

I/O Performance of Virtualized Cloud Environments

Devarshi Ghoshal,

Richard S. Canon, Lavanya Ramakrishnan

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory

Data Volumes are Increasing

- Data is a critical component of scientific process
 - Joint Genome Institute projects about 2PB/year
 - Large Hydron Collider (LHC) projects 16PB/year
 - Large Synoptic Survey Telescope (LSST) projects
 6PB/year of raw data
- Similar problem: Internet data
 - Terabytes to petabytes of data/day
 - Cloud is resource platform for these applications
 - MapReduce/Hadoop
 - On-demand virtual machines for processing

What is a Cloud?

- Cloud Infrastructure as a Service (IaaS)
 - Provision bare metal or virtual machine resources
 - Pay-as-you-go model
 - different quality of service levels might be available
 - User responsible for complete software stack
 - Storage options: Elastic Block Store, Ephemeral local disk, S3

Magellan

Determine the appropriate role for commercial and/or private cloud computing for DOE/SC midrange workloads

Approach

- Deployed a distributed test bed at Argonne and NERSC to explore the use of clouds for mid-range scientific computing.
- Evaluated the effectiveness of cloud models for a wide spectrum of DOE/SC applications.

- Benchmarking I/O performance over different cloud and HPC platforms to identify major bottlenecks
 - Network and I/O related
 - Identified through prior Magellan research and other related efforts
- I/O Intensive
 - Low Disk Latency
 - High Bandwidth
 - High Speed Interconnection Network
 - Scalability
- Specialized infrastructure at supercomputing centers compared to cloud's commodity infrastructure

Related work

- Disk I/O and Throughput on Amazon EC2
 - I/O benchmarking for different storage options available on Amazon's EC2 cloud infrastructure
 - Not sufficient data to understand impact on HPC apps
- Performance Analysis of HPC applications on Amazon EC2
 - Focus on determining the performance of HPC applications on cloud
 - No work on the effect of virtualization on I/O

NERSC Configuration

- NERSC Machine Description
 - 720 node IBM iDataPlex cluster
 - 40 nodes for I/O benchmarking
 - Each node has two quad-core Intel Nehalem processors running at 2.67 GHz, 24 GB RAM
 - 4X Quad Data Rate (QDR) Infiniband Technology
 - Batch Queue system
 - GPFS, peak performance of 15 GB/s
 - VM instance type- c1.xlarge

NERSC Amazon EC2 Configuration

Instance type	API name	CPU Family	EC2 Compute Units	Memory (GB)	Local Storage (GB)	Expected I/O Performance
Small	m1.small	Intel Xeon E5430	1	1.7	160	Moderate
Large	c1.xlarge	Intel Xeon E5410	20	7	1690	High
Cluster- compute	cc1.4xlarge	2 x Intel Xeon X5570	33	23	1690	Very High

Benchmarks

- IOR (Interleaved or Random) benchmark
 - For testing performance of parallel file systems
 - Read and Write Performance
 - I/O type: Direct, Buffered
 - Low benchmarking overhead
- Timed I/O Benchmark
 - Performance measurements for a particular duration
 - Measurement results at specific time-intervals

Benchmark Parameters

- Types of I/O
 - Direct I/O vs Buffered I/O
- Virtual Machine Instance Types

 Small, large and Cluster-compute instances
- Storage Devices
 - Local stores (ephemeral), EBS volumes
- Location of Instances
 - US-East and US-West regions
- Shared File-system
 GPFS vs EBS volumes
- Time of run

Evaluation Summary

- Buffer Caching
- Comparison across all Platforms
- Effect of Regions on Amazon
- Multi-node Shared File-system
- 24-hour Tests
- Large Scale Tests

NERSC I/O Performance- Summary

I/O Performance on Different Platforms

- Network bandwidth plays an important role in determining I/O performance.
- EBS performance is better on CC instances, due to 10 Gigabit Ethernet network.

Write Performance on Different Locations in Amazon EC2

West-zone instances outperform the East-zone instances in most cases

Shared Filesystem

Multinode MPI Results

I/O Operations

High resource contention degrades the EBS performance severely.

Timed Benchmark (Write)

Occasional performance drop may be attributed to the underlying shared resources.

Performance Distribution

West-zone performance varies a lot compared to East-zone, but the average is lower.

Impact on applications

- Performance impact on I/O
- Suitable trade-offs between EBS and local disk
 - persistence vs performance
 - cost is another factor
- Application design needs to consider
 - performance variation
 - lack of high performance shared file system

Conclusions & Future Work

- Performance in VMs is lower than on physical machines
 - Clouds are not yet ready for data-intensive applications with high-performance requirements
- I/O performance on local disks is better than on EBS volumes
 - Local disks are ephemeral devices
 - Local disks are also not suitable to MPI (most commonly used in HPC applications)
- Timed results show substantial variations
 - Further investigation required

Acknowledgements

- US Department of Energy DE-AC02-05CH11232
- Krishna Muriki, Iwona Sakrejda, David Skinner

Questions?

Other related events at Supercomputing –

- At Lawrence Berkeley Booth
 - Science in the Cloud? Busting Common Myths about Clouds and Science Tue Nov 15 at 10:30 am
 - What do Clouds mean for Science? Experiences from the Magellan Project Tue Nov 15 at 11:15 am
- Papers
 - Evaluating Interconnect and Virtualization Performance for High Performance Computing, PMBS Workshop, Sun Nov 13 at 9 am.
 - Riding the Elephant: Managing Ensembles with Hadoop, MTAGS Workshop, Mon Nov 14 at 4:30 pm

