Data Management in Parallel Scripting

Problem Statement

Definition:

MTC applications are those applications in which
existing sequential or parallel programs are linked
by files output by one program being used as input
by others.

Problem Statement

S
1 Application Example: Montage

— File input
v File output
---» Task production

Problem Statement

How to run the Montage computation on large scale computers?

Solution 1: Rewrite the application as monolithic program using a parallel
library or language such as MPl or PGAS. Communications that originally
occurred via filesystem operations then occur via messaging.

Pros:

MPI is widely deployed
Cons:

Labor intensive

Code maintenance

Fault intolerance

Problem Statement

How to run the Montage computation on large scale computers?

Solution 2: build the program with parallel scripting, e.g. Swift/T

()

The user represents the task graph by a script, which is compiled to tasks when
running. Files are used for intertask communication, and are stored on shared

filesystem for further access.
Pros:
Doesn’t modify the original application

Updating the application version is seamless unless the program’ s interface
changes substantially.

Can handle faults

Cons:
Relatively high latency when accessing files compared to in-memory data

The volume and frequency of filesystem operations generated by a large scripting
computation are often overwhelming.

https://sites.google.com/site/exmcomputing/

Problem Statement
S

7 Is “Mapping computation to computing resources a sufficiently
efficient way to enable MTC application on large scale computers?

Other
7.9%

B Data Movement B Execution OOther
Execution time distribution of Montage on 512 BG/P CPU cores

Problem Statement

Problems:

Persistent file system | /O has a large amount of
metadata traffic and | /O traffic.

There is unnecessary intermediate 1/O traffic.

Some of the idle time is due to data flow patterns.

Approaches

To understand the 1/O behavior of MTC applications, we can study across
many scientific applications.

To speed up the persistent file system 1/O, we can use a collective scheme
that maximize the |/O performance.

To eliminate the unnecessary 1/O traffic, we can use an intermediate file
system by aggregating the local storage of the compute nodes, and cache
intermediate data on it.

To speed up the intermediate data movement, we can build a group of data
transfer schemes to accommodate data flow patterns

Publications

Understanding the MTC application | /O

“Many-task computing and blue waters”, DS Katz, TG Armstrong, Z Zhang, M Wilde,
JM Wozniak - arXiv preprint arXiv:1202.3943, 2012

Persistent file system Collective |/O

“Design and evaluation of a collective IO model for loosely coupled petascale
programming” Z Zhang, A Espinosa, K Iskra, | Raicu, | Foster, M Wilde - MTAGS 2008

Intermediate data caching

“A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-
Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012

“Design and Analysis of Data Management in Scalable Parallel Scripting”,
Z Zhang, DS Katz, JM Wozniak, A Espinosa, | Foster — SC 2012

Speedup data movement in data flow patterns

“A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-
Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012

“Design and Analysis of Data Management in Scalable Parallel Scripting”,
Z Zhang, DS Katz, JM Wozniak, A Espinosa, | Foster - SC 2012

Dataflow patterns

Understanding the MTC application | /O
Data flow patterns

A quantitative study — in progress

3 3
\\\ \\ : //, \\\ \\ : //,
SN | s SN | s
N \ e N\ \ 7
N \l 7 N \l Ve
\\\l // \\\l //
\’_f/ \ff/
Gather Reduce
. L]
| ///: \\
| // / \
| s | S
S AO- o seoole
Pipeline Scatter Multicast

Data Data
O Job Data Generation - Transfer

Design
—

o Persistent file system Collective /O -- MTAGS 08

>
Global FS

Collector

Distributor

Options

Intermediate data caching

Questions to answer:
Data-aware scheduling enabled or not?
POSIX compatible or not?
Stripe based or file based?
Dataflow pattern optimized transfer or one size fits all?

Dataflow pattern identification by users, compiler, or system?

Design -- MosaStore

The MosaStore approach

Data-aware scheduling enabled — by providing the engine the file
location

POSIX compatible — file location encoded in POSIX extra file descriptor
Stripe based

Dataflow pattern specific optimization — block placement schemes for
various patterns

User pass in the hints in the parallel scripting language.

Design -- MosaStore

1 The MosaStore approach

Workflow

Runtime
Engine

Storage hints
(e.g., location
Information)

Application hints
(e.g., indicating access patterns)

Compute Nodes

Local |
storage storage storage) |

Workflow-aware storage (shared) |

— . e —
_____—____—_—_

[Backend file system (e.g., GPFS, NFS]

Results -- MosaStore
—

1 The MosaStore approach
o1 Tests run on a cluster of 20 nodes, with NFS as persistent file system.

Input files Input files
(F1 & X) (F2 & X)

Output Output
file file

-

800

600

Time (sec)
400

NFS MStore WASS
Storage Systems

Total application time on three
different systems ModFTDock workflow

Design -- AME/AMFS

The AME/AMFS approach

Data-aware scheduling enabled — by providing the engine the file
location

POSIX imcompatible — file location encoded in TCP message

File based

Dataflow pattern specific optimization — tree topology based data
movement at large scale

Runtime system detect the data flow pattern based on task information

Design -- AME/AMFS

The AME/AMFS approach

Swift Script Task List

foreach i in files{
temp]i] = produce(filesi]);
output[i] = consume(templi]);

TaskID Binary Input Output Rule
0 -b /bin/produce -i filesO -0 temp0 -a filesO tempO

} N-1 -b /bin/produce -i filesN -o tempN -a filesN tempN

N -b /bin/consume -i temp0 -o outputO -a tempO outputO

@i 2N-1 -b /bin/consume -i tempN -0 outputN -a tempN outputN
Login Node
[AME Submitter [

File List @' @
FileID Filename State @

0 filesO Shared
es are / Compute Node 6 / Compute Node \\

AME Worker J

N-1 filesN Shared
N tempO Invalid [

AME Dispatcher

2N1 tempN Invalid
2N outputO0 Invalid

|
3N-1 outputN InvaIidV ———————————————— y

Design -- AME/AMFS

The AME/AMFS approach

tempO = taskO(fileO) outputO = task1(temp0) Files are mapped to the Meta
l | Servers by a hash function.
/AME Dispatcher O\ /AME Dispatcher I\ hashvalue = hash(filename)

ServerlD = hashvalue % count
fileO exists tempO doesn’t exist

dispatch taskO

put task1 in queue
dispatch task]

\ task1 returns /

taskO returns

\ update tempO /

/AMFS Meta Server M\ [AMFS Meta Server N}

query tempO
register Dis | for temp O

update tempO

\ notify Dispatcher | /

Design -- AME/AMFS

The AME/AMFS approach

The dispatcher has the information to detect the data flow pattern at
runtime.

Speedup data movement at large scale (e.g. Sync Gather and Async

Gather)
N: Number of nodes

S: Total bytes transferred

g/% M: Number of files

o a: latency overhead

@ b: bandwidth overhead per byte
@/ % % (+) c: overhead per file

A SyncGather:T=(|ngN)*a+N]_[1

N-1
N

S b (M - 1)*c

AsyncGather . T =(N-1)*a+ *S*b+(M-1D*c

Design -- AME/AMFS

The AME/AMFS approach

But, how to detect the patterns when the information is distributed across
dispatchers?

Please come to my talk: “Design and Analysis of Data Management in
Scalable Parallel Scripting”, Thursday, Nov 15™, 1:30PM - 2:00PM,
255-EF

Results -- AME/AMFS

Montage

Base Case: Staging, runs in 45% of the time as the MPI implementation

Four techniques tested:
Data cache
Data aware scheduling
Collective gather

Asynchronous gather

Test setup

a 6x6 degree mosaic of

the 2MASS data set with

Galaxy m101 as the center

on 512 compute nodes

-
-

~
[] _-" []
-
-

—_—

\

File input
File output

---» Task production

(P) P

Back Back
ground ground

-
-

-
-
- -

i é@ ‘\

mBac
groung

=

[N
_--
-
-

MONTAGE STAGE TASKS, INPUTS, OUTPUTS, INPUT AND OUTPUT SIZE

Stage # Tasks # In # Out In (MB) Out (MB)
mProject 1319 1319 2638 2800 5500
miImgthl 1 1319 1 2800 0.81
mDiffFit 3883 1766 3883 31000 3900
mConcatFit 1 3883 1 3900 0.32
mBackground 1297 1297 1297 5200 3700

Results -- AME/AMFS

1 Montage
o Those bars that are less than 1 show improvements.

01 GPFS base case refers to Staging input/output data from /to GPFS

16

B mProject M mimgtbl = mDiffFit W mConcatFit B mBackground

4 N

Reduce the execution

o

i

time of those stages
by 83.2%
\

—

=]

=

=
LA

0.25 A

Ratio (comparing to GPFS base case)

[
=
ol
L

CACHE AWARE COGATHER ASGATHER
Techniques

Results -- AME/AMFS

1 BLAST

database

BLAST STAGE TASKS, INPUTS, OUTPUTS, AND INPUT AND OUTPUT SIZE

v Stage # Tasks # In # Out In (MB) Out (MB)
@ fastasplitn | 1 1 N 4039 4039
formatdb N N 3N 4039 4400
; blastp N*M N+M N*M T3*N*M 24*N*M
rag1 frag2 fragN
merge M N+*M M 24*N*M 4.8*M
v v v
db1 db2 dbN
@ query1 M query2 M queryM
\ [B I] \
blast blast blast blast blast .. E@
v v v v v v
db1 db1 db1 dbN dbN dbN
q1 q2 qM q1 q2 M

result

qt

result
q2

result
qM

Results -- AME/AMFS

=
1 mtcBLAST vs. mpiBLAST

B mpiblast [mtcblast | improvement

800 8%
w
=
c ¥
S 600 %
a =
(1]
- @
= =
= 400 4% 9
= o
[} .
(T =
: -
¥ 200 2%
=
-

0 0%

2956 1024 4096 16384 32768

Scale (Number of Cores)

Comparison of the two approaches

Locality Support

POSIX Compatibility

Stripe /file based

Data movement at large scale

Dataflow pattern detection

Yes, by providing the engine
the locality info

Yes, by using the extra field
of POSIX file descriptor

Stripe based

Block based data placement

User inputs/Compiler
detection

Yes, by providing the engine
the locality info

No, custom API

File Based

Tree topology parallel data
movement

Runtime detection

Conclusion

The data management system of parallel scripting
should consider data locality.

Data movement optimization for dataflow patterns
improves the overall application performance.

Runtime system has sufficient information to detect
dataflow patterns.

Technical solutions should consider scalability.

Future work

Finish the quantitative MTC applications | /O profile
study.

Evaluate the existing ideas and make design
decision.

Integrate the data management system with Swift/T

) as the parallel scripting language.

Drive more applications through Swift/T with data
management.

http://www.mcs.anl.gov/exm/local/guides/swift.html
http://www.mcs.anl.gov/exm/local/guides/swift.html

Acknowledgements

ExM Team:

Michael Wilde

Daniel S. Katz

Matei Ripeanu

lan Foster

Justin Wozniak

Tim Armstrong

Emalayan Vairavanathan

Samer Al-Kiswany

Parallel BLAST:
David Mathog, Caltech

This work was supported in part by the U.S. Department of Energy under the ASCR X-Stack
program (contract DESCO005380) and contract DE-AC02-06CH11357.

Questions?

Try Swift/T:

My SC12 talk:

“Design and Analysis of Data Management in Scalable
Parallel Scripting”, 1:30PM - 2:00PM, Thursday, Nov
15% 255-EF

Speaker contact:

http://www.mcs.anl.gov/exm/local/guides/swift.html
mailto:zhaozhang@uchicago.edu
http://www.ci.uchicago.edu/~zzhang

