
Judy Qiu, Thilina Gunarathne, Bingjing Zhang, Xiaoming Gao, Fei Teng

SALSA HPC Group

http://salsahpc.indiana.edu

School of Informatics and Computing
Indiana University

Portable Data Mining
on Azure and HPC Platform

http://salsahpc.indiana.edu/

Data Intensive Iterative Applications
• Growing class of applications

– Clustering, data mining, machine learning & dimension
reduction applications Expectation Maximization

– Driven by data deluge & emerging computation fields
– Lots of scientific applications

k ← 0;
MAX ← maximum iterations
δ[0] ← initial delta value

while (k< MAX_ITER || f(δ[k], δ[k-1]))
 foreach datum in data
 β[datum] ← process (datum, δ[k])
 end foreach

 δ[k+1] ← combine(β[])
 k ← k+1

end while

Intel’s Application Stack

Data Intensive Iterative Applications

• Common Characteristics

• Compute (map) followed by LARGE
communication Collectives (reduce)

Compute Communication Reduce/ barrier

New Iteration

Larger Loop-
Invariant Data

Smaller Loop-
Variant Data

Broadcast

Iterative MapReduce
• MapReduceMerge

• Extensions to support additional broadcast (+other)
input data

Map(<key>, <value>, list_of <key,value>)

Reduce(<key>, list_of <value>, list_of <key,value>)

Merge(list_of <key,list_of<value>>,list_of <key,value>)

Map Combine Shuffle Sort Reduce Merge Broadcast

Parallel Data Analysis using Twister

Data mining and Data analysis Applications

Next Generation Sequencing

Image processing

Search Engine

….

Algorithms

Multidimensional Scaling (MDS)

Clustering (K-means)

Indexing

….

Traditional MapReduce and classical parallel

runtimes cannot solve iterative algorithms

efficiently

Hadoop: Repeated data access to HDFS, no optimization to

data caching and data transfers

MPI: no natural support of fault tolerance and programming

interface is complicated

Interoperability

Challenges

Current and Future Work

Collective Communication

Fault tolerance

Distributed Storage

High level language

Twister Collective Communications

 Broadcasting

 Data could be large

 Chain & MST

 Map Collectives

 Local merge

 Reduce Collectives

 Collect but no merge

 Combine

 Direct download or
Gather

Map Tasks Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Gather

Map Collective

Reduce Tasks

Reduce
Collective

Map Tasks

Map Collective

Reduce Tasks

Reduce Collective

Broadcast

Twister Broadcast Comparison
One-to-All vs. All-to-All implementations

0

100

200

300

400

500

Per Iteration Cost (Before) Per Iteration Cost (After)

Ti
m

e
 (

U
n

it
: S

e
co

n
d

s)

Combine Shuffle & Reduce Map Broadcast

0

5

10

15

20

25

1 25 50 75 100 125 150

B
ca

st
 T

im
e

 (
Se

co
n

d
s)

Number of Nodes

Twister Bcast 500MB MPI Bcast 500MB Twister Bcast 1GB

MPI Bcast 1GB Twister Bcast 2GB MPI Bcast 2GB

Bcast Byte Array on PolarGrid (Fat-Tree Topology
 with 1Gbps Ethernet): Twister v. MPI (OpenMPI)

We are optimizing Collectives needed in data mining

Collective algorithm uses
Topology-aware Pipeline

Core Switch

Compute Node

Rack Switch

Compute Node

Compute Node

pg1-pg42

1 Gbps Connection

10 Gbps Connection

Compute Node

Rack Switch

Compute Node

Compute Node

pg43-pg84

Compute Node

Rack Switch

Compute Node

Compute Node

pg295–pg312

Twister Broadcast Comparison:
Ethernet vs. InfiniBand (Oak Ridge)

0

5

10

15

20

25

30

35

Se
co

n
d

InfiniBand Speed Up Chart – 1GB bcast

Ethernet InfiniBand

Data Intensive Kmeans Clustering
─ Image Classification: 1.5 TB; 500 features per image;10k clusters
 1000 Map tasks; 1GB data transfer per Map task node

High Dimensional Data
• K-means Clustering algorithm is used to cluster the images

with similar features.

• In image clustering application, each image is characterized
as a data point with 512 dimensions. Each value ranges
from 0 to 255.

• Currently, we are able able to process 10 million images
with 166 machines and cluster the vectors to 1 million
clusters
– Need 180 million images

• Improving algorithm (Elkan) and runtime (Twister

Collectives)

Twister Kmeans Clustering

Performance with/without
 data caching

Speedup gained using data cache

Scaling speedup Increasing number of iterations

Number of Executing Map Task Histogram

Strong Scaling with 128M Data Points

Weak Scaling

Task Execution Time Histogram

First iteration performs the
initial data fetch

Overhead between iterations

Scales better than Hadoop on
bare metal

Triangle Inequality and Kmeans
• Dominant part of Kmeans algorithm is finding nearest center to

each point
O(#Points * #Clusters * Vector Dimension)

• Simple algorithms finds
min over centers c: d(x, c) = distance(point x, center c)

• But most of d(x, c) calculations are wasted as much larger than
minimum value

• Elkan (2003) showed how to use triangle inequality to speed up
using relations like
 d(x, c2) >= d(x,c2-last) – d(c2, c2-last) and
 d(x, c2) >= d(c1, c2) – d(x,c1)
 c2-last position of center at last iteration; c1 c2 two centers

• So compare estimate of d(x, c2) with d(x, c1) where c1 is nearest
cluster at last iteration

• Complexity reduced by a factor = Vector Dimension and so this
important in clustering high dimension spaces such as social
imagery with 500 or more features per image

Early Results on Elkan’s Algorithm

• Graph shows fraction of distances d(x, c) that need to be
calculated each iteration for a test data set

• Only 5% on average of distance calculations needed
• 200K points, 124 centers, Vector Dimension 74

0.001

0.01

0.1

1

0 20 40 60 80 100 120

Fraction of Centers Calculated

Iteration Number

Gene
Sequences (N

= 1 Million)

Distance Matrix

Interpolative MDS
with Pairwise

Distance Calculation

Multi-
Dimensional

Scaling
(MDS)

Visualization 3D Plot

Reference
Sequence Set

(M = 100K)

N - M
Sequence
Set (900K)

Select
Referenc

e

Reference
Coordinates

x, y, z

N - M
Coordinates

x, y, z

Pairwise
Alignment
& Distance
Calculation

O(N2)

../../CGL+SC09/DataforPlotviz/MDSGTM_ActiveCount.bat
../../CGL+SC09/DataforPlotviz/MDSGTM_ActiveCount.bat
../../CGL+SC09/DataforPlotviz/MDSGTM_2Kmeans.bat
../../CGL+SC09/DataforPlotviz/MDSGTM_2Kmeans.bat

Input DataSize: 680k

Sample Data Size: 100k

Out-Sample Data Size: 580k

Test Environment: PolarGrid with 100 nodes, 800 workers.

100k sample data 680k data

DACIDR (A Deterministic Annealing Clustering and
Interpolative Dimension Reduction Method) Flow Chart

16S
rRNA
Data

All-Pair
Sequence
Alignment

Heuristic
Interpolation

Pairwise
Clustering

Multidimensional
Scaling

Dissimilarity
Matrix

Sample
Clustering

Result

Target
Dimension

Result

Visualization

Out-
sample

Set

Sample
Set

Further
Analysis

Dimension Reduction Algorithms
• Multidimensional Scaling (MDS) [1]
o Given the proximity information among

points.

o Optimization problem to find mapping in
target dimension of the given data based on
pairwise proximity information while
minimize the objective function.

o Objective functions: STRESS (1) or SSTRESS (2)

o Only needs pairwise distances ij between
original points (typically not Euclidean)

o dij(X) is Euclidean distance between mapped
(3D) points

• Generative Topographic Mapping
(GTM) [2]
o Find optimal K-representations for the given

data (in 3D), known as
K-cluster problem (NP-hard)

o Original algorithm use EM method for
optimization

o Deterministic Annealing algorithm can be used
for finding a global solution

o Objective functions is to maximize log-
likelihood:

[1] I. Borg and P. J. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, New York, NY, U.S.A., 2005.
[2] C. Bishop, M. Svens´en, and C. Williams. GTM: The generative topographic mapping. Neural computation, 10(1):215–234, 1998.

Multidimensional Scaling
• Scaling by Majorizing a Complicated Function

• Can be merged to Kmeans result

Matrix Part 1

Matrix Part 2

…

Matrix Part n

M

M

M

R C

Map Reduce

Data File I/O Network Communication

M

M

M

R

Map Reduce

C 3D result

… …

Parallelized
SMACOF

Algorithm

Stress
Calculation

Kmeans
Result

Multi Dimensional Scaling on

Twister (Linux), Twister4Azure and Hadoop

Weak Scaling Data Size Scaling

Performance adjusted for sequential
performance difference

X: Calculate invV
(BX) Map Reduce Merge

BC: Calculate BX

Map Reduce Merge

Calculate Stress

Map Reduce Merge

New Iteration

Scalable Parallel Scientific Computing Using Twister4Azure. Thilina Gunarathne, BingJing Zang, Tak-Lon Wu and Judy Qiu.
Submitted to Journal of Future Generation Computer Systems. (Invited as one of the best 6 papers of UCC 2011)

Visualization

• Used PlotViz3 to visualize the 3D plot
generated in this project

• It can show the sequence name, highlight
interesting points, even remotely connect to
HPC cluster and do dimension reduction and
streaming back result.

Zoom in Rotate

0

2

4

6

8

10

12

14

16

18

0 2048 4096 6144 8192 10240 12288 14336 16384 18432

Ta
sk

 E
xe

cu
ti

o
n

 T
im

e
(s

)

Map Task ID

MDSBCCalc MDSStressCalc

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800

N
u

m
b

er
 o

f
Ex

ec
u

ti
n

g
M

ap
 T

as
ks

Elapsed Time (s)

MDSBCCalc MDSStressCalc

Multi Dimensional Scaling on Azure

Web UI

Apache Server
on Salsa Portal

PHP script

Hive/Pig script

Thrift client

HBase

Thrift
Server

HBase Tables
1. inverted index table
2. page rank table

Hadoop Cluster
 on FutureGrid

Pig script

Inverted Indexing
System

Apache Lucene

ClueWeb’09
Data

crawler

Business
Logic Layer

Presentation Layer

Data Layer

mapreduce

Ranking
System

SESSS YouTube Demo

http://www.youtube.com/watch?v=CrNnKjPX-_E&feature=youtu.be

Parallel Inverted Index using HBase
1. Get inverted index involved in HBase
 “cloud” -> doc1, doc2, …
 “computing” -> doc1, doc3, …

1. Store inverted indices in HBase tables – scalability and availability

2. Parallel index building with MapReduce (supporting Twister doing

data mining on top of this)

3. Real-time document insertion and indexing

4. Parallel data analysis over text as well as index data

5. ClueWeb09 data set for experiments in an HPC environment

HBase architecture:

• Tables split into regions and served by region servers

• Reliable data storage and efficient access to TBs or PBs of
data, successful application in Facebook and Twitter

• Problem: no inherent mechanism for field value searching,
especially for full-text values

ClueWeb09 dataset
• Whole dataset: about 1 billion web pages in ten languages

collected in 2009

• Category B subset:

of web
pages

Language # of unique
URLs

Compressed
size

Uncompressed
size

50 million English 4,780,950,903 250GB 1.5TB

• Data stored in .warc.gz files, file size : 30MB – 200MB
• Major fields in a WARC record:
 - HTML header record type, e.g., “response”
 - TREC ID: a unique ID in the whole dataset, e.g., "clueweb09-
en0040-54-00000“
 - Target URL: URL of the web page
 - Content: HTML page content

Table schemas in HBase

• Index table schema for storing term frequencies:

frequencies

“283” “1349” … (other document ids)

“database” 3 4 …

• Index table schema for storing term position vectors:

positions

“283” “1349” … (other document ids)

“database” 1, 24, 33 1, 34, 77, 221 …

• Data table schema for storing the ClueWeb09 data set:

details

URI content

“20000041” http://some.page.com/index.html <html> …</html>

• Table schema for PageRank values:

PageRanks

URI RankValue

“20000001” http://en.wikipedia.org/wiki/ 43.6

Table schemas – Entity Relation Diagram

DataTable

Doc_id STRING
URI STRING
Content STRING

FreqIndexTable

Word STRING
Doc_id STRING
Frequency INT
Doc_id STRING
Frequency INT
…

PosVectorTable

Word STRING
Doc_id STRING
Position_vector BINARY
Doc_id STRING
Position_vector BINARY
…

PageRankTable

Doc_id STRING
URI STRING
Rank_value DOUBLE

n

n

n

n

1

1

System Architecture
Dynamic HBase

deployment

Data Loading
(MapReduce)

Index Building
(MapReduce)

Term-pair Frequency
Counting (MapReduce)

Performance Evaluation
(MapReduce)

LC-IR Synonym Mining
Analysis (MapReduce)

CW09DataTable

CW09PosVecTable CW09PairFreqTable CW09FreqTable PageRankTable

Web Search
Interface

LC-IR Synonym Mining

• Mining synonyms from large document sets based on words’
co-appearances

• Steps for completing LC-IR synonym mining in HBase:

 1. Scan the data table and generate a “pair count” table for
word-pairs;

 2. Scan the “pair count” table and calculate similarities,
looking up single word hits in the index table;

 3. Filter the pairs with similarities lower than a threshold.

Sample Results

- 100 documents indexed, 8499 unique terms
- 3793 (45%) terms appear only once in all documents
- Most frequent word: “you”

Sample Results

• Preliminary performance evaluation
 - 6 distributed clients started, each reading 60000 random rows
 - average speed: 2647 rows/s

• Example synonyms mined (among 16516 documents):
 - chiropodists podiatrists (0.125, doctors for foot disease)
 - desflurane isoflurane (0.111, narcotic)
 - dynein kinesin (0.111, same type of protein)
 - menba monpa (0.125, a nation/race of Chinese people living in Tibet)
 - lyrica pregabalin (0.125, different names for the same medicine for diabetes)

Sample Results

• Original data table size: 29GB (2,594,536 documents)
• Index table size: 8,557,702 rows (one row for each indexed term)
• Largest row: 2,580,938 cell values, 162MB uncompressed size
• At most 1000 cell values are read from each row in this test
• Aggregate read performance increases as number of concurrent clients

increases

Sample Results
Number of nodes Number of mappers Index building time (seconds)

8 32 18590

12 37 (15.6% increase) 16142 (15.2% improvement)

16 47 (46.9% increase) 13480 (37.9% improvement)

• Original data table size: 29GB (2,594,536 documents)

• 6 computing slots on each node

• HBase overhead: data transmission to region servers, cell value sorting
based on keys, gzip compression/decompression

• Number of mappers not doubled when number of nodes doubled –
because of small table size

• Increase in index building performance is close to increase in number of
mappers

Index building performance vs. resources increase

Practical Problems and experiences

• Hadoop and HBase configuration

 - Lack of “append” support in some versions of Hadoop: missing data,
various errors in HBase and HDFS.

 - Low data locality in HBase MapReduce: “c046.cm.cluster” for Task
Tracker vs. “c046.cm.cluster.” for Region Server.

 - Clock not synchronized error: clock not synched with NTP on some
nodes.

• Optimizations in the synonym mining programs

 - Addition of a word count table with bloom filter.

 - Local combiners for word pair counter.

 - Caching of word counts during the synonym scoring phase.

Low data locality in MapReduce over HBase

• Data splits assigned to mappers by regions (one mapper per region in
most cases)

• Mapper deployment based on mapper-region server locality

• Problem: region data blocks not necessarily local to region servers

• Data locality gets even worse after region splits or region server failures

Hadoop head node

Job Tracker

Data node Data node

…

Task Tracker 2 Region Server 2 Task Tracker 1 Region Server 1

Mapper 1 Mapper 2

a b c d a b c … …

SALSA HPC Group
http://salsahpc.indiana.edu

School of Informatics and Computing

Indiana University

http://salsahpc.indiana.edu/
http://salsahpc.indiana.edu/

