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Problem Statement 

 Definition: 

 MTC applications are those applications in which 

existing sequential or parallel programs are linked 

by files output by one program being used as input 

by others. 

 

 



Problem Statement 

 Application Example: Montage 
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Problem Statement 

 How to run the Montage computation on large scale computers? 

 Solution 1: Rewrite the application as monolithic program using a parallel 

library or language such as MPI or PGAS. Communications that originally 

occurred via filesystem operations then occur via messaging. 

 

 Pros: 

 MPI is widely deployed 

 Cons: 

 Labor intensive 

 Code maintenance 

 Fault intolerance 

 

 

 

 



Problem Statement 

 How to run the Montage computation on large scale computers? 

 Solution 2: build the program with parallel scripting, e.g. Swift/T 

(http://sites.google.com/site/exmcomputing/).  

 The user represents the task graph by a script, which is compiled to tasks when 

running. Files are used for intertask communication, and are stored on shared 

filesystem for further access. 

 Pros: 

 Doesn’t modify the original application 

 Updating the application version is seamless unless the program’s interface 

changes substantially.  

 Can handle faults 

 Cons: 

 Relatively high latency when accessing files compared to in-memory data 

 The volume and frequency of filesystem operations generated by a large scripting 

computation are often overwhelming. 

 

https://sites.google.com/site/exmcomputing/


Problem Statement 

 Is “Mapping computation to computing resources” a sufficiently 

efficient way to enable MTC application on large scale computers? 

Execution time distribution of Montage on 512 BG/P CPU cores 



Problem Statement 

 Problems: 

 Persistent file system I/O has a large amount of 

metadata traffic and I/O traffic. 

 There is unnecessary intermediate I/O traffic. 

 Some of the idle time is due to data flow patterns. 

 



Approaches 

 To understand the I/O behavior of MTC applications, we can study across 

many scientific applications. 

 To speed up the persistent file system I/O, we can use a collective scheme 

that maximize the I/O performance. 

 To eliminate the unnecessary I/O traffic, we can use an intermediate file 

system by aggregating the local storage of the compute nodes, and cache 

intermediate data on it. 

 To speed up the intermediate data movement, we can build a group of data 

transfer schemes to accommodate data flow patterns 



Publications 

 Understanding the MTC application I/O 

 “Many-task computing and blue waters”, DS Katz, TG Armstrong, Z Zhang, M Wilde, 

JM Wozniak - arXiv preprint arXiv:1202.3943, 2012 

 Persistent file system Collective I/O 

 “Design and evaluation of a collective IO model for loosely coupled petascale 

programming” Z Zhang, A Espinosa, K Iskra, I Raicu, I Foster, M Wilde - MTAGS 2008 

 Intermediate data caching 

 “A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-

Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012 

 “Design and Analysis of Data Management in Scalable Parallel Scripting”,  

Z Zhang, DS Katz, JM Wozniak, A Espinosa, I Foster – SC 2012 

 Speedup data movement in data flow patterns 

 “A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-

Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012 

 “Design and Analysis of Data Management in Scalable Parallel Scripting”,  

Z Zhang, DS Katz, JM Wozniak, A Espinosa, I Foster - SC 2012 

 



Dataflow patterns 

 Understanding the MTC application I/O  

 Data flow patterns 

 A quantitative study – in progress 



Design 

 Persistent file system Collective I/O  -- MTAGS ’08 

 Questions to answer: 

 How to speed up the input performance 

 How to speed up the output performance 

 Where to place the intermediate data?  

 Shared or isolated storage with computation? 

 



Options 

 Intermediate data caching 

 Questions to answer: 

 Data-aware scheduling enabled or not? 

 POSIX compatible or not? 

 Stripe based or file based? 

 Dataflow pattern optimized transfer or one size fits all? 

 Dataflow pattern identification by users, compiler, or system? 



Design -- MosaStore 

 The MosaStore approach 

 Data-aware scheduling enabled – by providing the engine the file 

location 

 POSIX compatible – file location encoded in POSIX extra file descriptor 

 Stripe based 

 Dataflow pattern specific optimization – block placement schemes for 

various patterns 

 User pass in the hints in the parallel scripting language. 

 

 

 

 



Design -- MosaStore 

 The MosaStore approach 
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Results -- MosaStore 

 The MosaStore approach 

 Tests run on a cluster of 20 nodes, with NFS as persistent file system. 

15 

ModFTDock workflow 

Total application time on three 

different systems 



Design -- AME/AMFS 

 The AME/AMFS approach 

 Data-aware scheduling enabled – by providing the engine the file 

location 

 POSIX imcompatible – file location encoded in TCP message 

 File based 

 Dataflow pattern specific optimization – tree topology based data 

movement at large scale 

 Runtime system detect the data flow pattern based on task information 

 

 



Design -- AME/AMFS 

 The AME/AMFS approach 



Design -- AME/AMFS 

 The AME/AMFS approach 

AME Dispatcher 0 

 

 

 

AME Dispatcher I 

 

 

 

temp0 = task0(file0) output0 = task1(temp0) 

AMFS Meta Server M 

 

 

AMFS Meta Server N 

 

 

file0 exists 

dispatch task0 

task0 returns 

update temp0 

temp0 doesn’t exist 

put task1 in queue 

query temp0 

register Dis I for temp 0 

update temp0 

notify Dispatcher I 

dispatch task1 

task1 returns 

Files are mapped to the Meta 

Servers by a hash function. 

hashvalue = hash(filename) 

ServerID = hashvalue % count 



Design -- AME/AMFS 

 The AME/AMFS approach 

 The dispatcher has the information to detect the data flow pattern at 

runtime.  

 Speedup data movement at large scale (e.g. Sync Gather and Async 

Gather) 

 

 

 

 

 

SyncGather :T = (log2 N )*a+
N -1

N
*S *b+ (M -1)*c

AsyncGather :T = (N -1)*a+
N -1

N
*S *b+ (M -1)*c

N: Number of nodes 

S: Total bytes transferred  

M: Number of files 

a: latency overhead 

b: bandwidth overhead per byte 

c: overhead per file 

 



Design -- AME/AMFS 

 The AME/AMFS approach 

 But, how to detect the patterns when the information is distributed across 

dispatchers? 

 Please come to my talk: “Design and Analysis of Data Management in 

Scalable Parallel Scripting”,  Thursday, Nov 15th, 1:30PM - 2:00PM, 

255-EF 

 



Results -- AME/AMFS 

 Montage 

 Base Case: Staging, runs in 45% of the time as the MPI implementation 

 Four techniques tested: 

 Data cache 

 Data aware scheduling 

 Collective gather 

 Asynchronous gather 

 Test setup 

 a 6x6 degree mosaic of  

    the 2MASS data set with  

    Galaxy m101 as the center 

 on 512 compute nodes 
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Results -- AME/AMFS 

 Montage 

 Those bars that are less than 1 show improvements. 

 GPFS base case refers to Staging input/output data from/to GPFS 

Reduce the execution 

time of those stages 

by 83.2% 



Results -- AME/AMFS 

 BLAST 

 



Results -- AME/AMFS 

 mtcBLAST vs. mpiBLAST 



Comparison of the two approaches 

Design Choice MosaStore AMFS 

Locality Support Yes, by providing the engine 

the locality info 

Yes, by providing the engine 

the locality info 

 

POSIX Compatibility Yes, by using the extra field 

of POSIX file descriptor 

No, custom API 

Stripe/file based Stripe based File Based 

Data movement at large scale Block based data placement Tree topology parallel data 

movement 

Dataflow pattern detection User inputs/Compiler 

detection 

Runtime detection 



Conclusion 

 The data management system of parallel scripting 

should consider data locality. 

 Data movement optimization for dataflow patterns 

improves the overall application performance. 

 Runtime system has sufficient information to detect 

dataflow patterns. 

 Technical solutions should consider scalability. 

 



Future work 

 Finish the quantitative MTC applications I/O profile 

study.  

 Evaluate the existing ideas and make design 

decision. 

 Integrate the data management system with Swift/T 

http://www.mcs.anl.gov/exm/local/guides/swift.ht

ml) as the parallel scripting language. 

 Drive more applications through Swift/T with data 

management. 

http://www.mcs.anl.gov/exm/local/guides/swift.html
http://www.mcs.anl.gov/exm/local/guides/swift.html
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Questions? 

 Try Swift/T: 

 http://www.mcs.anl.gov/exm/local/guides/swift.html 

 My SC12 talk: 

 “Design and Analysis of Data Management in Scalable 

Parallel Scripting”, 1:30PM - 2:00PM, Thursday, Nov 

15th, 255-EF 

 

 Speaker contact: 

 zhaozhang@uchicago.edu 

 http://www.ci.uchicago.edu/~zzhang 

http://www.mcs.anl.gov/exm/local/guides/swift.html
mailto:zhaozhang@uchicago.edu
http://www.ci.uchicago.edu/~zzhang

