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Exascale platforms (courtesy J. Dongarra)

Potential System Architecture 
with a cap of $200M and 20MW  
 Systems 2011 

K computer 
2019  Difference 

Today & 2019 

System peak 10.5 Pflop/s 1 Eflop/s O(100) 

Power 12.7 MW ~20 MW 

System memory 1.6 PB 32 - 64 PB O(10) 

Node performance 128 GF 1,2  or 15TF O(10) – O(100) 

Node memory BW 64 GB/s 2 - 4TB/s O(100) 

Node concurrency 8 O(1k) or 10k O(100) – O(1000) 

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10) 

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100) 

Total concurrency 705,024 O(billion) O(1,000) 

MTTI days O(1 day) - O(10) 
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Exascale platforms (courtesy C. Engelmann & S. Scott)
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Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)
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Exascale

6= Petascale ×1000
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Even for today’s platforms (courtesy F. Cappello)
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Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs 

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of 
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware 
problems, albeit rarer, need 6.3-100.7 hours to solve.” 

•  In 2007 (Garth Gibson, ICPP Keynote): 

•  In 2008 (Oliner and J. Stearley, DSN Conf.): 
50% 

Hardware 

Conclusion: Both Hardware and Software failures have to be considered 

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other. 

Hardware errors, Disks, processors, memory, network   
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A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: fail-stop, unrecoverable, transient,
silent data corruption (SDC)

¬ Deal with faults that lead to application failures
Includes all hardware faults, and some software ones
Use fault and failure interchangeably

­ Silent errors (SDC)
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Should we be afraid? (courtesy Al Geist)
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Failure distributions: (1) Exponential
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Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ
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X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s ) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X ) = 1
λ
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Failure distributions: (2) Weibull
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Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k )
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X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time
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Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µind with one processor,
what is its value µp with p processors?

Well, it depends /
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With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
1..p

(
Exp(λ)

)
= Exp(pλ)

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)
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Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions

Theorem: µp =
µind

p
for arbitrary distributions
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Values from the literature

MTBF µind of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)
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Process Checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call
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System-level checkpointing

Blocking Checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during whole checkpoint operation

Different implementations: OS syscall; dynamic library;
compiler assisted

Create a serial file that can be loaded in a process image.
Usually on same architecture / OS / software environment

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)
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Storage

Remote Reliable Storage

Intuitive. I/O intensive. Disk usage.

Memory Hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed Memory Storage

In-memory checkpointing

Disk-less checkpointing
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Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it
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Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it
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Coordinated checkpointing

Create a consistent view of the application (no orphan messages)

Messages belong to a checkpoint wave or another

All communication channels must be flushed (all2all)
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Coordinated checkpointing

App. Message Marker Message

Silences the network during checkpoint

Missing messages recorded
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Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed
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Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

Waste: fraction of time not spent for useful computations
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Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF ] =
TimeFF −Timebase

TimeFF
=

C

T
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Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 33/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost par failures

Nfaults =
Timefinal

µ

Tlost?

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 33/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

⇒ Instants when periods begin and failures strike are independent
⇒ Valid for all distribution laws, regardless of their particular shape
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Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail ] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)
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Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF ])(1−Waste[fail ])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
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Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C
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Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail ]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail ]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail ]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail ]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C
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Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF ] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail ] ≤ 1
but µ = µind

p too small for large p, regardless of µind
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Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) + P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments
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Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)
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Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,
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Lesson learnt?

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Wasteopt ≈

√
2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%
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√
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√
2C
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Petascale: C = 20 min µ = 24 hrs ⇒ Wasteopt = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Wasteopt = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Wasteopt = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster
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Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Cost of synchronisation, I/O contention

/ Rumor: May not scale to very large platforms
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Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms
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Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing

Inter-group messages are logged
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Four additional parameters α, λ, ρ, β

¬ Non-blocking checkpoint

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations
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Four additional parameters α, λ, ρ, β

¬ Non-blocking checkpoint

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)
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Four additional parameters α, λ, ρ, β

¬ Non-blocking checkpoint

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)
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Four additional parameters α, λ, ρ, β

­ and ® Impact of message logging on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5
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Four additional parameters α, λ, ρ, β

¯ Impact of message logging on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)
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Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Now we can compute the waste ,
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Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

G bio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≈ bio
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Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line
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Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407
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Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5
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Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!
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Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000
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Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa
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F

at

Waste as a function of processor MTBF µind , C = 100
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Simulations – Platform: Titan

Stencil 2D Matrix product
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Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios
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Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data
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Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?
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Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?
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Existing multi-level checkpoint toolkits

Scalable Checkpoint/Restart Library (SCR) – SC’10

¬ RAM disk / local disk

­ Partner-copy / XOR encoding

® Parallel File System (PFS), e.g., NFS

Fault Tolerance Interface (FTI) – SC’11

¬ Local disk: storing ckpt files in local disk

­ Partner-copy: storing ckptt files in local disk & partner disk

® Reed-Solomon encoding (RS-encoding)

¯ Parallel File System (PFS), e.g., NFS
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Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults
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Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period
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Computing the waste

1 Fault-free execution: Waste[FF ] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

Error

C C C D R C

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C ]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C ]

TimeT -C Wreg

Error Predicted failure

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted failure

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail ] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r
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Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 71/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

With prediction windows

TimeTR-C TR-C Tlost TR-C

Error
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

Error
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /
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Process replication

• • • • • • . . . �

1 2 3 4 5 6 . . . N

⇓

•
•

•
•

•
• . . .

•
•

1 2 3 . . . nrg

Each process replicated g ≥ 2 times → replica-group

nrg = number of replica-groups (g × nrg = N)

Study for g = 2 by Ferreira et al., SC’2011
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 7
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 8

...

1 2 365

365/365 * 364/365 * 363/365 * … n = nrg bins, throw balls until one bin gets two balls

Expected number of balls to throw:
Birthday(n) = 1 +

∫ +∞
0 e−x(1 + x/n)n−1dx
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Analogy with birthday problem

November 21st, 2011 Sixth workshop of the Joint Laboratory 9

...

1 2 365

365/365 * 364/365 * 363/365 * … 
But second failure may hit already struck replica /
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Analogy with birthday problem

� � � � . . . �
� � � � . . . �
1 2 3 4 . . . n

⇑

• • • • • • • • • • • . . .
n = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring application down)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color
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How can it help?

Trade-off

/ By nature: replication → at most 50% machine efficiency
⇒ Reminds of TMR, Triple Modular Redundancy

, Allows to (virtually) increase MTBF dramatically

fewer application failures
larger checkpointing period
less overhead
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Simulations (1/3)
av

er
ag

e
m

ak
es

pa
n

(i
n

da
ys

)

218 219216 217 220215

number of processors

0

100

200

BestPeriod-g = 1
BestPeriod-g = 2
BestPeriod-g = 3

Daly-g = 3
Daly-g = 2
Daly-g = 1

(a) k = 0.70

218 219216 217 220215

number of processors

0

100

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 1
BestPeriod-g = 2
BestPeriod-g = 3

Daly-g = 3
Daly-g = 2
Daly-g = 1

(b) k = 0.50

Weibull failures, C = 600 sec, µind = 125 years
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Simulations (2/3)
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Log-based failures, C = 600 sec, µind = 125 years
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Simulations (3/3)
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Break-even point curves (g = 2), Weibull distributions

Replication better above curves!!!!!!
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Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory
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Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)
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Application-specific methods

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others
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General-purpose approach

TimeXe Xd

Error Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Which checkpoint to roll back to?
­ Critical failure when all live checkpoints are invalid
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Tiled LU factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 87/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Tiled LU factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 87/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Tiled LU factorization

L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 87/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Tiled LU factorization
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Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Checksum replication avoided by dedicating additional
computing resources to checksum storage
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together (no extra resource needed)
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Algorithm Based Fault Tolerant LU decomposition
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Checksum: invertible operation on row/column data

Key idea of ABFT: applying the operation on data and
checksum preserves the checksum properties

Yves.Robert@ens-lyon.fr Fault-tolerance at scale 88/ 98



Introduction Checkpointing Models for faster checkpointing Silent errors Conclusion

Performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and 
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based 
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends 
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead, 
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from 
extra flops (to update checksums) 
and extra storage

Cost decreases with machine 
scale (divided by Q when using 
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the 
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting 
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU 

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

 

Protection against 2 faults on 
192x192 processes => 1% overhead

Usually F << q; 
Overheads in F/q

Protection cost is inversely 
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with 
2F columns every q columns 

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la
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FT-PDGETRF (no error)
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PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;
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Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V )
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Base pattern (and revisiting Young/Daly)

TimeW W

Error
Detection

V C V C V C

Fail − stop(classical) Silent errors

Pattern T = W + C S = W + V + C

Waste[FF ] C
T

V+C
S

Waste[fail ] 1
µ(D + R + W

2 ) 1
µ(R + W + V )

Optimal Topt =
√

2Cµ Sopt =
√

(C + V )µ

Wasteopt

√
2C
µ 2

√
C+V
µ
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With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

Error
Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Wasteopt = 2
√

C+V
µ

New Pattern p = 1, q = 3 Wasteopt = 2
√

4(C+3V )
6µ
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With p checkpoints and q verifications, p ≤ q

Time2w 2w w w 2w 2w

V C V V C V V V C

BalancedAlgorithm optimal when C ,R,V � µ

Keep only 2 checkpoints in memory/storage

Closed-form formula for Wasteopt

Given C and V , choose optimal pattern
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Conclusion

Multiple approaches to Fault Tolerance

Application-specific FT will always provide more benefits

General-purpose FT will always be needed

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

Extended version of this talk: see SC’13 tutorial with Thomas
Hérault. Available at

http://graal.ens-lyon.fr/~yrobert/
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