
Efficient Processing of RDF Graph Pattern Matching on

MapReduce Platforms
Padmashree Ravindra Seokyong Hong HyeongSik Kim Kemafor Anyanwu

Department of Computer Science, North Carolina State University

{pravind2, shong3, hkim22, kogan}@ncsu.edu

ABSTRACT

Broadened adoption of the Linking Open Data tenets has led to a

significant surge in the amount of Semantic Web data, particularly

RDF data. This has positioned the issue of scalable data

processing techniques for RDF as a central issue in the Semantic

Web research community. The RDF data model is a fine grained

model representing relationships as binary relations. Thus,

answering queries (typically graph pattern matching queries) over

RDF data requires several join operations to reassemble related

data. While MapReduce based processing is emerging as the de

facto paradigm for processing large scale data, it is known to be

inefficient for join-intensive workloads. In addition, most of the

existing techniques for optimizing RDF data processing do not

transfer well to the MapReduce model and often require

significant lead time for pre-processing. Such a requirement may

not be desirable for on-demand cloud database scenarios where

the goal is to reduce the Time-To-Result (TTR). In this position

paper, we argue that some of these challenges can be overcome by

rethinking the operators for graph pattern processing, as well as

adopting dynamic optimization techniques that exploit

information from the previous execution steps in the current

execution steps. We present some preliminary evaluation results

of the proposed techniques.

Categories and Subject Descriptors

H.3.4 [Semantic Web]:

General Terms
Algorithms, Languages, Performance

Keywords

RDF graph pattern matching, SPARQL, MapReduce, Hadoop

1. INTRODUCTION
There has been a rapid increase in the amount of available

Semantic Web data in the past few years as Semantic Web tenets

gain broadened adoption. This includes data from domains

ranging from scientific (e.g. DrugBank, Linked Clinical Trials),

business (e.g. BBC, New York Times), government (e.g. data.gov,

data.gov.uk) and general purpose communities (Wikipedia,

Linked Open Data). To give a sense of the kind of growth, we

note that the Linked Open Data cloud grew from around 26 billion

RDF1 triples in September 2010 to over 31 billion triples by the

following year [27]. Therefore, one of the important issues in

Semantic Web community is the development of scalable and

efficient techniques for processing large amounts of Semantic

Web data. The most common representation model for Semantic

Web is called the Resource Description Framework (RDF). RDF

database is a collection of triples (Subject, Predicate, Object)

where Predicates are named binary relations between Subject and

Object that represent either resources or literal values in the Web.

1Resource Description Framework (RDF) http://www.w3.org/RDF

The RDF data model can also be viewed as a directed and labeled

graph in which edges are labeled with predicate names,

connecting between graph nodes labeled with URIs and values,

respectively.

The key construct for processing RDF data is graph pattern

matching. Here, users describe the structure of patterns that they

are interested in as queries and systems return as answers all

occurrences of the pattern found in the data. The standard query

language for expressing graph pattern matching queries on RDF

data is called SPARQL2. Each triple pattern in a given SPARQL

query is a triple in which at least one of the Subject, Predicate or

Object is a variable, denoted by a leading question mark.

Therefore, the query attempts to match those patterns to sub

graphs in the database and the result of a graph pattern query is a

list of all variables substituted from those graphs. For example,

consider the triple {Vendor1, homepage, www.vendors.org/v1} in

Figure 1 (a) which models that a resource Vendor1’s homepage is

www.vendors.org/v1. Now we have the following triple pattern in

a SPARQL query: {Vendor1 homepage ?homepage}. It will try to

match its variable ?homepage from the triples, therefore, the value

of ?homepage will be www.vendors.org/v1.

Traditionally, RDF data is stored as a ternary relation and graph

pattern matching queries are processed as a series of relational

join operations. Due to the fine-grained nature of the RDF data

model, it is common to require several join operations to answer a

slightly complex query. Another commonly performed task on

Semantic Web data is reasoning, that applies the standardized

semantic inference rules to compute all inferable facts from the set

of explicitly represented facts. Depending on the approach for

performing reasoning, this task also relies heavily on joins. Thus,

the ability to process join-intensive workloads is crucial for the

Semantic Web.

When considering large scale processing and analytics in data-

intensive applications using cloud environment, the recent de

facto standard is the MapReduce [5] programming model made

popular by Google and its open source implementations such as

Hadoop [26]. Such platforms have been explored for graph pattern

matching [8][9][21][23]. However, existing approaches naively

translate join-intensive workloads such as graph pattern matching

into a long chain of MapReduce jobs, leading to significant I/O,

communication, and sorting overhead as discussed in the next

section. Further, we also show how adopting existing optimization

techniques used for single-node environments to MapReduce

framework is not straightforward. Therefore, it is our position that

the development of new strategies is crucial.

2 SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-

query/

http://www.vendors.org/v1

Figure 1 (a) Example RDF triples representing Vendors and their Product Offers (b) SPARQL query to retrieve details about

Vendors, their Offers and the Product Reviews (c) Query processing in Pig

We overview two complimentary strategies that can be used to

optimize graph pattern matching queries without the need for time

consuming preprocessing, (i) algebraic optimization based on a

new algebra called the Nested TripleGroup Algebra and (ii)

information passing. The remainder of this paper is organized as

follows: Section 2 provides some relevant background. Section 3

gives an overview of the challenges that we encountered. Section

4 describes the approach we are proposing to overcome the

challenge.

2. BACKGROUND

2.1 Join Processing in MapReduce
In the MapReduce programming model, users encode their tasks

in terms of two functions: the map whose general signature is

map (Key1, Value1) → list (Key2, Value2), processes input key-

value pairs and produces intermediate data as a list of key-value

pairs; the reduce with signature reduce (Key2, list (Value2)) →

(Key3,Value3) merges values into a group according to the

intermediate key, and generates a final key-value pair for each

group. Hadoop is an open source implementation of the

MapReduce model and provides fault-tolerance and automatic

parallelization of the map and reduce functions. Its architecture

includes a master process (JobTracker) which schedules m

instances of the map function on nodes (mappers) and r instances

of the reduce function on nodes (reducers) over the cluster. The

JobTracker splits the input data into “chunks” which are assigned

to mappers. Once the mappers produce and write their output i.e.

collection of key value pairs to disk, each key is mapped to a

unique reduce task. This mapping forms the basis of data

distribution among the reducers and thus they may get unequal

amounts of data to process. The reduce phase consists of 3 sub-

phases: copy - the map output is copied from the disk at the

mapper nodes to reducer nodes, sort - the collected map output is

sorted based on key values and reduce - reduce function is applied

to the data. After the reduce function is completed, their outputs

are saved to the Hadoop Distributed File System - HDFS.

To interpret the relational join operation in the MapReduce

paradigm, each tuple from the participating relations is tagged

based on the join columns. This will enable all the records with

the same join key to be assigned and transferred to the same

reducer. In reduce-phase, each of r reducers accumulates the

records into separate in-memory buffers according to their tags

and performs the join. This is called the Standard Repartitioning

Join [3]. One thing to note is that all intermediate data generated

in map-phase has to be sorted and transferred into the reduce-

phase. These data sorting and transferring steps are crucial cost

factors that may affect the data processing time on MapReduce

[7][10][13]. Moreover, in a case that the join selectivity is high, a

large number of records are involved in such data sorting and

transferring steps even if those records are not eventually joined.

Fragment-Replication Join and Map-Merge Join are alternative

join approaches that can remove the data sorting and shuffling

overhead by processing the join in the map-phase [3]. However,

the fragment-replication join is applicable only when one of the

input tables is small enough to fit in memory. In the case of the

map-merge join, an additional pre-processing phase is required to

partition input data according to its join key. More importantly,

this approach cannot effectively deal with scenarios where one of

the inputs to the join is an intermediate result generated from

earlier query operators. Another recently proposed technique is

the Semi-Join [3], but it also suffers from similar limitations.

2.2 Automatic Generation of MapReduce

Execution Workflows
Typical data processing tasks may involve several operations or

multiple instances of the same operation. A task may include one

or more filtering conditions, join, grouping, and aggregation

operations. Executing such a task on MapReduce requires users to

determine the appropriate map and reduce functions and

implement them in a way that achieves the most efficient

workflow, which is not always trivial. In order to eliminate this

burden on the users, Hadoop extensions such as Apache Hive [24]

and Pig [18] offer high-level declarative query and dataflow

languages, HiveQL and Pig Latin respectively, that are compiled

to generate efficient MapReduce workflows. This is similar in

spirit to database systems where users write high-level declarative

queries and the system is responsible for generating an optimized

execution plan. The high-level query expressed by the user is

compiled into a series of MapReduce cycles where the output

generated at the end of one cycle is saved onto the HDFS and fed

as input into the next MR cycle forming a MapReduce workflow.

Naïve compilers in some existing systems follow rule-based

translation of each relational operator into one or more MR

cycles. Such naïve translations in the case of join-intensive

workloads such as RDF graph pattern matching result in lengthy

MapReduce workflows with a separate MR cycle for each join

operation. The example graph pattern query in Figure 1(b) would

be compiled into 7 self-join operations on a triple data model,

leading to 7 MR cycles. Lengthy execution workflows lead to

performance inefficiency since each MR cycle compounds the

overall I/O, sorting, and communication cost, in addition to the

materialization cost between two contiguous cycles. This

motivates the need for optimization techniques that minimize the

length of MapReduce workflows and also reduce the intermediate

data. A possible optimization to reduce the required #MR cycles

is to group related operations into the same MR cycle. For

example, n-way join operations can be used to replace joins on the

same column. Using this optimization, the example graph pattern

in Figure 1 (b) can be executed as 3 n-way join operations (SJ1,

SJ2, and SJ3 respectively), which reduces the overall #MR cycles

to 5 (3 for the n-way joins, and 2 to further join them) as shown in

Figure 1 (c). Further, we can avoid the expensive self-join

operations on large ternary relations and reduce the initial load

costs by adopting the vertical partitioning (VP) [1] storage model

that partitions the input into property-based relations. The VP

approach can be implemented in Pig Latin by using the SPLIT

operator. Figure 2 (top) shows Pig’s logical plan corresponding to

our example query in Figure 1 (b) using the VP approach. In the

next section, we discuss other optimization techniques and review

the challenges of optimizing graph pattern matching queries on

MapReduce-based platforms.

3. CHALLENGES
The key challenges to overcome in order to achieve efficient

processing of RDF data processing are (1) minimizing the length

of MapReduce execution workflows – reduces the overall costs of

processing by reducing the number of iterations for disk I/Os,

communication and sorting steps; (2) minimizing the size of

intermediate data - reduces the amount of data written and read

from disk i.e. disk I/O, the amount of data communicated between

nodes and, the size of data sorted during the sorting steps. A

natural inclination is to explore how existing optimization

strategies for graph pattern matching designed for single-node

environments can be adopted into the MapReduce model to

achieve these goals. As the following discussion will show, there

are several challenges that limit the possibility of doing so,

suggesting the need for other kinds of strategies.

The state-of-the-art techniques for graph pattern matching

[15][1][25] rely heavily on comprehensively indexing RDF data.

This means that data is indexed in all possible ways that allows

every execution step to be supported by some index. In particular,

the goal is always to enable the use of the merge-join algorithm

for as many join operations as possible because it is the most

efficient join algorithm for sorted data. Consequently, most

indexing schemes are ordered index structures such as B+Trees

that maintain data in a desired order. These comprehensive

indexing strategies enable “index-only” plans that do not require

any other files for query processing except the index files. Given

this scenario, the major challenge in the context of MapReduce is

how to use these indexes during the map and reduce phases of

each join. These data structures will need to be “chunked” and

partitioned across nodes similar to the way data is done. Such a

partitioning strategy is not straightforward because such tree

structures will need to be chunked in meaningful ways that

maintain root-to-leaf path relationships. Further, this approach

would require performing a single-join-operation-per-MR-cycle.

Note that the cost based optimization used in RDF-3X just

changes the order of joins but does not change the number of join

steps.

While the previously discussed techniques index data at the level

of binary relations, other approaches try to index data at a coarser

level of granularity. This is motivated by the fact that the task of

reassembling related data in RDF is very common in graph pattern

matching queries and hence a good fraction of the joins in queries

focus on this reassembly task. The reassembly process results in

star-shaped join structures that can be exploited for optimization

(refer to SJ1, SJ2, and SJ3 in Figure 1(b)). In order to efficiently

match the star-structured graph patterns to star subgraphs in data,

we can cluster related data prior to query processing. By doing so,

it might appear that we could eliminate the need for several join

operations potentially reducing the number of MapReduce cycles.

In fact, it may be possible to implement such join operations as a

special kind of complex filter operation in this storage model.

Unfortunately, realizing this is not as straightforward as it might

first seem. Since RDF is semi-structured and represented using

binary relations, clustering related data results in variable length

tuples containing data and metadata. As example, in the strategy

employed in SHARD [21], the example data will appear as the

following after clustering:

(&V1, type, VENDOR, country, US, country, China,

homepage, www.vendors.org)

(&Offer1, vendor, &V1, price, 108, delDays, 2)

To match the star-join pattern with the country and homepage

predicates, the algorithm will first need to identify the relevant

columns in each tuple, since the columns in this clustered model

are not identified in a meaningful way like in the relational model.

Figure 2: (a) Comparison and mapping between relational and NTGA for the example query

plan (b) An example TripleGroup and its content equivalent n-tuple

http://www.vendors.org/

Here attribute names as well as their values are part of the data

and the number of occurrences of a particular attribute may differ

from row to row. Therefore, extracting the relevant fields does not

translate to the relational filter operation, which motivates the

need for a specialized operator when using this storage model. In

SHARD, the matching process is done using an iterative join

strategy where during each iteration, the columns related to one

particular predicate are identified using a special function and the

values in those columns are joined to the current intermediate

result. This approach results in as many MapReduce cycles as

there as join operations.

Another limitation common to all these discussed approaches is

that they all require preprocessing either for computing indexes or

clustering data and so on. Often these preprocessing steps are in

the order of hours which can be limiting in the case of on-demand

data processing tasks where the main goal is to reduce the Time-

To-Result.

In the sequel, we will present some techniques that address the

two challenges earlier mentioned. To reduce the length of the

workflow, we propose to reinterpret the set of star joins in a

query as a GROUP-BY operation [19][20] . The results are

equivalent to the results using join operations with respect to

content but differ in their structure and representation. However,

this allows all star-joins to be computed concurrently in a single

MR cycle. To deal with the problem of reducing intermediate

data, we propose an information passing approach that

summarizes the content of intermediate execution steps and passes

the information to future execution steps to help inform their disk

retrieval tasks about what data items are no longer relevant to

processing.

4. PROPOSED APPROACH

4.1 Algebraic Optimization - TripleGroup

based Processing
We propose to re-interpret the star-join operations in a graph

pattern as a GROUP BY operation. The rationale for the grouping

approach is that typical graph pattern matching queries involve

multiple star-join structures (50% of BSBM benchmark queries

have 2 or more star-patterns), which would have otherwise led to

a separate MR cycle for each star-join. However, by using a single

GROUP BY operation, all the required star-joins can be computed

concurrently in a single MR cycle. For example, the 3 star-joins

(SJ1, SJ2, and SJ3) in Figure 1 (b) can be computed using a single

GROUP BY on Subject in a single MR cycle, thus reducing the

required #MR cycles. However, this grouping strategy produces

“groups of triples” or TripleGroups instead of n-tuples, and

requires specialized operators for efficient processing of

TripleGroups. Figure 2 (b) (top) shows an example TripleGroup

corresponding to the group of triples with Subject &Offer1.

We propose an intermediate Nested Triplegroup algebra (NTGA)

that supports special TripleGroup based operators for efficient

processing of RDF graph patterns. The NTGA comprises of

operators to load RDF statements into TripleGroups (TG_Load),

project a Subject / Object component of a triple (TG_Project),

value-based filtering of TripleGroups based on filter conditions

(TG_filter), structure-based filtering of TripleGroups to

eliminate sub-structures with missing edges

(TG_Groupfilter), and join between TripleGroups

representing different structures (TG_Join). It also supports

flattening operators to create an n-tuple equivalent of TripleGroup

(TG_Flatten), and to flatten a nested TripleGroup

(TG_Unnest). Figure 2 (a) shows a comparison of the MR

execution workflow to process the example query in Figure 1 (b)

using the Pig Latin and the NTGA operators. It also demonstrates

that the example query can be executed in just 3 MR cycles using

NTGA as opposed to 5 MR cycles using the Pig approach. Figure

2 (a) also represents the mapping between the two plans through

the concept of content equivalence that enables lossless

transformation between queries written in relational algebra and

NTGA. Figure 2 (b) (bottom) shows the equivalent n-tuple

resulting from the TG_Flatten operator on the example

TripleGroup (top).

4.2 Dynamic Optimization - Information

Passing
Existing sideways information passing techniques assume that

operators in a query plan run in parallel. However, this

assumption is not valid in MapReduce-based data processing

systems since operators in a query plan are physically and

temporally isolated from each other. Moreover, since there is no

effective communication method that enables operators to

communicate with each other, we cannot directly adopt such

traditional information passing techniques over MapReduce

frameworks.

Figure 3: Enabling information passing in Hadoop query plans

job1

Join 1

job2

Join 2

job3

Join 3

HDFS

Map Phase

Reduce Phase

Summarizer

job1

Summarizer

job2 job3

Record
Pruner

Summary

Input Table Input Table

Intermediate Intermediate

Summary

Summary is either in a bloom-filter or in a compressed format.

1

2

5

…

…

…

3

5

…

…

5 … …

(a) An Example of Hadoop Job Plan (b) Runtime Information Passing

Hence, we design and develop a new adaptive information passing

technique called Inter-job Information Passing that runs At

compile-time, the query optimizer collects all the possible

dataflow between MapReduce jobs from the physical query plan,

calculates all the equivalent classes, creates an information

passing plan, and finally embeds the plan into the Hadoop job

plan. Figure 3 (a) is an example of a Hadoop job plan where the

Hadoop job job3 receives its inputs from the previous jobs, job1

and job2. Figure 3 (b) shows a brief representation of the run-time

information passing operations. When job1 and job2 are executed,

the summarizer receives the streams of outputs, and creates the

summary information on the columns that will be joined in job3.

Then, the summary information is represented in a more compact

format to reduce the data transfer costs, and is stored in the shared

information store that resides on HDFS. When job3 runs, the

previous summary information is loaded into PSO (Parameterized

Filter Operator) at Map-phase and used to filter out the input data

streams. For example, in Figure 3(b), job1 generates a filter than

contains a list of distinct join key values - 1, 2 and 5 and job2

generates a filter containing a list of 3 and 5 respectively. When

job3 runs, it loads the two lists into the in-memory buffer and

filters out all records from each input stream that do not match the

values in the corresponding list.

Another important issue is that the overhead resulting from the

creation and the transmission of summary information may

exceed the performance gain achieved by the information passing

technique in some cases. Therefore, we provide a benefit

estimation model and integrate it with the query optimizer to

dynamically enable or disable the feature of the technique. Our

benefit estimation model considers the possible benefits in sorting,

transferring, and merging steps which can be earned from data

reduction caused by a given size of summary information. Also,

the model considers the overhead caused by generating and

transferring summary information via Hadoop’s DistributedCache.

4.3 General Query Plan Strategy
We address the two challenges in MapReduce-based graph pattern

matching (described in section 3) by applying the two proposed

techniques. First, we minimize the #MR cycles required for the

star-join computation phase by using the TripleGroup-based

processing using the NTGA operators. In addition, we can collect

the summary information during NTGA’s star-join computation

phase and integrate the information-passing technique to reduce

the intermediate data in the subsequent MR cycles. Thus, in the

map phase of the TG_Join operator, we can eliminate irrelevant

TripleGroups that do not join in the subsequent phases. Both these

techniques help us minimize the overall I/O, communication,

sorting and materialization costs, leading to efficient processing of

RDF data.

5. CASE STUDY
In this section, we present an empirical study of the performance

of the two proposed optimization techniques to enable efficient

RDF graph pattern matching on MapReduce-based platforms.

5.1 Task Description
Task A - Scalability of TripleGroup-based processing: We

evaluated the performance of the NTGA approach with increasing

size of RDF graphs. We extended Pig to integrate the NTGA

operators [11] and compared its performance with that of RDF

graph processing using relational operators in naïve Pig.

Task B - Performance Evaluation of Hybrid Plans: We also

performed a comparative evaluation of a hybrid approach

containing a mix of Pig Latin and NTGA operators. The notion of

content equivalence allows for lossless translations between the

algebra as shown in Figure 2 (a). For example, each TripleGroup

in the result of the star-join computation phase using NTGA’s

TG_GroupBy (MR1 in NTGA plan in Figure 2 (a)) is content

equivalent to some n-tuple in the result of the corresponding phase

using Pig’s JOIN operator (MR1, MR2, and MR3 in Pig Latin

plan). For the hybrid approach, we considered two execution

plans, (i) NTGA-StarJoin – using NTGA’s TG_GroupBy

operator for star-join computations, TG_Flatten to flatten the

TripleGroups into n-tuples, and Pig’s JOIN operator to compute

the join between the stars; (ii) Pig-StarJoin – Pig’s n-way JOIN

operator for star-join computations, NTGA’s TG_Unflatten to

convert n-tuples to TripleGroups, and NTGA’s TG_Join to

compute the join between the stars.

Task C – Scalability of Information-Passing technique: We

evaluated the benefit of information passing, with increasing size

of RDF graphs. We extended Hive to enable inter-job information

passing (IJIP-enabled Hive) and compared its performance to the

default Hive implementation. However, the proposed information

passing technique uses a general and abstract query processing

model and, therefore, is applicable to other MapReduce-based

data processing systems such as Pig.

5.2 Setup and Testbed
Environment: The experiments were conducted on a 5-node

cluster on NC State’s VCL [22], an on-demand virtual computing

environment. Each node in the cluster was a dual core Intel x86

machine with 2.33 GHz processor speed, 3GB RAM and running

Red Hat Linux. Experiments used Pig release 0.8.0 and Hive 0.5.0

running on Hadoop 20.0 with block size 256MB.

Testbed – Data Set and Queries: Synthetic BSBM 3 dataset

generator was used to generate n-triple files for Task A, with data

size ranging from 13GB to 44GB (approx. 170 million triples).

The query used for Task A consisted of 6 triples patterns requiring

5 join operations, which comprised of two star-join structures.

Two test queries with varying star cardinality were used for Task

B (i) q-small – three star sub-patterns with 1, 3 and 1 triple pattern

in each star respectively, (ii) q-dense – three star sub-patterns with

3 triple patterns in each star. Task B was evaluated on input data

containing 50,000 products, which corresponds to approx. 17

million triples (approx. 4.3 GB data size). For Task C, three

separate Hive tables were generated from BSBM in the format of

SQL-dump with the #products ranging from 1000 to 500,000

(approx. 50GB data size). Task C evaluated a query requiring 3

join operations on these three tables.

5.3 Evaluation Results
Task A: Figure 5 (a) shows the execution times for the NTGA

and naïve Pig implementations. For all the four data sizes, we see

up to 60% improvement in the execution times with the NTGA

approach. In the Pig approach, the most efficient execution plan is

to compute the two star-patterns using n-way joins, which can be

achieved in 3 MR cycles. NTGA’s grouping approach computes

the 2 star-joins in a single MR cycle, reducing the required #MR

cycles to just 2. The advantage is more obvious in complex graph

pattern queries with several star-joins.

Task B: Figure 4 shows the comparative evaluation of the two

hybrid plans along with the NTGA and Pig execution plans for the

two query patterns q-small and q-dense respectively.

3http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

Figure 4: Performance evaluation of hybrid plans with

varying density of star sub-patterns (4.3GB, 5-node cluster)

Pig-StarJoin and Pig show low performance in both cases since

the star-join computation using Pig’s JOIN leads to lengthy

execution workflows. Pig-StarJoin does worse than Pig due to the

overhead of converting n-tuples to TripleGroups before the join

between the stars. On the other hand, NTGA-StarJoin and NTGA

show a performance gain of 42% and 46% respectively over Pig

approach for the denser query pattern. This demonstrates the

advantage of shorter execution plans using the NTGA approach to

compute star-joins.

Task C: Figure 5(b) shows that the IP-enabled implementation

outperforms the default Hive implementation as the size of the

input grows. This provides a promising approach to reduce the

size of intermediate data, specifically for processing join-intensive

workloads on MapReduce based platforms.

6. CONCLUSION
In this position paper, we propose two optimization techniques

that enable efficient processing of join-intensive workloads such

as RDF graph pattern matching. These two techniques help to

shorten the MR execution workflows, and reduce the intermediate

tuples, resulting in less I/O, sorting, and communication costs

involved in traditional MapReduce based RDF graph processing.

7. ACKNOWLEDGMENTS
This work was partially funded by NSF grant IIS-0915865.

Figure 5: Scalability study with increasing size of RDF graphs for (a) TripleGroup-based processing of RDF graph patterns and

(b) Inter-job Information Passing technique for join-intensive workloads (5-node cluster)

8. REFERENCES
[1] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and

Kate Hollenbach. Scalable Semantic Web Data Management

using Vertical Partitioning. In Proc. International Conference

on Very large data bases, 2007.

[2] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously

Adaptive Query Processing. In Proc. International conference

on Management of Data, pages 261–272, 2000.

[3] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao,

Eugene J. Shekita, and Yuanyuan Tian. A Comparison of

Join Algorithms for Log Processing in MapReduce. In Proc.

International conference on Management of Data, 2010

[4] Michael J. Carey. BEA Liquid Data for WebLogic: XML-

Based Enterprise Information Integration. In Proc.

International Conference on Data Engineering, pages 800–,

2004.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. Proceedings of the

Conference on Symposium on Operating Systems Design &

Implementation. Vol. 6. 10-10. 2004

[6] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal,

Yagiz Kargin, Vinay Setty, and Jörg Schad. Hadoop++:

Making a Yellow Elephant Run Like a Cheetah (without It

Even Noticing), Proc. VLDB Endow. 3, volume 3, 515–529,

2010

[7] Laura M. Haas, Donald Kossmann, Edward L. Wimmers,

and Jun Yang. Optimizing Queries Across Diverse Data

Sources. In Proc. International Conference on Very Large

Data Bases, VLDB ’97, pages 276–285, 1997.

[8] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable

SPARQL Querying of Large RDF Graphs. In Proc. VLDB

Endowment, 4(11), 2011.

[9] Mohammad Farhan Husain, Latifur Khan, Murat

Kantarcioglu, and Bhavani Thuraisingham. Data Intensive

Query Processing for Large RDF Graphs Using Cloud

Computing Tools. In Cloud Computing (CLOUD), IEEE

International Conference on, 2010.

[10] Zachary G. Ives and Nicholas E. Taylor. Sideways

Information Passing for Push-Style Query Processing. In

Proc. Conference on Data Engineering, pages 774–783,

2008.

[11] HyeongSik Kim, Padmashree Ravindra, and Kemafor

Anyanwu. From SPARQL to MapReduce: The Journey

Using a Nested TripleGroup Algebra. Proceedings of the

VLDB Endowment, 4(12), 2011.

[12] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. Pregel: A System for Large-scale Graph

Processing. In Proc. International Conference on

Management of Data, 2010.

[13] Inderpal Singh Mumick and Hamid Pirahesh.

Implementation of Magic-sets in a Relational Database

System. In Proc. international conference on Management of

Data, SIGMOD ’94, pages 103–114, 1994.

[14] Thomas Neumann and Gerhard Weikum. Scalable Join

Processing on Very Large RDF Graphs. In Proc.

International Conference on Management of Data, 2009.

[15] Thomas Neumann and Gerhard Weikum. The RDF-3X

engine for scalable management of RDF data. The VLDB

Journal, 19:91–113, 2010.

[16] Andrew Newman, Jane Hunter, Yuan-Fang Li, Chris Bouton,

and Melissa Davis. A Scale-out RDF Molecule Store for

Distributed Processing of Biomedical Data. In Semantic Web

for Health Care and Life Sciences Workshop, 2008.

[17] Andrew Newman, Yuan-Fang Li, and Jane Hunter. Scalable

Semantics: The Silver Lining of Cloud Computing. In

eScience. IEEE International Conference on, 2008.

[18] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-So-

Foreign Language for Data Processing. In Proc. International

Conference on Management of Data, 2008.

[19] Padmashree Ravindra, Vikas V. Deshpande, and Kemafor

Anyanwu. Towards Scalable RDF Graph Analytics on

MapReduce. In Proc. Workshop on Massive Data Analytics

on the Cloud, 2010.

[20] Padmashree Ravindra, HyeongSik Kim, and Kemafor

Anyanwu. An Intermediate Algebra for Optimizing RDF

Graph Pattern Matching on MapReduce. In Proc. Extended

Semantic Web Conference, 2011.

[21] Kurt Rohloff and Richard E. Schantz. High-performance,

Massively Scalable Distributed Systems using the

MapReduce Software Framework: the SHARD Triple-store.

In Programming Support Innovations for Emerging

Distributed Applications, PSI EtA ’10, pages 4:1–4:5, 2010.

[22] H.E. Schaffer, S.F. Averitt, M.I. Hoit, A. Peeler, E.D. Sills,

and M.A. Vouk. NCSU’s Virtual Computing Lab: A Cloud

Computing Solution. Computer, 42:94–97, 2009.

[23] Yusuke Tanimura, Akiyoshi Matono, Steven Lynden, and

Isao Kojima. Extensions to the Pig data processing platform

for scalable RDF data processing using Hadoop. In Data

Engineering Workshops, IEEE International Conference on,

2010.

[24] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng

Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete

Wyckoff, and Raghotham Murthy. Hive: a warehousing

solution over a map-reduce framework. Proc. VLDB

Endow., 2:1626–1629, 2009.

[25] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein.

Hexastore: Sextuple indexing for semantic web data

management. Proc. VLDB Endow., 1:1008–1019, August

2008.

[26] A. Bialecki, M. Cafarella, D. Cutting, and O. O Malley.

Hadoop: A Framework for Running Applications on Large

Clusters Built of Commodity Hardware.

http://hadoop.apache.org/

[27] R.Cyganiak and A. Jentzsch The Linking Open Data Cloud

Diagram http://www4.wiwiss.fu-berlin.de/lodcloud/state/

http://hadoop.apache.org/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/

