

Conquering Big Data with BDAS (Berkeley Data Analytics)

Ion Stoica UC Berkeley / Databricks / Conviva

Extracting Value from Big Data

Insights, diagnosis, e.g.,

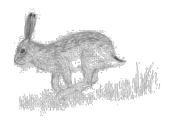
- » Why is user engagement dropping?
- » Why is the system slow?
- » Detect spam, DDoS attacks

Decisions, e.g.,

- » Decide what features to add to a product
- » Personalized medical treatment
- » Decide when to change an aircraft engine part
- » Decide what ads to show

Data only as useful as the decisions it enables

What do We Need?



Interactive queries: enable faster decisions » E.g., identify why a site is slow and fix it

Queries on streaming data: enable decisions on real-time data

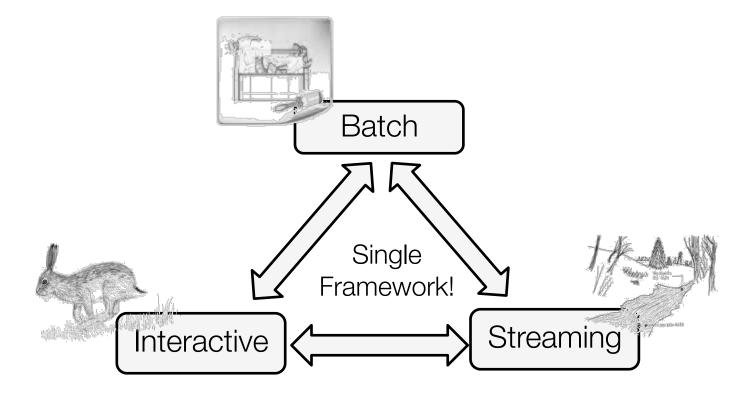
» E.g., fraud detection, detect DDoS attacks

Sophisticated data processing: enable

"better" decisions

» E.g., anomaly detection, trend analysis

Our Goal



Support batch, streaming, and interactive computations...

... in a unified framework

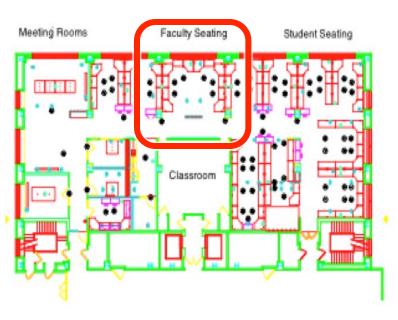
Easy to develop sophisticated algorithms (e.g., graph, ML algos)

The Berkeley AMPLab

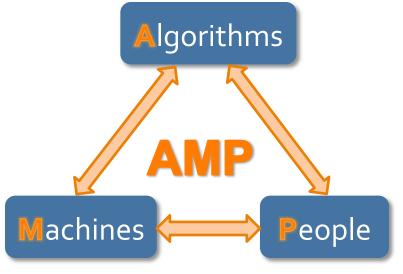
January 2011 - 2017

- » 8 faculty
- » > 40 students
- » 3 software engineer team

Organized for collaboration



3 day retreats (twice a year)



AMPCamp3 (August, 2013)

220 campers (100+ companies)

The Berkeley AMPLab

Governmental and industrial funding:

Goal: Next generation of open source data analytics stack for industry & academia: Berkeley Data Analytics Stack (BDAS)

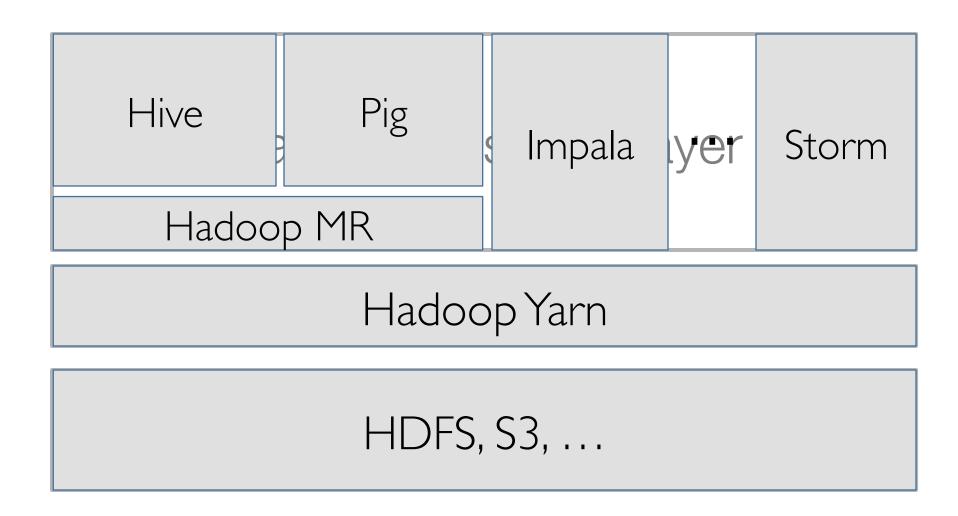
Data Processing Stack

Data Processing Layer

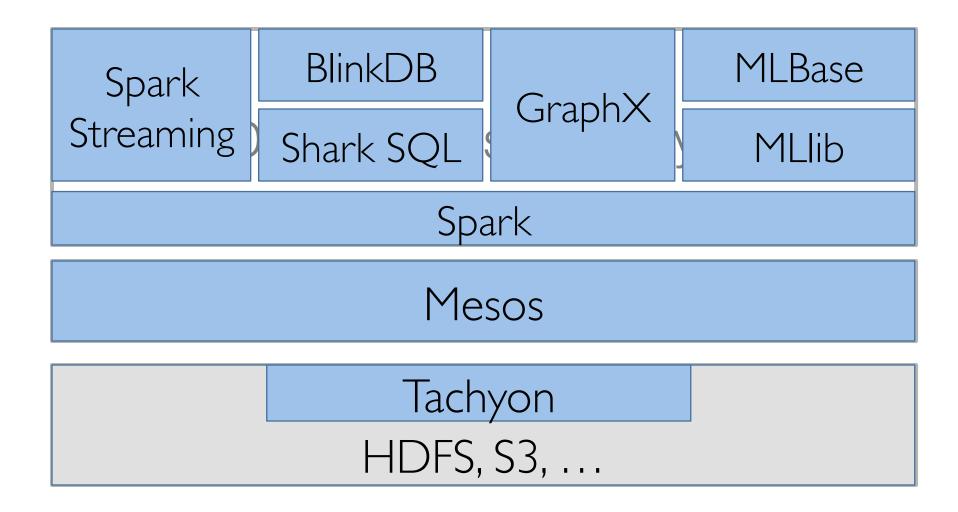
Resource Management Layer

Storage Layer

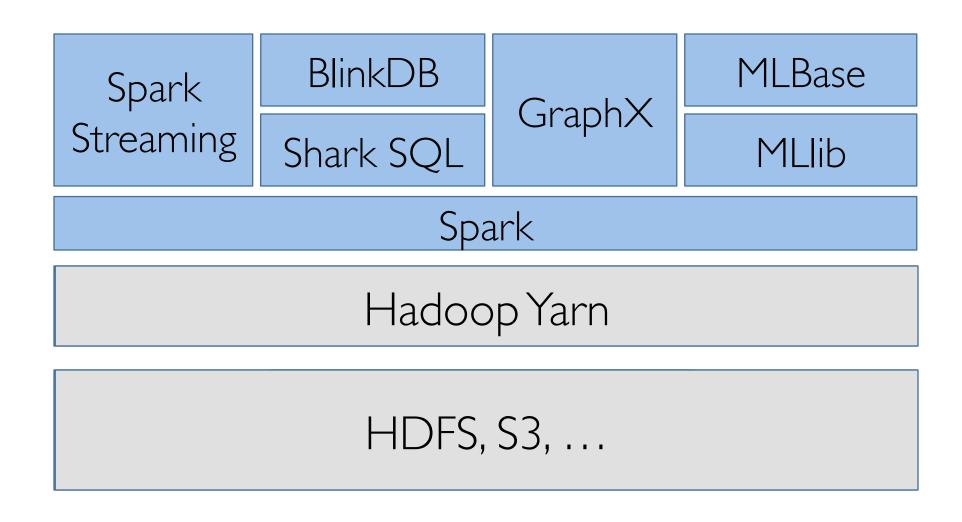
Hadoop Stack



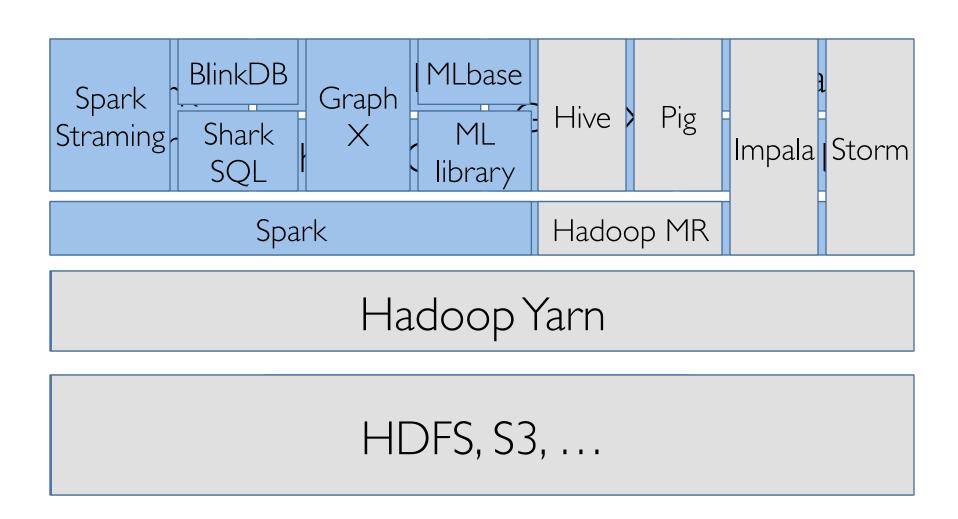
BDAS Stack



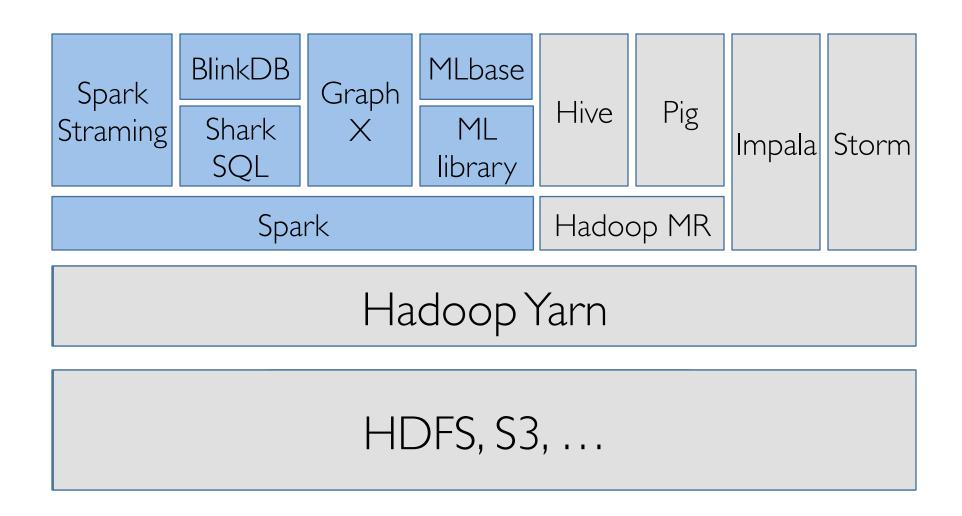
How do BDAS & Hadoop fit together?



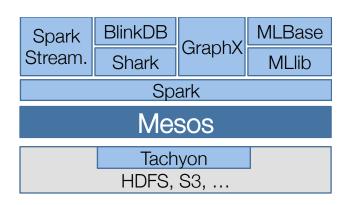
How do BDAS & Hadoop fit together?



How do BDAS & Hadoop fit together?



Apache Mesos



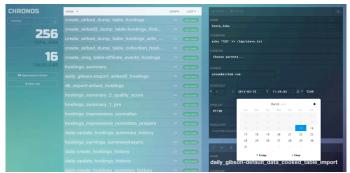
Enable multiple frameworks to share same cluster resources (e.g., Hadoop, Storm, Spark)

Twitter's large scale deployment

- » 10,000+ servers,
- » 500+ engineers running jobs on Mesos

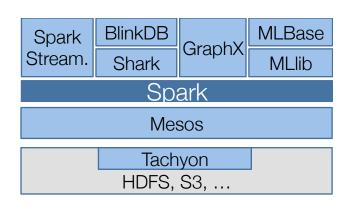
Third party Mesos schedulers

- » AirBnB's Chronos
- » Twitter's Aurora



Mesospehere: startup to commercialize Mesos

Apache Spark



Distributed Execution Engine

- » Fault-tolerant, efficient in-memory storage
- » Low-latency large-scale task scheduler
- » Powerful prog. model and APIs: Python, Java, Scala

Fast: up to 100x faster than Hadoop MR

» Can run sub-second jobs on hundreds of nodes

Easy to use: 2-5x less code than Hadoop MR

General: support interactive & iterative apps

Fault Tolerance

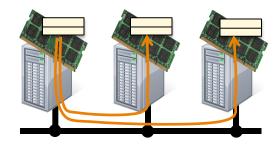
Spark Stream. BlinkDB GraphX MLBase MLlib Spark Mesos Tachyon HDFS, S3, ...

Need to achieve

- » High throughput reads and writes
- » Efficient memory usage

Replication

- » Writes bottlenecked by network
- » Inefficient: store multiple replicas



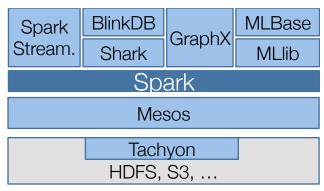
Persist update logs

» Big data processing can generate massive logs

Our solution: Resilient Distributed Datasets (RDDs)

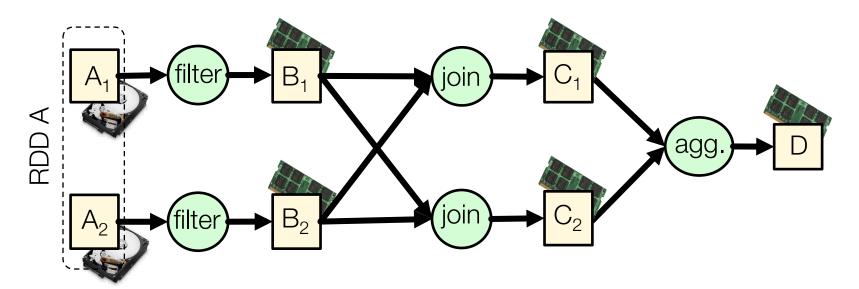
- » Partitioned collection of immutable records
- » Use lineage to reconstruct lost data

RDD Example

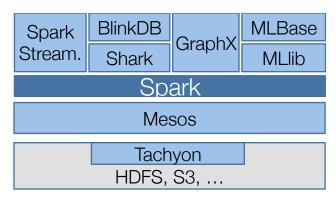


Two-partition RDD $A=\{A_1, A_2\}$ stored on disk

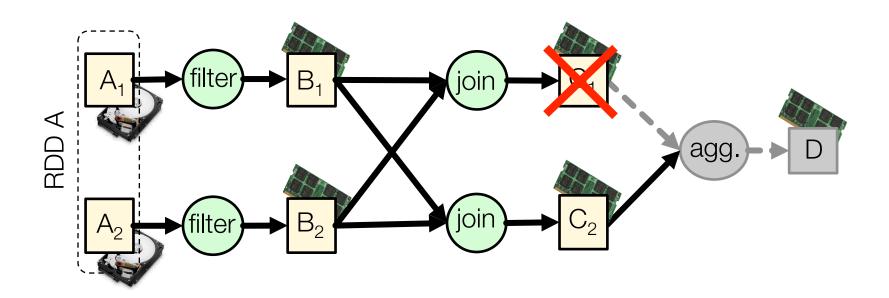
- filter and cache → RDD B
- 2) join → RDD C
- 3) aggregate → RDD D



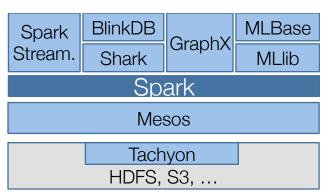
RDD Example



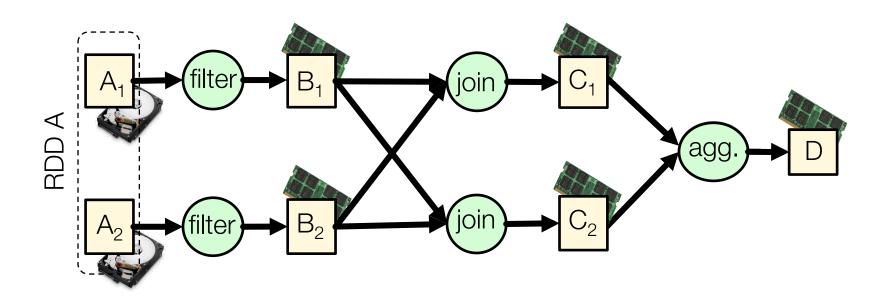
C₁ lost due to node failure before reduce finishes



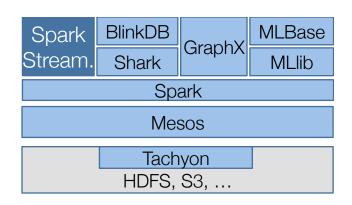
RDD Example



 C_1 lost due to node failure before reduce finishes Reconstruct C_1 , eventually, on different node



Spark Streaming

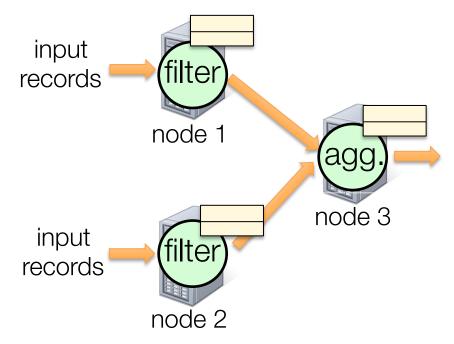


Existing solutions: recordby-record processing

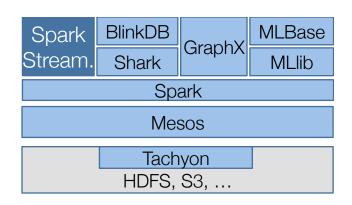
Low latency

Hard to

- » Provide fault tolerance
- » Mitigate straggler

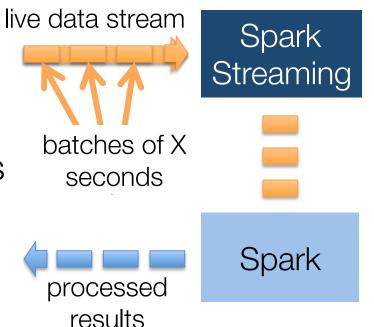


Spark Streaming



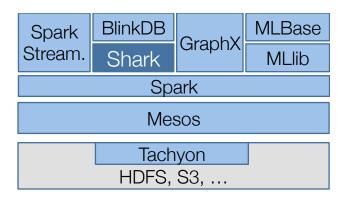
Implemented as sequence of micro-jobs (<1s)

- » Fault tolerant
- » Mitigate stragglers
- » Ensure exactly one semantics



Spark & SparkStreaming: batch, interactive, and streaming computations

Shark



Hive over Spark: full support for HQL and UDFs

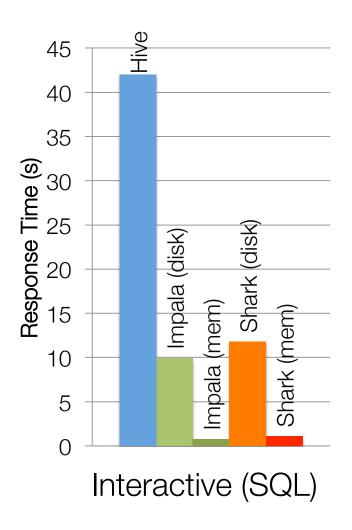
Up to 100x when input is in memory

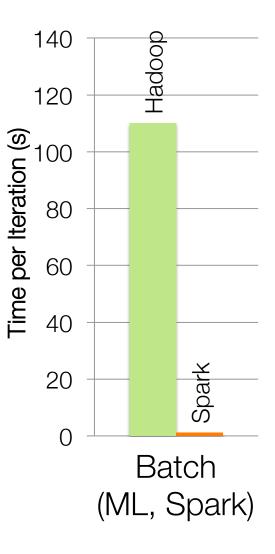
Up to 5-10x when input is on disk

Running on hundreds of nodes at Yahoo!

Not Only General, but Fast







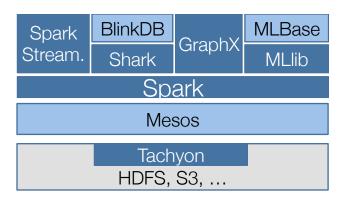
Spark Distribution

Includes

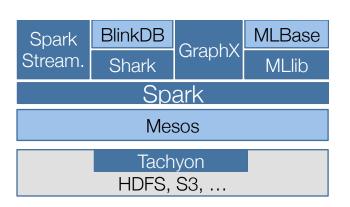
- » Spark (core)
- » Spark Streaming
- » GraphX (alpha release)
- » MLlib

In the future:

- » Shark
- » Tachyon



Explosive Growth



2,500+ Spark meetup users

180+ contributors from 30+

Contributors in past year

companies

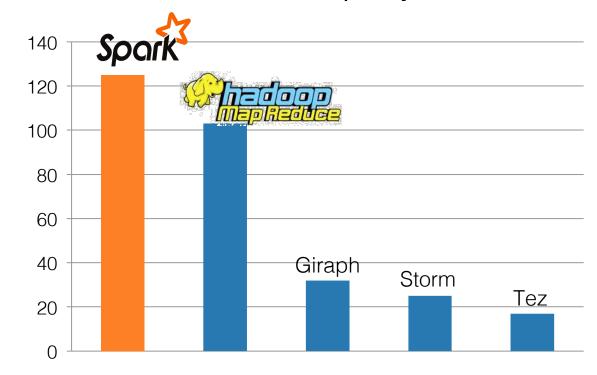
1st Spark Summit

» 450+ attendees

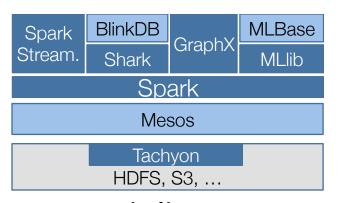
» 140+ companies

2nd Spark Summit

» June 30 – July 2



Explosive Growth



Databricks: founded in 2013 to commercialize Spark Platform

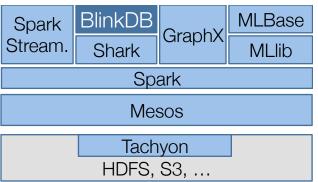
Included in all major Hadoop Distributions

- » Cloudera
- » MapR
- » Hortonworks (technical preview)

Enterprise support: Cloudera, MapR, Datastax

Spark and Shark available on Amazon's EMR

BlinkDB



Trade between query performance and accuracy using sampling

Why?

» In-memory processing doesn't guarantee interactive processing

• E.g., ~10's sec just to scan 512 GB RAM!

 Gap between memory capacity and transfer rate increasing

ance
512GB
doubles every
18 months
doubles every
36 months

Key Insight

Computations don't always need exact answers

- Input often *noisy*: exact computations do *not* guarantee exact answers
- Error often acceptable if small and bounded

Best scale ± 200g error

Speedometers ± 2.5 % error (edmunds.com)

OmniPod Insulin Pump ± 0.96 % error (www.ncbi.nlm.nih.gov/pubmed/22226273

Approach: Sampling

Compute results on samples instead of full data » Typically, error depends on sample size (n) not on original data size, i.e., error $\alpha 1/\sqrt{n}$

Can trade between answer's *latency* and *accuracy* and *cost*

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

WITHIN 1 SECONDS ----

234.23 ± 15.32

BlinkDB Interface

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

WITHIN 2 SECONDS

 $\frac{234.23 \pm 15.32}{}$

239.46 ± 4.96

SELECT avg(sessionTime)

FROM Table

WHERE city='San Francisco' AND 'dt=2012-9-2'

ERROR 0.1 CONFIDENCE 95.0%

Quick Results

Dataset

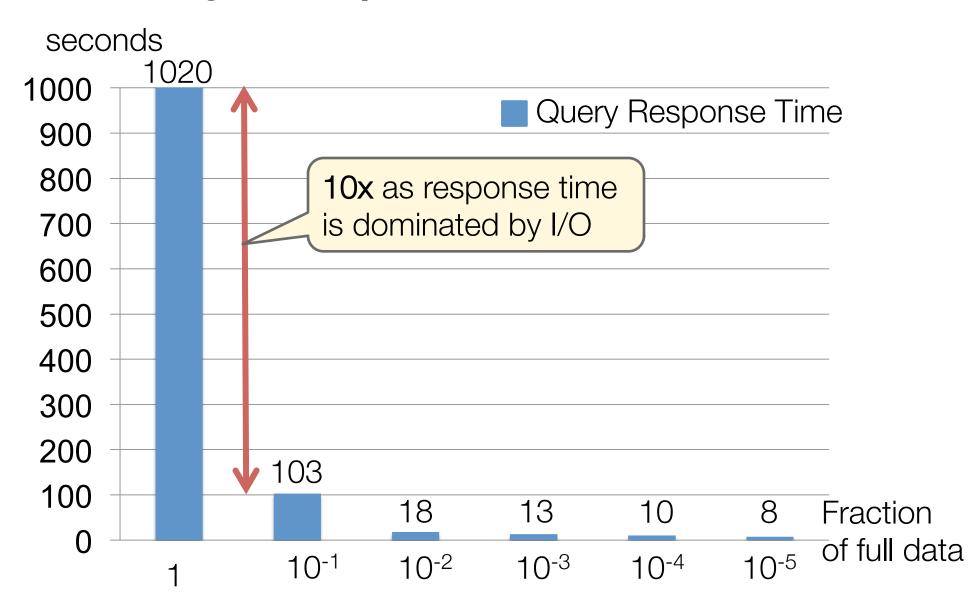
- » 365 mil rows, 204GB on disk
- » 600+ GB in memory (deserialized format)

Query: query computing 95-th percentile

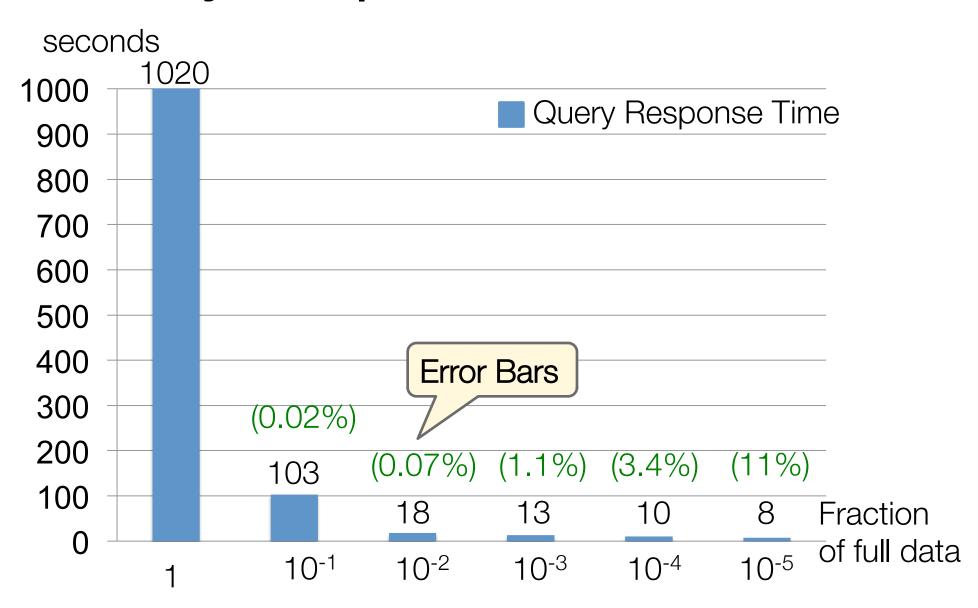
25 EC2 instances with

- » 4 cores
- » 15GB RAM

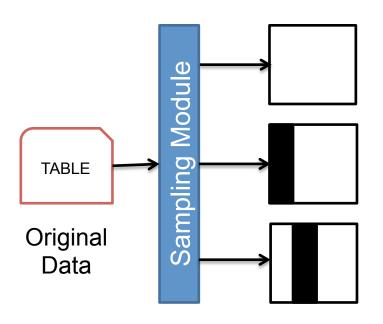
Query Response Time



Query Response Time



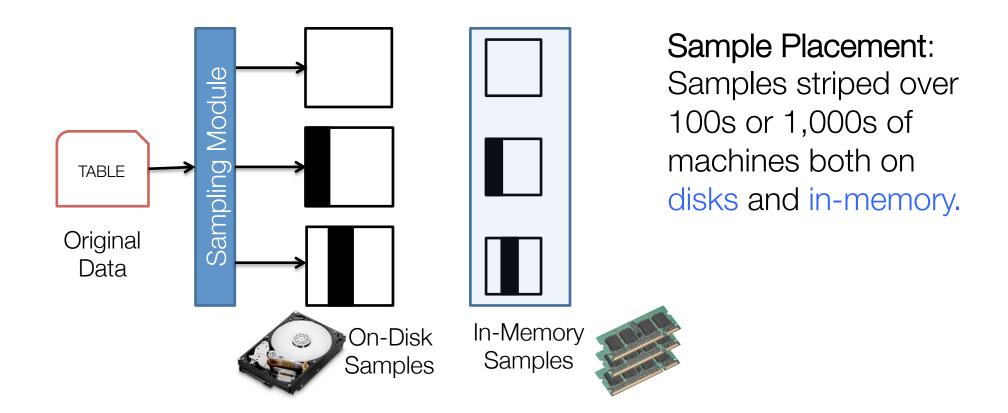
BlinkDB Overview



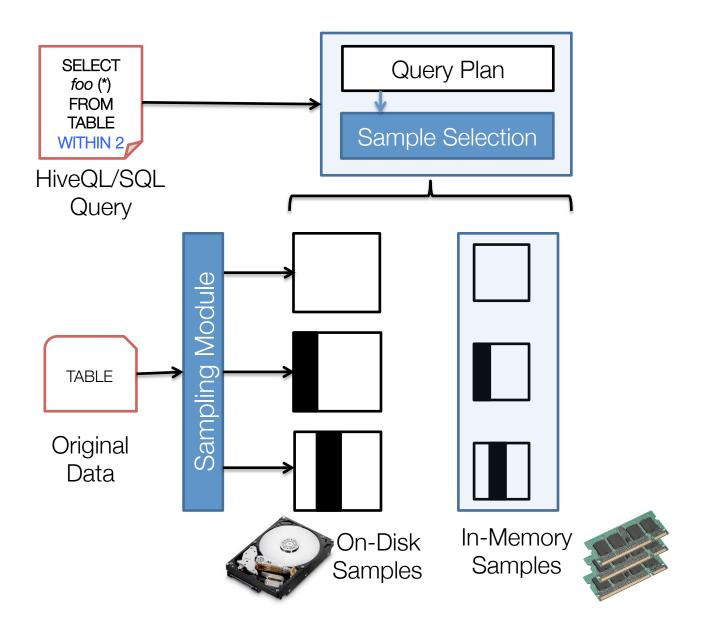
Offline-sampling:

Optimal set of samples across different dimensions (columns or sets of columns) to support ad-hoc exploratory queries

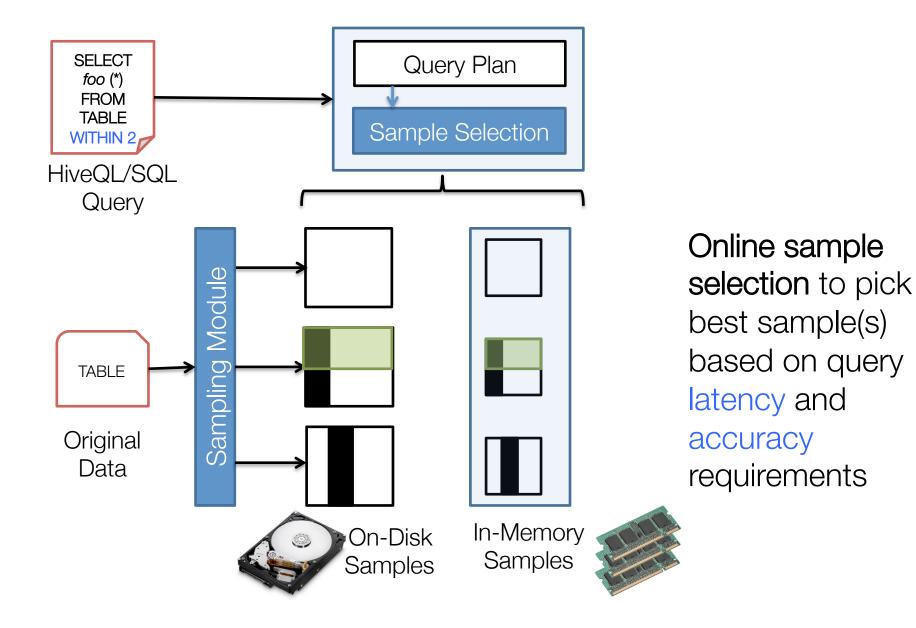
BlinkDB Overview



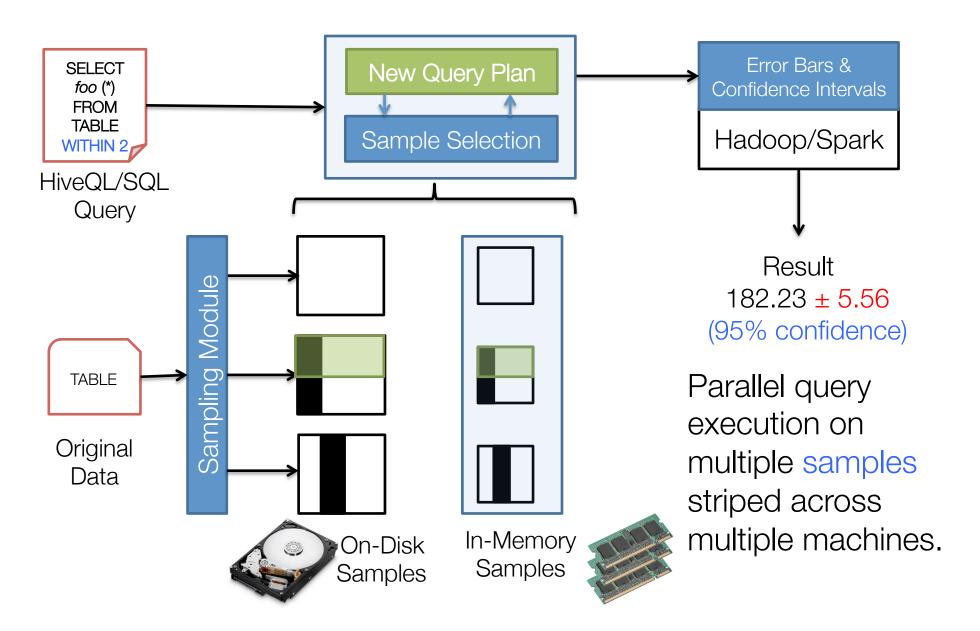
BlinkDB Overview



BlinkDB Overview



BlinkDB Overview



BlinkDB Challenges

Which set of samples to build given a storage budget?

Which sample to run the query on?

How to accurately estimate the error?

BlinkDB Challenges

Which set of samples to build given a storage budget?

Which sample to run the query on?

How to accurately estimate the error?

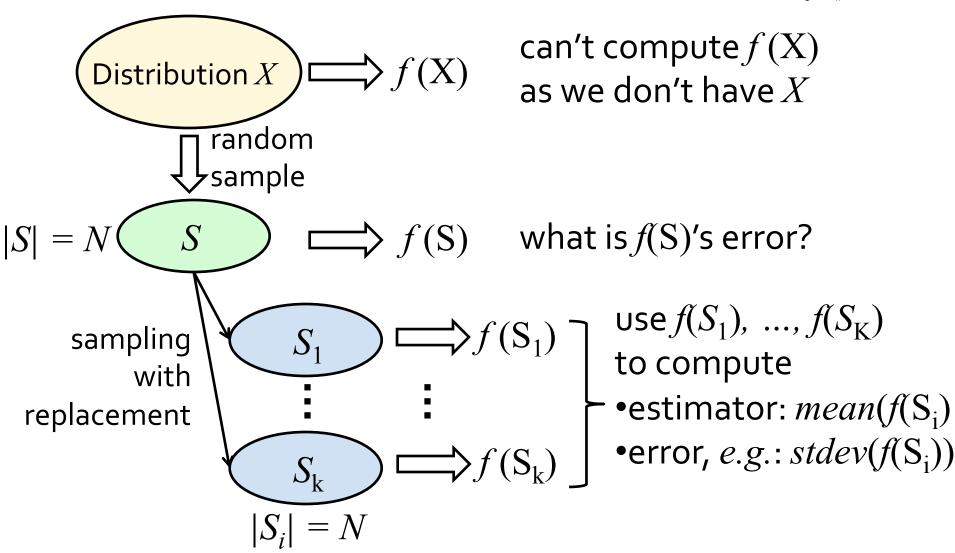
How to Accurately Estimate Error?

Close formulas for limited number of operators » E.g., count, mean, percentiles

What about user defined functions (UDFs)? » Use bootsrap technique

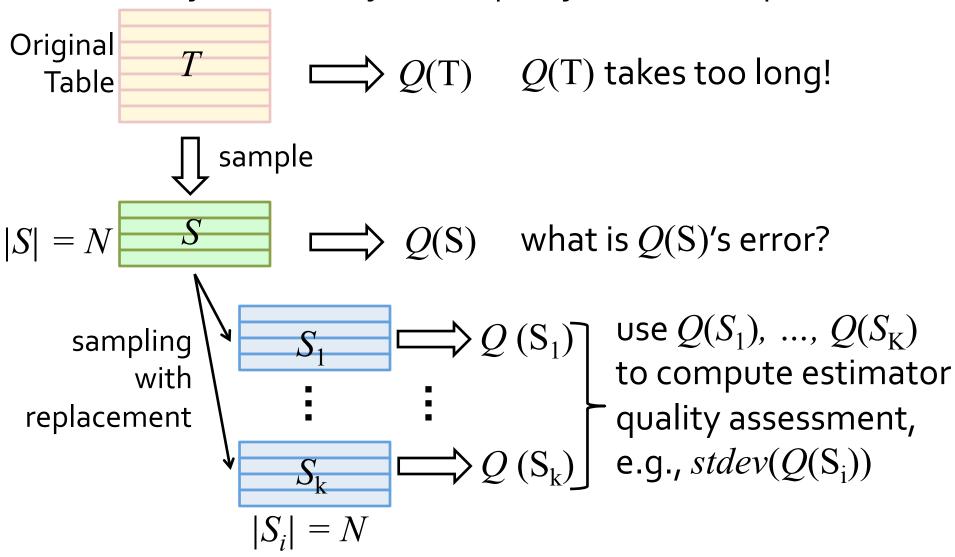
Bootstrap

Quantify accuracy of a sample estimator, f()



Bootstrap for BlinkDB

Quantify accuracy of a query on a sample table



How Do You Know Error Estimation is Correct?

Assumption: f() is Hadamard differentiable

- » How do you know an UDF is Hadamard differentiable?
- » Sufficient, not necessary condition

Only **approximations** of true error distribution (true for closed formula as well)

Previous work doesn't address error estimation correctness

How Bad it Is?

Workloads

- » Conviva: 268 real-world 113 had custom User-Defined Functions
- » Facebook

Closed Forms/Bootstrap fails for

- » 3 in 10 Conviva Queries
- » 4 in 10 Facebook Queries

Need runtime diagnosis!

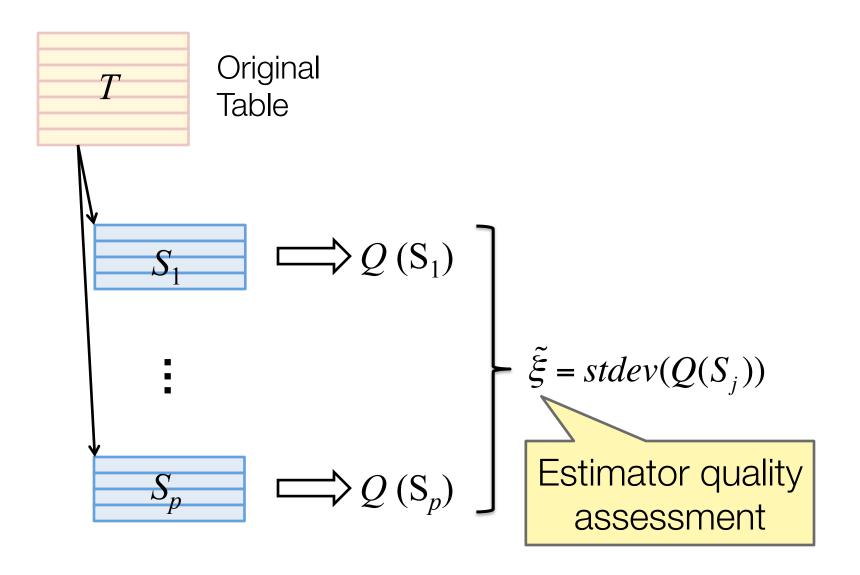
Error Diagnosis

Compare bootstrapping with **ground truth** for small samples

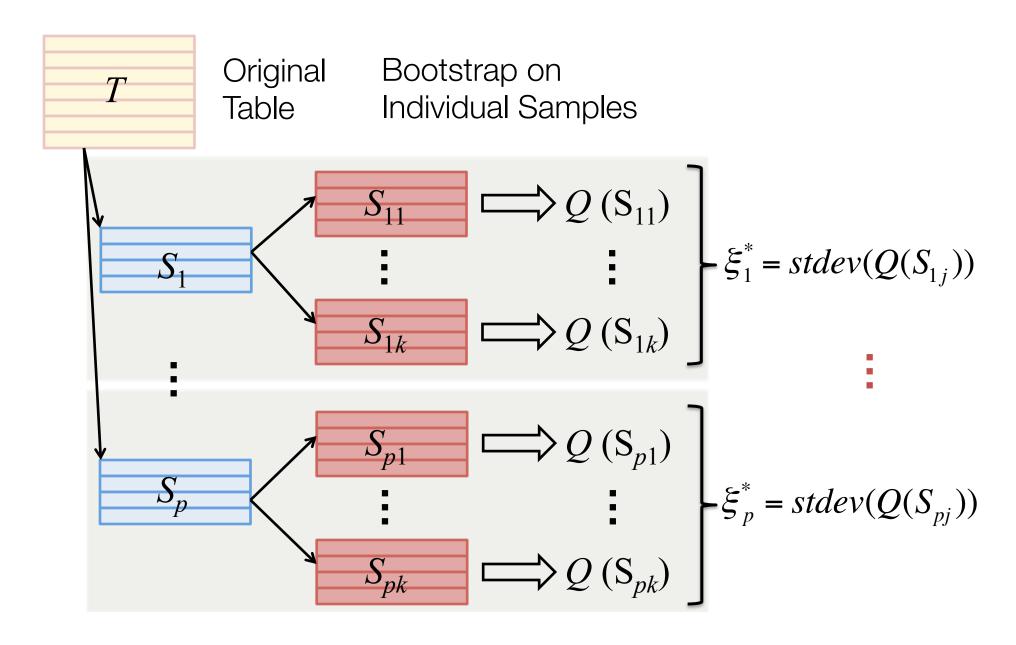
Check whether error improves as sample size increases

Ground Truth (Approximation)

Ground Truth (Approximation)



Ground Truth and Bootstrap

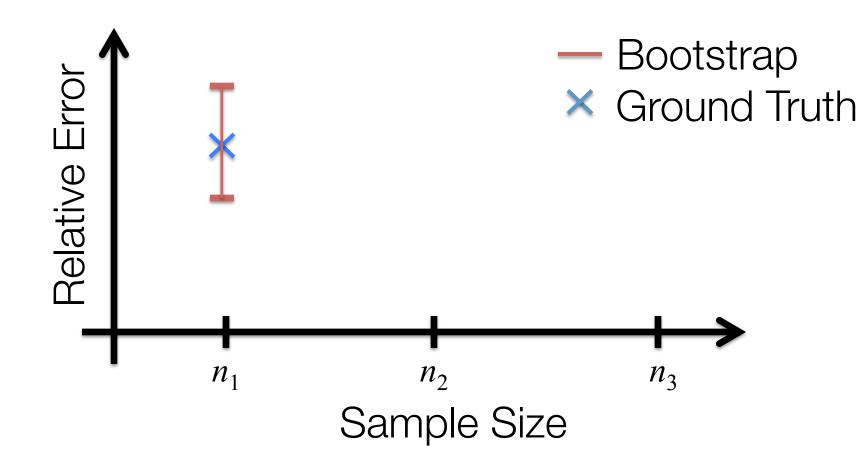


Ground Truth vs. Bootstrap

$$\tilde{\xi}_i = mean(\xi_{ij})$$

$$\xi_{i1}^* = stdev(Q(S_{i1j}))$$

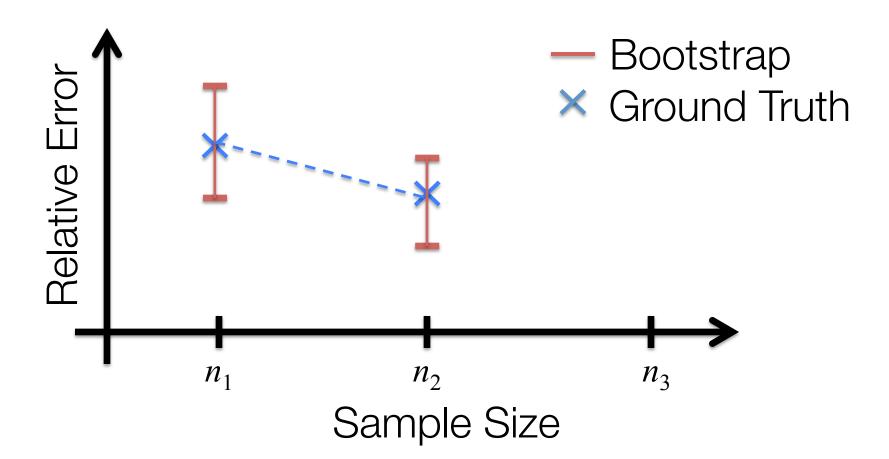
$$\xi_{i1}^* = stdev(Q(S_{i1j}))$$
 $\xi_{ip}^* = stdev(Q(S_{ipj}))$



Ground Truth vs. Bootstrap

$$\tilde{\xi}_i = mean(\xi_{ij})$$

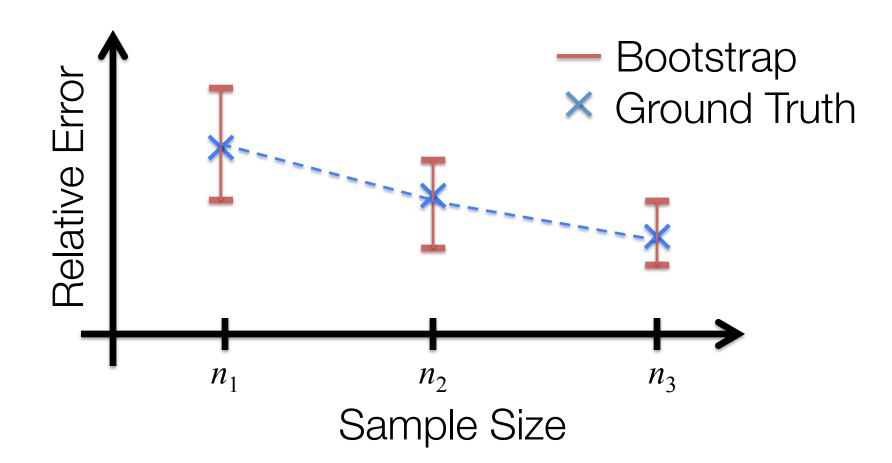
$$\xi_{i1}^* = stdev(Q(S_{i1j}))$$
 $\xi_{ip}^* = stdev(Q(S_{ipj}))$



Ground Truth vs. Bootstrap

$$\tilde{\xi}_i = mean(\xi_{ij})$$

$$\xi_{i1}^* = stdev(Q(S_{i1j}))$$
 $\xi_{ip}^* = stdev(Q(S_{ipj}))$



How Well Does it Work in Practice?

Evaluated on Conviva Query Workload

Diagnostic predicted that 207 (77%) queries can be approximated

- » False Negatives: 18
- » False Positives: 3 (conditional UDFs)

Overhead

Boostrap and Diagnostic overheads can be very large

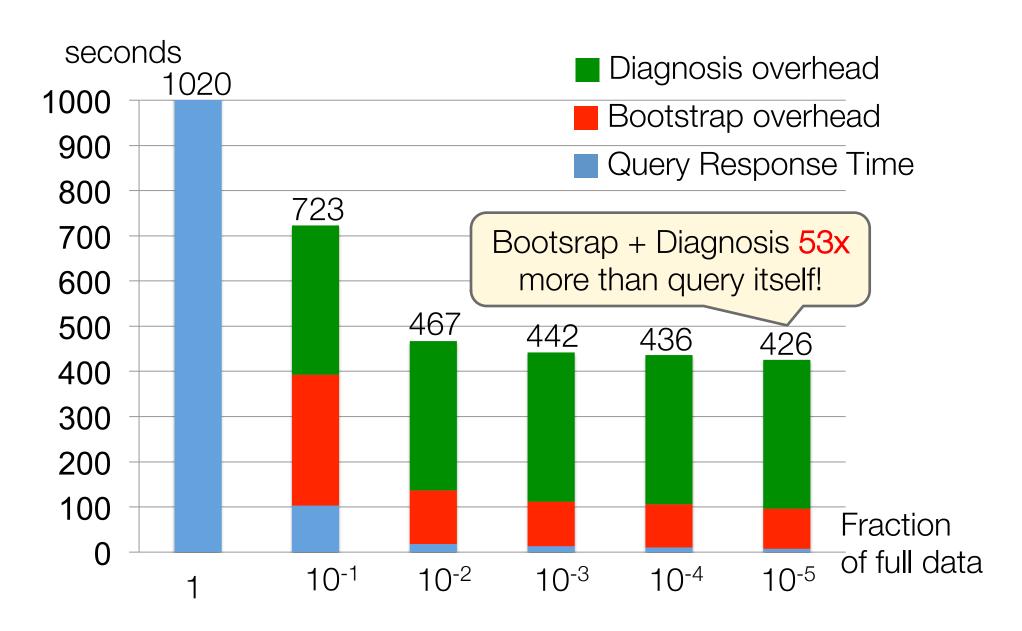
» Diagnostics requires to run 30,000 small queries!

Optimization

- » Pushdown filter
- » One pass execution

Can reduce overhead by orders of magnitude

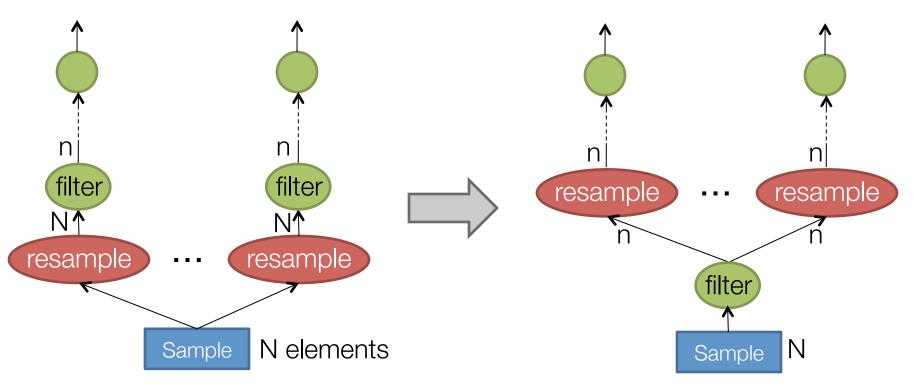
Query + Bootstrap + Diagnosis



Optimization: Filter Pushdown

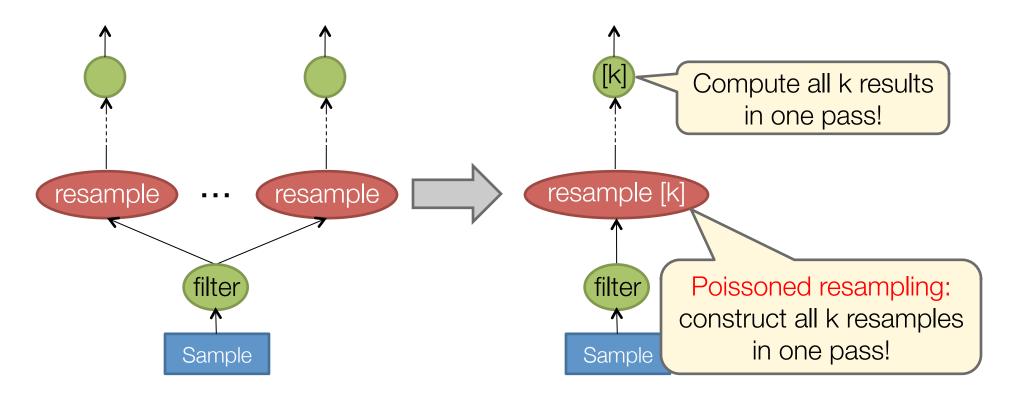
Perform filtering before resampling

» Can dramatically reduce I/O



Assume n << N

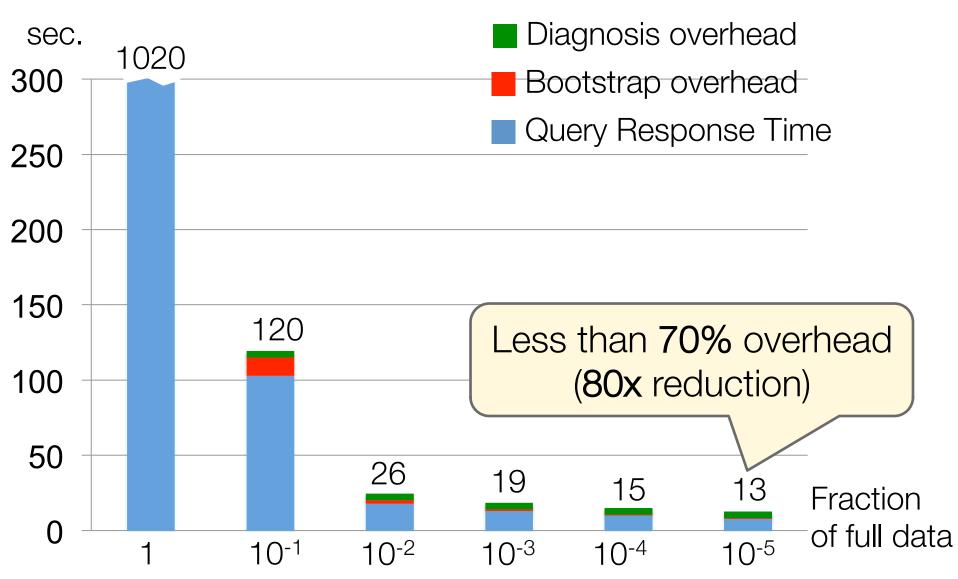
Optimization: One Pass Exec.



For each resample add new column

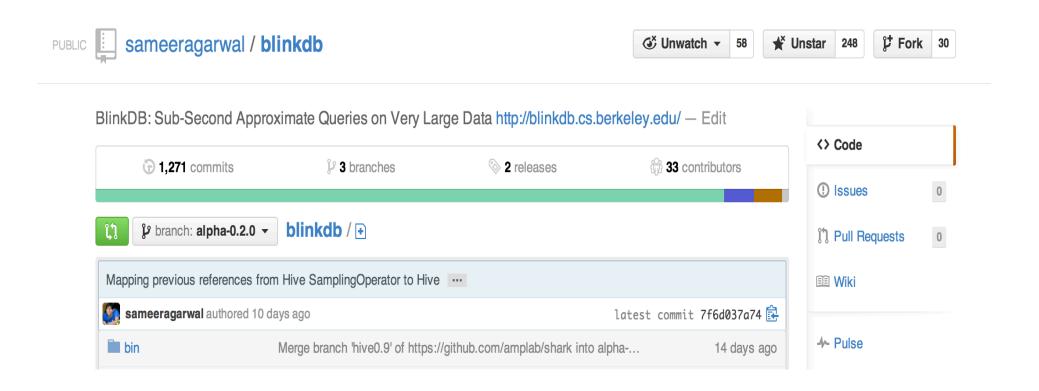
- » Specify how many times each row has been selected
- » Query generate results for each resamples in one pass

Query + Bootstrap + Diagnosis (with Filter Pushdown and Single Pass)



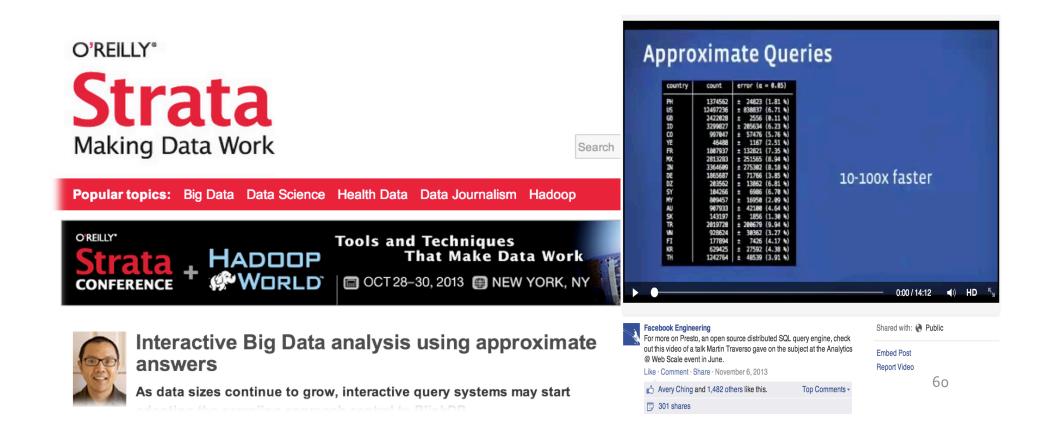
Open Source

BlinkDB is open-sourced and released at http://blinkdb.org



Open Source

Used regularly by 100+ engineers at Facebook Inc.



Lesson Learned

Focus on novel usage scenarios

Be paranoid about simplicity

» Very hard to build real complex systems in academia

Example: Mesos

Focus on novel usage scenarios

» Let multiple frameworks share same cluster

Be paranoid about simplicity

- » Just enforce allocation policy across frameworks,e.g., fair sharing
- » Let frameworks decide which slots they accept, which tasks to run, and when to run them
- » First release: 10K code

- » First, support arbitrary scheduling, but inneficient
- » Latter added filters to improve performance

Example: Spark

Focus on novel usage scenarios

» Interactive queries and iterative (ML) algorithms

Be paranoid about simplicity

- » Immutable data; avoid complex consistency protocols
- » First release: 2K code

- » First, no automatic check-pointing
- » Latter to add automatic checkpoint

Example: BlinkDB

Focus on novel usage scenarios

» Approximate computations; error diagnosis

Be paranoid about simplicity

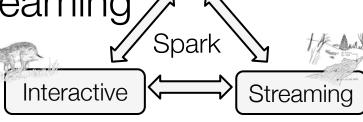
» Use bootstrap as generic technique; no support for close formula

- » First, straightforward error estimation, very expensive
- » Latter, optimizations to reduce overhead
- » First, manual sample generation
- » Later, automatic sample generation (to do)

Summary

BDAS: address next Big Data challenges

Unify batch, interactive, and streaming



Batch

Enable users to trade between

» Response time, accuracy, and cost

Explosive adoption

- » 30+ companies, 180+ individual contributors (Spark)
- » Spark platform included in all major Hadoop distros
- » Enterprise grade support and professional services for both Mesos and Spark platform