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ABSTRACT 

Broadened adoption of the Linking Open Data tenets has led to a 

significant surge in the amount of Semantic Web data, particularly 

RDF data. This has positioned the issue of scalable data 

processing techniques for RDF as a central issue in the Semantic 

Web research community. The RDF data model is a fine grained 

model representing relationships as binary relations. Thus, 

answering queries (typically graph pattern matching queries) over 

RDF data requires several join operations to reassemble related 

data. While MapReduce based processing is emerging as the de 

facto paradigm for processing large scale data, it is known to be 

inefficient for join-intensive workloads. In addition, most of the 

existing techniques for optimizing RDF data processing do not 

transfer well to the MapReduce model and often require 

significant lead time for pre-processing. Such a requirement may 

not be desirable for on-demand cloud database scenarios where 

the goal is to reduce the Time-To-Result (TTR). In this position 

paper, we argue that some of these challenges can be overcome by 

rethinking the operators for graph pattern processing, as well as 

adopting dynamic optimization techniques that exploit 

information from the previous execution steps in the current 

execution steps. We present some preliminary evaluation results 

of the proposed techniques.  
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1. INTRODUCTION 
There has been a rapid increase in the amount of available 

Semantic Web data in the past few years as Semantic Web tenets 

gain broadened adoption. This includes data from domains 

ranging from scientific (e.g. DrugBank, Linked Clinical Trials), 

business (e.g. BBC, New York Times), government (e.g. data.gov, 

data.gov.uk) and general purpose communities (Wikipedia, 

Linked Open Data). To give a sense of the kind of growth, we 

note that the Linked Open Data cloud grew from around 26 billion 

RDF1 triples in September 2010 to over 31 billion triples by the 

following year [27]. Therefore, one of the important issues in 

Semantic Web community is the development of scalable and 

efficient techniques for processing large amounts of Semantic 

Web data. The most common representation model for Semantic 

Web is called the Resource Description Framework (RDF). RDF 

database is a collection of triples (Subject, Predicate, Object) 

where Predicates are named binary relations between Subject and 

Object that represent either resources or literal values in the Web. 

                                                                 
1Resource Description Framework (RDF) http://www.w3.org/RDF 

The RDF data model can also be viewed as a directed and labeled 

graph in which edges are labeled with predicate names, 

connecting between graph nodes labeled with URIs and values, 

respectively.  

The key construct for processing RDF data is graph pattern 

matching. Here, users describe the structure of patterns that they 

are interested in as queries and systems return as answers all 

occurrences of the pattern found in the data. The standard query 

language for expressing graph pattern matching queries on RDF 

data is called SPARQL2. Each triple pattern in a given SPARQL 

query is a triple in which at least one of the Subject, Predicate or 

Object is a variable, denoted by a leading question mark. 

Therefore, the query attempts to match those patterns to sub 

graphs in the database and the result of a graph pattern query is a 

list of all variables substituted from those graphs. For example, 

consider the triple {Vendor1, homepage, www.vendors.org/v1} in 

Figure 1 (a) which models that a resource Vendor1’s homepage is 

www.vendors.org/v1. Now we have the following triple pattern in 

a SPARQL query: {Vendor1 homepage ?homepage}. It will try to 

match its variable ?homepage from the triples, therefore, the value 

of ?homepage will be www.vendors.org/v1. 

Traditionally, RDF data is stored as a ternary relation and graph 

pattern matching queries are processed as a series of relational 

join operations. Due to the fine-grained nature of the RDF data 

model, it is common to require several join operations to answer a 

slightly complex query. Another commonly performed task on 

Semantic Web data is reasoning, that applies the standardized 

semantic inference rules to compute all inferable facts from the set 

of explicitly represented facts. Depending on the approach for 

performing reasoning, this task also relies heavily on joins. Thus, 

the ability to process join-intensive workloads is crucial for the 

Semantic Web.  

When considering large scale processing and analytics in data-

intensive applications using cloud environment, the recent de 

facto standard is the MapReduce [5] programming model made 

popular by Google and its open source implementations such as 

Hadoop [26]. Such platforms have been explored for graph pattern 

matching [8][9][21][23]. However, existing approaches naively 

translate join-intensive workloads such as graph pattern matching 

into a long chain of MapReduce jobs, leading to significant I/O, 

communication, and sorting overhead as discussed in the next 

section. Further, we also show how adopting existing optimization 

techniques used for single-node environments to MapReduce 

framework is not straightforward. Therefore, it is our position that 

the development of new strategies is crucial.  
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Figure 1 (a) Example RDF triples representing Vendors and their Product Offers (b) SPARQL query to retrieve details about 

Vendors, their Offers and the Product Reviews (c) Query processing in Pig 

We overview two complimentary strategies that can be used to 

optimize graph pattern matching queries without the need for time 

consuming preprocessing, (i) algebraic optimization based on a 

new algebra called the Nested TripleGroup Algebra and (ii) 

information passing. The remainder of this paper is organized as 

follows: Section 2 provides some relevant background. Section 3 

gives an overview of the challenges that we encountered. Section 

4 describes the approach we are proposing to overcome the 

challenge. 

2. BACKGROUND 

2.1 Join Processing in MapReduce  
In the MapReduce programming model, users encode their tasks 

in terms of two functions: the map whose general signature is 

map (Key1, Value1) → list (Key2, Value2), processes input key-

value pairs and produces intermediate data as a list of key-value 

pairs; the reduce with signature reduce (Key2, list (Value2)) → 

(Key3,Value3) merges values into a group according to the 

intermediate key, and generates a final key-value pair for each 

group. Hadoop is an open source implementation of the 

MapReduce model and provides fault-tolerance and automatic 

parallelization of the map and reduce functions.  Its architecture 

includes a master process (JobTracker) which schedules m 

instances of the map function on nodes (mappers) and r instances 

of the reduce function on nodes (reducers) over the cluster. The 

JobTracker splits the input data into “chunks” which are assigned 

to mappers. Once the mappers produce and write their output i.e. 

collection of key value pairs to disk, each key is mapped to a 

unique reduce task. This mapping forms the basis of data 

distribution among the reducers and thus they may get unequal 

amounts of data to process. The reduce phase consists of 3 sub-

phases: copy - the map output is copied from the disk at the 

mapper nodes to reducer nodes, sort - the collected map output is 

sorted based on key values and reduce - reduce function is applied 

to the data. After the reduce function is completed, their outputs 

are saved to the Hadoop Distributed File System - HDFS. 

 

To interpret the relational join operation in the MapReduce 

paradigm, each tuple from the participating relations is tagged 

based on the join columns. This will enable all the records with 

the same join key to be assigned and transferred to the same 

reducer. In reduce-phase, each of r reducers accumulates the 

records into separate in-memory buffers according to their tags 

and performs the join. This is called the Standard Repartitioning 

Join [3]. One thing to note is that all intermediate data generated 

in map-phase has to be sorted and transferred into the reduce-

phase. These data sorting and transferring steps are crucial cost 

factors that may affect the data processing time on MapReduce 

[7][10][13]. Moreover, in a case that the join selectivity is high, a 

large number of records are involved in such data sorting and 

transferring steps even if those records are not eventually joined. 

Fragment-Replication Join and Map-Merge Join are alternative 

join approaches that can remove the data sorting and shuffling 

overhead by processing the join in the map-phase [3]. However, 

the fragment-replication join is applicable only when one of the 

input tables is small enough to fit in memory. In the case of the 

map-merge join, an additional pre-processing phase is required to 

partition input data according to its join key. More importantly, 

this approach cannot effectively deal with scenarios where one of 

the inputs to the join is an intermediate result generated from 

earlier query operators. Another recently proposed technique is 

the Semi-Join [3], but it also suffers from similar limitations.   

2.2 Automatic Generation of MapReduce 

Execution Workflows 
Typical data processing tasks may involve several operations or 

multiple instances of the same operation. A task may include one 

or more filtering conditions, join, grouping, and aggregation 

operations. Executing such a task on MapReduce requires users to 

determine the appropriate map and reduce functions and 

implement them in a way that achieves the most efficient 

workflow, which is not always trivial. In order to eliminate this 

burden on the users, Hadoop extensions such as Apache Hive [24] 

and Pig [18] offer high-level declarative query and dataflow 

languages, HiveQL and Pig Latin respectively, that are compiled 

to generate efficient MapReduce workflows. This is similar in 

spirit to database systems where users write high-level declarative 

queries and the system is responsible for generating an optimized 

execution plan. The high-level query expressed by the user is 

compiled into a series of MapReduce cycles where the output 

generated at the end of one cycle is saved onto the HDFS and fed 

as input into the next MR cycle forming a MapReduce workflow. 

Naïve compilers in some existing systems follow rule-based 



translation of each relational operator into one or more MR 

cycles. Such naïve translations in the case of join-intensive 

workloads such as RDF graph pattern matching result in lengthy 

MapReduce workflows with a separate MR cycle for each join 

operation. The example graph pattern query in Figure 1(b) would 

be compiled into 7 self-join operations on a triple data model, 

leading to 7 MR cycles. Lengthy execution workflows lead to 

performance inefficiency since each MR cycle compounds the 

overall I/O, sorting, and communication cost, in addition to the 

materialization cost between two contiguous cycles. This 

motivates the need for optimization techniques that minimize the 

length of MapReduce workflows and also reduce the intermediate 

data. A possible optimization to reduce the required #MR cycles 

is to group related operations into the same MR cycle. For 

example, n-way join operations can be used to replace joins on the 

same column. Using this optimization, the example graph pattern 

in Figure 1 (b) can be executed as 3 n-way join operations (SJ1, 

SJ2, and SJ3 respectively), which reduces the overall #MR cycles 

to 5 (3 for the n-way joins, and 2 to further join them) as shown in 

Figure 1 (c). Further, we can avoid the expensive self-join 

operations on large ternary relations and reduce the initial load 

costs by adopting the vertical partitioning (VP) [1]  storage model 

that partitions the input into property-based relations. The VP 

approach can be implemented in Pig Latin by using the SPLIT 

operator. Figure 2 (top) shows Pig’s logical plan corresponding to 

our example query in Figure 1 (b) using the VP approach. In the 

next section, we discuss other optimization techniques and review 

the challenges of optimizing graph pattern matching queries on 

MapReduce-based platforms.  

3. CHALLENGES 
The key challenges to overcome in order to achieve efficient 

processing of RDF data processing are (1) minimizing the length 

of MapReduce execution workflows – reduces the overall costs of 

processing by reducing the number of iterations for disk I/Os, 

communication and sorting steps;  (2) minimizing the size of 

intermediate data - reduces the amount of data written and read 

from disk i.e. disk I/O, the amount of data communicated between 

nodes and, the size of data sorted during the sorting steps. A 

natural inclination is to explore how existing optimization 

strategies for graph pattern matching designed for single-node 

environments can be adopted into the MapReduce model to 

achieve these goals. As the following discussion will show, there 

are several challenges that limit the possibility of doing so, 

suggesting the need for other kinds of strategies.  

The state-of-the-art techniques for graph pattern matching 

[15][1][25] rely heavily on comprehensively indexing RDF data. 

This means that data is indexed in all possible ways that allows 

every execution step to be supported by some index. In particular, 

the goal is always to enable the use of the merge-join algorithm 

for as many join operations as possible because it is the most 

efficient join algorithm for sorted data. Consequently, most 

indexing schemes are ordered index structures such as B+Trees 

that maintain data in a desired order. These comprehensive 

indexing strategies enable “index-only” plans that do not require 

any other files for query processing except the index files. Given 

this scenario, the major challenge in the context of MapReduce is 

how to use these indexes during the map and reduce phases of 

each join. These data structures will need to be “chunked” and 

partitioned across nodes similar to the way data is done. Such a 

partitioning strategy is not straightforward because such tree 

structures will need to be chunked in meaningful ways that 

maintain root-to-leaf path relationships. Further, this approach 

would require performing a single-join-operation-per-MR-cycle. 

Note that the cost based optimization used in RDF-3X just 

changes the order of joins but does not change the number of join 

steps.    

While the previously discussed techniques index data at the level 

of binary relations, other approaches try to index data at a coarser 

level of granularity. This is motivated by the fact that the task of 

reassembling related data in RDF is very common in graph pattern 

matching queries and hence a good fraction of the joins in queries 

focus on this reassembly task. The reassembly process results in 

star-shaped join structures that can be exploited for optimization 

(refer to SJ1, SJ2, and SJ3 in Figure 1(b)). In order to efficiently 

match the star-structured graph patterns to star subgraphs in data, 

we can cluster related data prior to query processing. By doing so, 

it might appear that we could eliminate the need for several join 

operations potentially reducing the number of MapReduce cycles. 

In fact, it may be possible to implement such join operations as a 

special kind of complex filter operation in this storage model. 

Unfortunately, realizing this is not as straightforward as it might 

first seem. Since RDF is semi-structured and represented using 

binary relations, clustering related data results in variable length 

tuples containing data and metadata. As example, in the strategy 

employed in SHARD [21], the example data will appear as the 

following after clustering:   

(&V1, type, VENDOR, country, US, country, China, 

homepage, www.vendors.org ) 

(&Offer1, vendor, &V1, price, 108, delDays, 2)   

To match the star-join pattern with the country and homepage 

predicates, the algorithm will first need to identify the relevant 

columns in each tuple, since the columns in this clustered model 

are not identified in a meaningful way like in the relational model.  

 

 

Figure 2: (a) Comparison and mapping between relational and NTGA for the example query 

plan (b) An example TripleGroup and its content equivalent n-tuple 

http://www.vendors.org/


 

Here attribute names as well as their values are part of the data 

and the number of occurrences of a particular attribute may differ 

from row to row. Therefore, extracting the relevant fields does not 

translate to the relational filter operation, which motivates the 

need for a specialized operator when using this storage model. In 

SHARD, the matching process is done using an iterative join 

strategy where during each iteration, the columns related to one 

particular predicate are identified using a special function and the 

values in those columns are joined to the current intermediate 

result. This approach results in as many MapReduce cycles as 

there as join operations.   

Another limitation common to all these discussed approaches is 

that they all require preprocessing either for computing indexes or 

clustering data and so on. Often these preprocessing steps are in 

the order of hours which can be limiting in the case of on-demand 

data processing tasks where the main goal is to reduce the Time-

To-Result.  

In the sequel, we will present some techniques that address the 

two challenges earlier mentioned. To reduce the length of the 

workflow, we propose to reinterpret the set of star joins in a 

query as a GROUP-BY operation [19][20] . The results are 

equivalent to the results using join operations with respect to 

content but differ in their structure and representation. However, 

this allows all star-joins to be computed concurrently in a single 

MR cycle. To deal with the problem of reducing intermediate 

data, we propose an information passing approach that 

summarizes the content of intermediate execution steps and passes 

the information to future execution steps to help inform their disk 

retrieval tasks about what data items are no longer relevant to 

processing.  

4. PROPOSED APPROACH 

4.1 Algebraic Optimization - TripleGroup 

based Processing 
We propose to re-interpret the star-join operations in a graph 

pattern as a GROUP BY operation. The rationale for the grouping 

approach is that typical graph pattern matching queries involve 

multiple star-join structures (50% of BSBM benchmark queries 

have 2 or more star-patterns), which would have otherwise led to 

a separate MR cycle for each star-join. However, by using a single 

GROUP BY operation, all the required star-joins can be computed 

concurrently in a single MR cycle. For example, the 3 star-joins 

(SJ1, SJ2, and SJ3) in Figure 1 (b) can be computed using a single 

GROUP BY on Subject in a single MR cycle, thus reducing the 

required #MR cycles. However, this grouping strategy produces 

“groups of triples” or TripleGroups instead of n-tuples, and 

requires specialized operators for efficient processing of 

TripleGroups. Figure 2 (b) (top) shows an example TripleGroup 

corresponding to the group of triples with Subject &Offer1. 

 

We propose an intermediate Nested Triplegroup algebra (NTGA) 

that supports special TripleGroup based operators for efficient 

processing of RDF graph patterns. The NTGA comprises of 

operators to load RDF statements into TripleGroups (TG_Load), 

project a Subject / Object component of a triple (TG_Project), 

value-based filtering of TripleGroups based on filter conditions 

(TG_filter), structure-based filtering of TripleGroups to 

eliminate sub-structures with missing edges 

(TG_Groupfilter), and join between TripleGroups 

representing different structures (TG_Join). It also supports 

flattening operators to create an n-tuple equivalent of TripleGroup 

(TG_Flatten), and to flatten a nested TripleGroup 

(TG_Unnest). Figure 2 (a) shows a comparison of the MR 

execution workflow to process the example query in Figure 1 (b) 

using the Pig Latin and the NTGA operators. It also demonstrates 

that the example query can be executed in just 3 MR cycles using 

NTGA as opposed to 5 MR cycles using the Pig approach. Figure 

2 (a) also represents the mapping between the two plans through 

the concept of content equivalence that enables lossless 

transformation between queries written in relational algebra and 

NTGA. Figure 2 (b) (bottom) shows the equivalent n-tuple 

resulting from the TG_Flatten operator on the example 

TripleGroup (top). 

4.2 Dynamic Optimization - Information 

Passing 
Existing sideways information passing techniques assume that 

operators in a query plan run in parallel. However, this 

assumption is not valid in MapReduce-based data processing 

systems since operators in a query plan are physically and 

temporally isolated from each other. Moreover, since there is no 

effective communication method that enables operators to 

communicate with each other, we cannot directly adopt such 

traditional information passing techniques over MapReduce 

frameworks.  

 

Figure 3: Enabling information passing in Hadoop query plans 
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Hence, we design and develop a new adaptive information passing 

technique called Inter-job Information Passing that runs At 

compile-time, the query optimizer collects all the possible 

dataflow between MapReduce jobs from the physical query plan, 

calculates all the equivalent classes, creates an information 

passing plan, and finally embeds the plan into the Hadoop job 

plan. Figure 3 (a) is an example of a Hadoop job plan where the 

Hadoop job job3 receives its inputs from the previous jobs, job1 

and job2. Figure 3 (b) shows a brief representation of the run-time 

information passing operations. When job1 and job2 are executed, 

the summarizer receives the streams of outputs, and creates the 

summary information on the columns that will be joined in job3. 

Then, the summary information is represented in a more compact 

format to reduce the data transfer costs, and is stored in the shared 

information store that resides on HDFS. When job3 runs, the 

previous summary information is loaded into PSO (Parameterized 

Filter Operator) at Map-phase and used to filter out the input data 

streams. For example, in Figure 3(b), job1 generates a filter than 

contains a list of distinct join key values - 1, 2 and 5 and job2 

generates a filter containing a list of 3 and 5 respectively. When 

job3 runs, it loads the two lists into the in-memory buffer and 

filters out all records from each input stream that do not match the 

values in the corresponding list. 

Another important issue is that the overhead resulting from the 

creation and the transmission of summary information may 

exceed the performance gain achieved by the information passing 

technique in some cases. Therefore, we provide a benefit 

estimation model and integrate it with the query optimizer to 

dynamically enable or disable the feature of the technique. Our 

benefit estimation model considers the possible benefits in sorting, 

transferring, and merging steps which can be earned from data 

reduction caused by a given size of summary information. Also, 

the model considers the overhead caused by generating and 

transferring summary information via Hadoop’s DistributedCache. 

4.3 General Query Plan Strategy 
We address the two challenges in MapReduce-based graph pattern 

matching (described in section 3) by applying the two proposed 

techniques. First, we minimize the #MR cycles required for the 

star-join computation phase by using the TripleGroup-based 

processing using the NTGA operators. In addition, we can collect 

the summary information during NTGA’s star-join computation 

phase and integrate the information-passing technique to reduce 

the intermediate data in the subsequent MR cycles. Thus, in the 

map phase of the TG_Join operator, we can eliminate irrelevant 

TripleGroups that do not join in the subsequent phases. Both these 

techniques help us minimize the overall I/O, communication, 

sorting and materialization costs, leading to efficient processing of 

RDF data.    

5. CASE STUDY 
In this section, we present an empirical study of the performance 

of the two proposed optimization techniques to enable efficient 

RDF graph pattern matching on MapReduce-based platforms.  

5.1 Task Description 
Task A - Scalability of TripleGroup-based processing: We 

evaluated the performance of the NTGA approach with increasing 

size of RDF graphs. We extended Pig to integrate the NTGA 

operators [11] and compared its performance with that of RDF 

graph processing using relational operators in naïve Pig.  

Task B - Performance Evaluation of Hybrid Plans: We also 

performed a comparative evaluation of a hybrid approach 

containing a mix of Pig Latin and NTGA operators. The notion of 

content equivalence allows for lossless translations between the 

algebra as shown in Figure 2 (a).  For example, each TripleGroup 

in the result of the star-join computation phase using NTGA’s 

TG_GroupBy (MR1 in NTGA plan in Figure 2 (a)) is content 

equivalent to some n-tuple in the result of the corresponding phase 

using Pig’s JOIN operator (MR1, MR2, and MR3 in Pig Latin 

plan).  For the hybrid approach, we considered two execution 

plans, (i) NTGA-StarJoin – using NTGA’s TG_GroupBy 

operator for star-join computations, TG_Flatten to flatten the 

TripleGroups into n-tuples, and Pig’s JOIN operator to compute 

the join between the stars; (ii) Pig-StarJoin – Pig’s n-way JOIN 

operator for star-join computations, NTGA’s TG_Unflatten to 

convert n-tuples to TripleGroups, and NTGA’s TG_Join to 

compute the join between the stars. 

Task C – Scalability of Information-Passing technique: We 

evaluated the benefit of information passing, with increasing size 

of RDF graphs. We extended Hive to enable inter-job information 

passing (IJIP-enabled Hive) and compared its performance to the 

default Hive implementation. However, the proposed information 

passing technique uses a general and abstract query processing 

model and, therefore, is applicable to other MapReduce-based 

data processing systems such as Pig.  

5.2 Setup and Testbed 
Environment: The experiments were conducted on a 5-node 

cluster on NC State’s VCL [22], an on-demand virtual computing 

environment. Each node in the cluster was a dual core Intel x86 

machine with 2.33 GHz processor speed, 3GB RAM and running 

Red Hat Linux. Experiments used Pig release 0.8.0 and Hive 0.5.0 

running on Hadoop 20.0 with block size 256MB.  

Testbed – Data Set and Queries: Synthetic BSBM 3  dataset 

generator was used to generate n-triple files for Task A, with data 

size ranging from 13GB to 44GB (approx. 170 million triples). 

The query used for Task A consisted of 6 triples patterns requiring 

5 join operations, which comprised of two star-join structures.  

Two test queries with varying star cardinality were used for Task 

B (i) q-small – three star sub-patterns with 1, 3 and 1 triple pattern 

in each star respectively, (ii) q-dense – three star sub-patterns with 

3 triple patterns in each star. Task B was evaluated on input data 

containing 50,000 products, which corresponds to approx. 17 

million triples (approx. 4.3 GB data size). For Task C, three 

separate Hive tables were generated from BSBM in the format of 

SQL-dump with the #products ranging from 1000 to 500,000 

(approx. 50GB data size). Task C evaluated a query requiring 3 

join operations on these three tables. 

5.3 Evaluation Results 
Task A: Figure 5 (a) shows the execution times for the NTGA 

and naïve Pig implementations. For all the four data sizes, we see 

up to 60% improvement in the execution times with the NTGA 

approach. In the Pig approach, the most efficient execution plan is 

to compute the two star-patterns using n-way joins, which can be 

achieved in 3 MR cycles. NTGA’s grouping approach computes 

the 2 star-joins in a single MR cycle, reducing the required #MR 

cycles to just 2. The advantage is more obvious in complex graph 

pattern queries with several star-joins.  

 

Task B:  Figure 4 shows the comparative evaluation of the two 

hybrid plans along with the NTGA and Pig execution plans for the 

two query patterns q-small and q-dense respectively. 
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Figure 4: Performance evaluation of hybrid plans with 

varying density of star sub-patterns (4.3GB, 5-node cluster) 

 

Pig-StarJoin and Pig show low performance in both cases since 

the star-join computation using Pig’s JOIN leads to lengthy 

execution workflows. Pig-StarJoin does worse than Pig due to the 

overhead of converting n-tuples to TripleGroups before the join 

between the stars. On the other hand, NTGA-StarJoin and NTGA 

show a performance gain of 42% and 46% respectively over Pig 

approach for the denser query pattern. This demonstrates the 

advantage of shorter execution plans using the NTGA approach to 

compute star-joins.  

 

Task C: Figure 5(b) shows that the IP-enabled implementation 

outperforms the default Hive implementation as the size of the 

input grows. This provides a promising approach to reduce the 

size of intermediate data, specifically for processing join-intensive 

workloads on MapReduce based platforms.  

 

6. CONCLUSION 
In this position paper, we propose two optimization techniques 

that enable efficient processing of join-intensive workloads such 

as RDF graph pattern matching. These two techniques help to 

shorten the MR execution workflows, and reduce the intermediate 

tuples, resulting in less I/O, sorting, and communication costs 

involved in traditional MapReduce based RDF graph processing.    
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Figure 5: Scalability study with increasing size of RDF graphs for  (a) TripleGroup-based processing of RDF graph patterns and 

(b) Inter-job Information Passing technique for join-intensive workloads  (5-node cluster)  
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