centers assigns a user an edge with
available supply (capacity).



Sep 26, 2011 14

Auction - 1

1: while ∃i s.t. αi > 0 and
∑

j fij < ai do
2: Pick j : maxj(uij − pijβj)

3: if
∑

i pijfij = bj then
4: Find a source i′ : yi′j = β′

j

5: Shift flow from i′ to i

6: else
7: Sink is unsaturated, push max. flow possible
8: Under supply and demand constraint
9: end if

10: end while
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Auction - 2

1: if βj = 0 then
2: βj ← ϵmaxi uij/pij

3: else if ∀i : fij > 0, yij = βj then
4: β′

j ← βj

5: βj ← βj(1 + ϵ)

6: else
7: //no update required
8: end if
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Simulation Results - Environment

I Environment : A Intel Core 2 Duo(2 GHZ)
processor, 2 GB memory and Windows 32-bit
operating system.

I Compiler : Visual Studio 2008 on a Windows
operating system.

I Parameters : Given ai, bj , pij , uij and ϵ = 0.001.

I Output : average 10 different instances of the
same parameter(utility,congestion,exeTime)
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Simulation Results - E-I
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Figure 4: Auction vs. GA-II vs. GA-I -Utility
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Simulation Results - E-I
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Figure 5: Auction vs. GA-II - Congestion
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Simulation Results - E-I
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Figure 6: Execution Time of Auction in Seconds
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Simulation Results - E-II
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Figure 7: Auction vs. GA-II vs. GA-I - Utility
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Simulation Results - E-II
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Figure 8: Auction vs. GA-II - Congestion
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Simulation Results - E-II

�

���

���

���

���

�

���

���

���

���

�

� �� �� �� �� ��� ���

�

�

�

�

�

�

�

���	�
������
�

�	
���

Figure 9: Execution Time of Auction in Seconds
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Conclusion

1. Greedy approach is easy to implement and
fast, but as expected the method does not
match up to the optimal.

2. Since the auction approach is quite efficient,
the usage of the method for optimally routing
data center traffic is also practical.

3. Further improvements in the efficiency of the
algorithm are possible.

4. Future work would extend the algorithm to
non-linear objective functions.


