Adaptive Runtime Systems
meet
Needs of Many Task Computing

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

[ILLINOTIS PARALLEL

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

PROGRAMMING LAB
DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

http://charm.cs.uiuc.edu/

Premise

Some of the MTAGS community is moving
towards a context where each task is itself a
parallel job

— These tasks interact in potentially complex
work-flow arrangements

— And they must run on cloud/grid environments
« Virtualized OSs

Latencies

Performance Heterogeneity: static and dynamic

Resource availability may vary over time

Resource needs may vary over time

. PPL

uroc

Outline

How adaptive runtime systems within jobs can help
make parallel jobs fit within grid/cloud environment

ARTS and their place in HPC
Charm++ model and successes

Charm++ Features of relevance:

— Task parallelism

— Handling latency, and variation/heterogeneity
— Multi-cluster jobs

— Shrink/expand, faucets project, scheduler, bid
— Interacting with parallel jobs

— Support for replica’s : loosely communicating tightly-
parallel jobs

— Theme: Please experiment with it

. PPL

uroc

Migratable Objects Execution Model

 Programmer

— Decomposes computation into a large number of
work/data units (WUDUSs)

— Grainsize independent of number of processors
 The runtime system

— Assigns these units to processors,

— Changes the assignment at runtime

— Mediates communication between the units
« Message-driven execution model

— Since there are multiple units on each PE

 Programmer’s mental model doesn’t have
‘processor” in it

. PPL

uroc

Object Based Over-decomposition:
Charm++

« Multiple “indexed collections” of C++ objects

 Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View

. PPL

UIoc

Adaptive Runtime Systems

« Decomposing program into a large number of
WUDUs empowers the RTS, which can:

— Migrate WUDUs at will
— Schedule DEBS at will

— Instrument computation and communication at the
level of these logical units

« WUDU x communicates y bytes to WUDU z every iteration
« SEB A has a high cache miss ratio
— Maintain historical data to track changes in application
behavior
« Historical => previous iterations
* E.g., to trigger load balancing

o PPL

uroc

Over-decomposition and
message-driven
execution

Migratability

Introspective and
adaptive runtime system

11/11/2012

Scalable Tools
Automatic overlap, pefetch,

compositionality
Emulation for
Perf Prediction

Fault Tolerance

Dynamic load balancing
(topology-aware, scalable)

Temperature/power
considerations

Charm and MTAGS

Message-driven execution model

« Adaptive overlap of communication and computation

« A strong principle of prediction for data and code use

— Much stronger than principle of locality
« Can use to scale memory wall:
« Prefetching needed data:
— into scratch pad memories, for example

. PPL

UIoc

Impact on communication

* Current use of communication network:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

 So, current communication networks are
over-engineered for by necessity

« With overdecomposition
— Communication is spread over an iteration

, PPL

uroc

Decomposition Independent of numCores

« Rocket simulation example under traditional MPI
1 2 P

« With migratable-objects:

— Benefit: load balance, communication optimizations, modularity

)

UIoc

Charm++ and CSE Applications

Well-known Biophysics
molecular simulations App

A\ 8 ‘s L) qa-fl ;
,\NAMD s Gordon Bell Award, 2002

QL

Nano-Materials..

enAtgm Synergy

Issues

SN i)
Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

: System
ChaNGa %
Rocket

Simulation’

Computational _ bace-Time g
—
i

uroc

Object Based Over-decomposition:
AMPI

« Each MPI process is implemented as a user-level
thread

 Threads are light-weight and migratable!
— <1 microsecond context switch time, potentially >100k threads per core

« Each thread is embedded in a charm++ object (chare)

Virtual
Processors
(user-level

migratable

J threads)

Real Processors

1> PPL

uroc

A quick Example:
Weather Forecasting in BRAMS

 Brams: Brazilian weather code (based on RAMS)

« AMPI version (Eduardo Rodrigues, with Mendes
and J. Panetta)

EI: EI:I
- . -

2 -‘1- ._ ' Il.’:l 3-:'_1 :’.- 1

15 PPL

UIoc

GraDs: Q0LA/ICES 2010-01-18-09:46 GraDs: Q0LA/ICES 2010-01-18-10:00

W PPL

UIoc

Usage Percent %

100

Baseline: 64 objects on 64 processors

54

59

15 PPL

uroc

Usage Percent %

100

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap

1o PPL

uroc

With Load Balancing:
1024 objects on 64 processors

100

o9
I
Kb
F0
65
60
55

No overdecomp (64 threads) 4988 sec

Usage Percent %
Ln

45
40 Overdecomp into 1024 threads 3713 sec
g Load balancing (1024 threads) 3367 sec
25
20
15
10

5

)

Avqg | O 14 19 24 29 34 30] 40 5 50

)

uroc

Saving Cooling Energy

Easy: increase A/C setting

— But: some cores may get too hot

Reduce frequency if temperature is high
— Independently for each core or chip

This creates a load imbalance!

Migrate objects away from the slowed-down
Processors

— Balance load using an existing strategy

— Strategies take speed of processors into account
Recently implemented in experimental version
— SC 2011 paper

Several new power/energy-related strategies

)

uroc

Fault Tolerance in Charm++/AMPI

 Four Approaches:
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Leverages object-migration capabilities
— Based on dynamic runtime capabilities

10 PPL

uroc

In-memory double checkpointing

 |s practical for many apps
— Relatively small footprint at checkpoint time

— Also, you can use non-volatile node-local storage
(e.g. FLASH)

20 M

uroc

Checkpoint time is low: 4 milliseconds for MD,
essentially, live-data-permutation for any app

Checkpoint Time — Intrepid(leanMD)

125000 atoms —s—
1 million atoms = W

e
n

Time (ms)
N
&

W
(V)|

4K 8K 16K 32K 64K
#cores
21 M

uroc

Restart time 1s low: 150 milliseconds on 64K cores,
detection time, and re-execution times not included

Restart Time — Intrepid(leanMD)

0.2 . | | |
125000 atoms —=—
1 million atoms === W
0.15 -~
G) -
g 0.1
=
005
0

4K 8K 16K 32K 64K
#cores
22 M

uroc

HPC Challenge Competition

« Conducted at Supercomputing 2011

« 2 parts:
— Class |I: machine performance
— Class II: programming model productivity
« Has been typically split in two sub-awards

— We implemented in Charm++
« LU decomposition
« RandomAccess
 LeanMD
 Barnes-Hut

« Finalists in 2011
— Chapel (Cray), CAF (Rice), and Charm++ (UIUC)

» PPL

uroc

Strong Scaling on Hopper for
LeanMD

Gemini Interconnect, much less noisy

Performance on Hopper (125,000 atoms)

100
- No LB I
Refine LB @@
E
o
g
C 10
9] n
o B
o .
£ I
iz i
I

264 528 1032 2064 4104 8208 16392

Number of cores

 PPL

uroc

CharmLU: productivity and

performance

1650 lines of source
67% of peak on Jaguar

100 ¢

t Theoretical peak on XT5 ——
: Weak scaling on XT5 —m—
[Theoretical peak on BG/P ----
Strong scaling on BG/P --e--

10|
0 ;
o
o ..
T S O et
- -
s |\ = T e
(@] -
= . T e

1F »— 7 T

. - el
128 1024 8192
Number of Cores »s PPL

uroc

Barnes—Hut

High Density Variation with a Plummer distribution of particles

Barnes-Hut scaling on BG/P

16.00 . .
50m ———

- 10m
8 8.00 r
c
3
;8, 4.00
QT
= 2.00
E \\\\\\
i 1.00

0.50 | '

2k 4K 8k 16k

Cores
o PPL

uroc

Charm++ interoperates with MPI

(a) Time Sharing

RO i NSNS —
IR DD%DDW

RENSNNANA S I -

%% MPI Control
Charm++
Control

O

27 PPL

uroc

Summary of ARTS

« Charm++ is a sophisticated programming
“language’,

« It is supported by a rich adaptive runtime
system, which supports:
— Adaptive overlap of communication/computation
— Parallel composition
— Dynamic load balancing
— Fault tolerance

* Is a production—-quality system used by
many apps in routine use by CSE scientists

» PPL

uroc

So...

Charm++ is a sophisticated programming
“language’,

It is supported by a rich adaptive runtime
system, which supports:

— Adaptive overlap of communication/computation
— Parallel composition

— Dynamic load balancing

— Fault tolerance

Is a production-quality system used by
many apps in routine use by CSE scientists

How does it help the MTAGS community?

» PPL

uroc

11/11/2012

Charm and MTAGS

Task Parallelism support

 Dynamic creation of chares, supported by a

“seed balancer”, supports
— Master-slave
— Divide-and-conquer

— State-space (combinatorial) search

 One can assign priorities wit
— And with each response as wel
— Supported by a prioritized load

n each task

balancer

. PRL

uroc

Some Examples:

Priority is a bit-vector

X
Finding any feasible solution

While controlling mem. usage **

) X0101 X0110 X100 X101

With priorities, search tends proceed in
this fashion,

L eading to very low memory usage: P +D
(P:processors, D: depth)

- PPL

uroc

Combinatorial Search Examples

A* IDA* (memory efficient A¥), ...
Branch-and-bound search

Graph coloring, ...

Game trees

Parallel logic programming

All of these have been done well using
Charm++

To the extent Task parallelism is relevant to
MTAGS, these capabilities are useful

- PPL

uroc

11/11/2012

Charm and MTAGS

Different CPU speeds

« This may happen because

— Static: a cloud/cluster environment has a mix of
nodes with different capabilities

— Dynamic: physical node may be time-shared (with
other VMs, for example)

— Frequency changes in hot spots

« But is easy to handle:

— The RTS measures speeds and balances load
accordingly

— Measures idle time, and can adapt to dynamic loads

« By migrating objects away from time-shared overloaded
nodes

« See http://ppl.cs.illinois.edu/research/cloud

 PPL

UIoc

http://charm.cs.uiuc.edu/research/cloud
http://charm.cs.uiuc.edu/research/cloud
http://charm.cs.uiuc.edu/research/cloud

11/11/2012

Charm and MTAGS

UIoc

| atencies

 Message-Driven execution mitigates the
impact of latencies
— With multiple objects per PE
— Adaptive and automatic overlap of
communication and computation
 Even more dramatic example:
— Running a single, tightly coupled, application
across geographically separated clusters

— Work from Greg Koenig’s dissertation:

« http://charm.cs.illinois.edu/newPapers/07-
17/paper.pdf

» PRL

uroc

Multi-Cluster Co-Scheduling

El EI:::'.:-.-.-.N
O O
O
O
O
| O
Cle
Cluster A

Intra-cluster latency
(microseconds)

Cluster B

Inter-cluster latency
(milliseconds)

Job co-scheduled to run
across two clusters to
provide access to large
numbers of processors

But cross—cluster
latencies are large

Virtualization within
Charm++ masks high
inter-cluster latency by
allowing overlap of
communication with
computation

11/1]3é2012 m

Execution Time
(milliseconds/step)

11
1@
=l |
=
-
=
S
<
S
=
1

Five-Point Stencil Results
(2048x2048 mesh, P=16)

= 1 15

=

Latency <milliseconds?

Mumber of Objects
Mumber of UObjects
Moumber of UObjects

Execution Time (secondssstep?

Multi-Cluster Co-Scheduling

LeanMD running Hydrophokic Cluster Analysis with 28,652 atoms

4.5
4
2.5
2
2.3
—
= . .
1.5 ﬁ
1 =25 = g 853 £ = 8
@3 | i i i i
S A S R
5]
1 2 4 a2 1& a2e &4 128 2a5
Latency millisecondsl
Frocessors & —&%— Frocessors 2 —8—
Processors 4 ——— Processors 16 —s— Processors &4 —%—

11/1%62012 E]ETE

11/11/2012

Charm and MTAGS

Interactive Parallel Jobs

Need for real-time communication with parallel
applications

— Steering computation

— Visualizing/Analyzing data

— Debugging problems

Long running applications

— Time consuming to recompile the code (if at all
available)

— Need to wait for application to re-execute
Communication requirements:

— Fast (low user waiting time), Scalable

— Uniform method of connection

User controlled workflow

2 PPL

uroc

Processor 0

Python
Charm++ RT{ Module

Scheduler Message Qf‘,'_eﬁ

Machine Layer

External
Client

13/11/2012

Processor 1

Chare Ci4]

Chare C[4

Chare C[1]

Scheduler Message Q‘f,el“:el

Machine Layer

Interconnect

Client

Charm and MTAGS

1) Send request

¢

4) Send back reply later

Processor N-1

Python

Charm++ RT Module

Scheduler Message fofaﬁ

Machine Layer

Server frontend

2) Execute the requ

3) Combine result

Parallel program

Large Scale Debugging:
Motivations

Bugs in sequential programs
Buffer overflow, memory leaks, pointers, ...
More than 50% programming time spent
debugging
GDB and others

Bugs in parallel programs

Race conditions, non-determinism, ...

Much harder to find

Effects not only happen later in time, but also on
different processors

Bugs may appear only on thousands of processors
Network latencies delaying messages
Data decomposition algorithm

TotalView, Allinea DDT

PPL

uroc

CharmDebug Java GUI Firewall Parallel Application
(local machine) (remote machine)

' CCS
Y ¥ (Converse Client-Server)

:1__ | Application
/

CharmDebug : GDB

45/11/2012 Charm and MTAGS PPL

uroc

Charm Parallel Debugger
Eile Action

Set Break Points
9 Systemn Entries

Control Buttons

Fello:SlyHltlnt hiMNo)

HelloCharezxSayHi@int hiNo)

Sender processor: 0
‘| [Destination: Hello=SayHi(nt hiNo) @ype 16)
i Size: 16

User data: data={hiNo=27}

1 User Entries Start Step Continue Freeze Quit Start GDB
o [Main
g HDEHO “/ Program Qutput Pes
Hello(CKMigratep | ' -me & oo =
) ‘| Hello 7 created = all
[] Hello(void) | Hello @ created even
Sa;rHi(]m hiNo) Hello & created
| Hello & created
o~ [HelloGroup i Hello 12 created
o= [HelloMode ‘| Hello 14 created
o= [HelloChare ¢/ Hello 13 created
o [secondArray : Hello 11 created —
s Hello 17 created
i Hello 19 created
‘| Hello 18 created =
g group created
‘| Hello 16 created | |
o group created
‘| group created]
[4] Il | [»| | aroup created hd
View Entities on PE
Messages in Queue - 0
Entities 1), Details

'Frozen processor 0

« PPL

UIoc

E Memory Processor 0

Adion Info

| Number of lines | Horizontal pixels)

16
| Line size

. Update

+ ‘ Bytes per pixel: 233

S | (N — |5

00 0

B
I

[
| | | [1[] I {11l | |
| | | [H | | | |
[| | [} | |l | | 1 1] 1 | [l | 1 |
| | |l | | | | Il 1 L 1 | I
1 | [| L] | | | | |
[1] | 1 || |
[| [l [| | LU | 1 | |
| [| | | | | |
| | Il || il | 1 1l | | |
| [| I | | 1 | i | Il u | | 1<
i |] |
Information
o LEAKING ** Z
Memory type: massags
Slet at position 0x1007dbE of size 912 bytes.Belonging 1o chare 0. Backtrace,
function Cmidlloc (Ox4efcle) at 70
function CaAllocMsg (Ox495 1da) at 7.0
function CMessage_Ghost:-allocdint, unsigned long, int™, int) (Ox45d262) at jacobizd.def h:250 =
function CMessage_Ghost: operator newiunsigned long, int) (0x45d2ea) at jacobi2d. def.h:237
function Jacobi::begin_iteration() (0x450063) a1 jacobi2d.C:202
function Ckindey_Jacobi:: _call_begin_iteration_void(void®, Jacebi™) (0x45d30e) at jacobiZd.def.h:443
function CkDelrverMessageReadonky (0x4204a2) at 7.0
function CkLocRec_local imvokeEnryCkMigratable”, void®, int, bool) (0x4a%413) a1 7.0 =
function CkArrayBroadcaster::deliver(CkarrayMessage®, ArrayElement™) (Ox4adac?) at /7.0
function CkArray: racvBroadcastiCkMessage™) (0x4b0c96) at 7.0
function CkDelnverMessageFres (Oxd8alB81) at 7.0
function _processHandler(void®, CkCoreState™) (0x493c46) at 7.0 |
function CmiHandleMassage (Dx4fDe3c) at 7.0 |

- PPL

uroc

Online, Interactive Access to
Parallel Performance Data:
Motivations

Observation of time-varying performance of
long-running applications through streaming
Re-use of local performance data buffers

Interactive manipulation of performance data
when parameters are difficult to define a
priori
Perform data-volume reduction before application
shutdown

k—clustering parameters (like number of seeds to use)
Write only one processor per cluster

PPL

uroc

Projections: Online Streaming of
Performance Data
Parallel Application records performance

data on local processor buffers

Performance data is periodically processed
and collected to a root processor

Charm++ runtime adaptively co-schedules
the data collection's computation and
messages with the host parallel
application's

Performance data buffers can now be re-
used

Remote tool collects data through CCS

w0 PPL

uroc

Projections: Online Streaming of
Performance Data

Parallel Application records performance data
on local processor buffers

Performance data is periodically processed

and collected to a root processor

Charm++ runtime adaptively co-schedules
— The data collection's computation and messages
— with the host parallel application’s

Performance data buffers can now be re-
used

Remote tool collects data through CCS

50 M

uroc

System Overview

Root Processor (1) Broadcast Request for
Utilization Profiles

Once Per Second

@ F?ﬂei;ill?;sifs ¢ * l

Trace Processor | Trace FProcessor
Module Module .

Module

(3) Buffer

Utilization AR

Profiles RN (2) Reduction Merges

Compressed Utilization Profiles

o
5
o
ﬁ

. PRL

UIoc

Impact of Online Performance
Data Streaming

Simple Charm++ Parallel Application

(Iterations of Work + Barriers)

4095 21.44s 21.46s
NAMD 1-million atom simulation (STMV)

Overhead (%) no Data Collection 0.69% 0.55% -3.44% 156% 1.29%
and Streaming to visualization
client.

Online Visualization of Streamed
Performance Data

Utilization Stacked by EP Utilization Stacked by EP
a5

o
‘ l / ' M Other W dummy_thread_ep init O startup M collectSumDetailData Cinitialize_pencils [enqueueWorkA
M recvGrid M enqueueSelfA M enqueueSelfE M enqueueWorkB ErecvUntrans MrecvTrans M resume
‘lOther W dummy_thread_ep Einit [startup lcollectSumDetaiIData| W updatelocalComputes M updatelocalComputes3 M ReceiveMigration

Pictures show 10-second snapshots of live NAMD
detailed performance profiles from start-up (left) to the
first major load-balancing phase (right) on 1024 Cray
XT5 processors

Ssh tunnel between client and compute node through
head-node

PPL
5y Ml

’ UIoc

System Overview

(1) Send Request via
TCP using CCS protocol

_ o _ Root Processor
Visualization Client
: | L :
Mﬁ < Handler ————
| (2) Retrieve a
Buffered Utilization
(4) Update Display Profile
(3) CCS Reply Contains
Utilization Profile
s PPL

uroc

Cosmological Data Analysis:
Motivations

Astronomical simulations/observations
generate huge amount of data

This data cannot be loaded into a single
machine

Even if loaded, interaction with user too slow

!

Need to parallel analyzer tools capable of

Scaling well to large number of processors
Provide flexibility to the user

PPL

uroc

Bl Salsa: Code NP B Saisa: Group Manager RIS

numParticles = charm. CcountParticles{) G G definiti
ck.print{"numher of particles: "+repri{numParticles]) UL 243 UL O LI

e
‘\60 File View Manage
a®

All Group name: Potential group
Potential group

Attribute: | potential -

Minimum value: -2 225%08ED

Maximum value: |-2E-2

Create new group Apply changes

number of particles: 1235400

Execute code on Server

Coloring: | Density v

Group: | Potentia.. ¥ Right|1E-7

Clock [_] Splatter Visual

PPL

uroc

LiveViz

Every piece is represented by a chare

Under integration in ChaNGa (simulator)

PPL

uroc

11/11/2012

Charm and MTAGS

The Faucets Project

« Motivations

— Increasing trend towards individual organizations
owning their own computational resources

— Computational power is too dispersed and hard to
use

— Workload of most organizations occurs in bursts

— Rigid job scheduling leads to internal fragmentation
of resources

« Objectives
— Support the metaphor of computing power as a
utility
— Make it easier to use remote compute power
— Efficient utilization of individual clusters

— Improve the throughput of jobs in a federation of
clusters

» PPL

uroc

Aspects of the Faucets Project

Theme:

— Efficient resource allocation via adaptive
strategies for

« Higher throughput/utilization
« Shorter response times

Resource Utilization within a cluster
— Leveraging our adaptive run time system
— A new cluster scheduler

Resource Utilization across clusters
— Meta-scheduling and Market economy

Supporting a single job on multiple clusters

. PPL

uroc

Inefficient Utilization within a cluster

16 Processor

system
0 Job A

m Job B

Allocate A !

8 procesk

Current Job Schedulers can lead to low system utilization !

)

uroc

Adaptive Job Scheduler

Scheduler can take advantage of the
adaptivity of AMPI and Charm++ jobs

Improve system utilization and response time

Scheduling decisions

— Shrink existing jobs when a new job arrives

— Expand jobs to use all processors when a job finishes
Processor map sent to the job

— Bit vector specifying which processors a job is allowed to
use

« 00011100 (use 3 4 and 5')
Handles regular (non-adaptive) jobs

)

uroc

16 Processor

system
O Job A

m Job B

Two Adaptive Jobs

Albqaiads !

N\

Shrink /Expand

Problem: Availability of computing platform may change
Fitting applications on the platform by object migration

0.14

012 -

o
_—

Time per Step
o
jo}
oD

=
o
>

0.04 -

0.02 -

500 550 600 650 700
Timestep Number

Time per step for the million-row CG solver on a 16-node cluster
Additional 16 nodes available at step 600

64

PPL

uroc

AQS: Adaptive Queuing System

Multithreaded
Reliable and robust
Deployed on multiple Linux clusters at UIUC

Supports most features of standard queuing
Sys.

Has the ability to manage adaptive jobs
currently implemented in Charm++ and MPI

Handles regular (non-adaptive) jobs

For more details:
nttp://ppl.cs.illinois.edu/research/faucets

. PPL

uroc

http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets

Experimental Utilization

Simulation Results of System Utilization for Traditional and Adaptive Jobs.

W Traditional Job
W Adaptive Jobs

120

100

— 80
£
g
g

= B0
)
£
B
[

@ 4p

20

0

12 30 60 100 108
Systemn Load (%)
11/11/2012 Charm and MTAGS 67 M

UIoc

Experimental MRT

Experimental Results of Mean Response Time for Traditional and Adaptive Jobs

W Traditional Job

B Adaptive Johs
350
300
250 +
2
o
£
~ 200
14}
2
2
§ 150
c
B
= 100 4
50 +
D B
12 30 60 100 108
System Load (%)
11/11/2012 Charm and MTAGS 68 M

UIoc

Faucets: Scheduling Across the Grid

« “Central” source of compute power
— Users
— Providers of compute resources
— User account not needed on every resource

« Match users and providers
— Market economy ?
— QoS requirements, contracts and bidding systems

« GUI or web-based interface

— Submission
— monitoring

)

uroc

Parallel systems need to
maximize their efficiency!

Faucets

Cluster

http://ppl.cs.illinois.edu/research/faucets 70 PPL

UIoc

http://www.psc.edu/machines/tcs/lemieux.html
http://www.psc.edu/machines/tcs/lemieux.html
http://www.psc.edu/machines/tcs/lemieux.html
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets
http://charm.cs.uiuc.edu/research/faucets

System
Overview

11/11/2012 Charm and MTAGS 71 PPL
uIruc

11/11/2012

Charm and MTAGS

UIoc

Replica Methods

« Motivation

— Scientific studies often require multiple runs

« with minor changes in initial conditions: results are
combined to increase accuracy

« Forking alternatives ...
« Soft error detection

— But if working on small problem sizes, strong
scaling is not seen - larger systems do not help.

« Solution
— Run RTS supported “repl/icas” of simulation

— Add code for replicas to enable combining of
results /n situ

7 PPL

uroc

Replica in Charm++

Charm++ RTS divides the allocated processors
into Charm Instances - users can plugin their
partitioning code

Each instance runs a simulation, and are
unaffected by other instances

— Interact within my instance as before

— No change in existing code

Asynchronous, non-blocking communication
messages to other instances

— RemoteSend(to_partition, rank_within_partition,
message)

Examples of usage: Thanks to TCBG/Prof.
Schulten

 PPL

uroc

First application of parallel tempering is CHARMM Drude-
oscillator polarizable force field development by Alex MacKerell
(U. Maryland)

Distribution of backbone dihedral angles at different temperatures from
64-replica simulation of Acetyl-(AAQAA)3-amide peptide on Blue Gene/P

COId l 3
g i
- 5 + %
130 + A ’ s 1
A + + X Lo
I 2 +

75

(P Data from Luo & Roux, ANL/UC.

DBP7: Membrane Transporters - First BTRC application of
replica exchange for umbrella sampling on collective variables

Quaternion-based order parameters
from collective variables module

(kcal/mol)
O= 1N Wk WUIO\J

L IF

Free Energy

OF

Outward : N—
0 5 10 15 20

Reaction Path (0,+0-)

Efficient Reaction Path Sa
5

Inward

Inward-Facinge>Outward-Facing 4| .
transition of GIpT transporter in explicit 4920246 81012
meimbrane/water environment (not showin) 0, :

o
st vy

Usage and Future Work

« To the command line,
— Add +partitions <num_partitions>

— This will create block-division based
num_partitions Charm instances, each with a
unique partition number

* Future work
— Support topology aware partitioning
— Heterogeneous tasks in partitions
— Stretch partitions as needed

7 PPL

uroc

Conclusion

« Adaptive runtime systems have proved
useful in pure HPC settings

 The same adaptivity features, especially
migratability and message-driven
execution, prove useful in multiple-tasks
contexts

« dynamic interactive controllability through
scripting, both external and embedded,
supports rich variety of job types

« PPL

uroc

