
Data Management in Parallel Scripting

Zhao Zhang
11/11/2012

Problem Statement

 Definition:

 MTC applications are those applications in which

existing sequential or parallel programs are linked

by files output by one program being used as input

by others.

Problem Statement

 Application Example: Montage

mProject mProject mProject

mImgtbl

mDiffFit

mOverla
ps

...

... ...

G

mProject mProject mProject

mImgtbl

mDiffFit mDiffFit mDiffFit

mOver
laps

mConcat
Fit

mBg
Model

mBack
ground

mBack
ground

mBack
ground

mAdd

P

G

G

P

P P P

File input
File output

Task production

Problem Statement

 How to run the Montage computation on large scale computers?

 Solution 1: Rewrite the application as monolithic program using a parallel

library or language such as MPI or PGAS. Communications that originally

occurred via filesystem operations then occur via messaging.

 Pros:

 MPI is widely deployed

 Cons:

 Labor intensive

 Code maintenance

 Fault intolerance

Problem Statement

 How to run the Montage computation on large scale computers?

 Solution 2: build the program with parallel scripting, e.g. Swift/T

(http://sites.google.com/site/exmcomputing/).

 The user represents the task graph by a script, which is compiled to tasks when

running. Files are used for intertask communication, and are stored on shared

filesystem for further access.

 Pros:

 Doesn’t modify the original application

 Updating the application version is seamless unless the program’s interface

changes substantially.

 Can handle faults

 Cons:

 Relatively high latency when accessing files compared to in-memory data

 The volume and frequency of filesystem operations generated by a large scripting

computation are often overwhelming.

https://sites.google.com/site/exmcomputing/

Problem Statement

 Is “Mapping computation to computing resources” a sufficiently

efficient way to enable MTC application on large scale computers?

Execution time distribution of Montage on 512 BG/P CPU cores

Problem Statement

 Problems:

 Persistent file system I/O has a large amount of

metadata traffic and I/O traffic.

 There is unnecessary intermediate I/O traffic.

 Some of the idle time is due to data flow patterns.

Approaches

 To understand the I/O behavior of MTC applications, we can study across

many scientific applications.

 To speed up the persistent file system I/O, we can use a collective scheme

that maximize the I/O performance.

 To eliminate the unnecessary I/O traffic, we can use an intermediate file

system by aggregating the local storage of the compute nodes, and cache

intermediate data on it.

 To speed up the intermediate data movement, we can build a group of data

transfer schemes to accommodate data flow patterns

Publications

 Understanding the MTC application I/O

 “Many-task computing and blue waters”, DS Katz, TG Armstrong, Z Zhang, M Wilde,

JM Wozniak - arXiv preprint arXiv:1202.3943, 2012

 Persistent file system Collective I/O

 “Design and evaluation of a collective IO model for loosely coupled petascale

programming” Z Zhang, A Espinosa, K Iskra, I Raicu, I Foster, M Wilde - MTAGS 2008

 Intermediate data caching

 “A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-

Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012

 “Design and Analysis of Data Management in Scalable Parallel Scripting”,

Z Zhang, DS Katz, JM Wozniak, A Espinosa, I Foster – SC 2012

 Speedup data movement in data flow patterns

 “A Workflow-Aware Storage System: An Opportunity Study”, E Vairavanathan, S Al-

Kiswany, L Costa, Z Zhang, DS Katz, M Wilde, M Ripeanu - CCGrid 2012

 “Design and Analysis of Data Management in Scalable Parallel Scripting”,

Z Zhang, DS Katz, JM Wozniak, A Espinosa, I Foster - SC 2012

Dataflow patterns

 Understanding the MTC application I/O

 Data flow patterns

 A quantitative study – in progress

Design

 Persistent file system Collective I/O -- MTAGS ’08

 Questions to answer:

 How to speed up the input performance

 How to speed up the output performance

 Where to place the intermediate data?

 Shared or isolated storage with computation?

Options

 Intermediate data caching

 Questions to answer:

 Data-aware scheduling enabled or not?

 POSIX compatible or not?

 Stripe based or file based?

 Dataflow pattern optimized transfer or one size fits all?

 Dataflow pattern identification by users, compiler, or system?

Design -- MosaStore

 The MosaStore approach

 Data-aware scheduling enabled – by providing the engine the file

location

 POSIX compatible – file location encoded in POSIX extra file descriptor

 Stripe based

 Dataflow pattern specific optimization – block placement schemes for

various patterns

 User pass in the hints in the parallel scripting language.

Design -- MosaStore

 The MosaStore approach

14
Backend file system (e.g., GPFS, NFS)

App. task

Local

storage

App. task

Local

storage

App. task

Local

storage

Workflow-aware storage (shared)

Compute Nodes

…

Stage In/Out

Storage hints

(e.g., location

information)

Application hints

(e.g., indicating access patterns)

Workflow

Runtime

Engine

Results -- MosaStore

 The MosaStore approach

 Tests run on a cluster of 20 nodes, with NFS as persistent file system.

15

ModFTDock workflow

Total application time on three

different systems

Design -- AME/AMFS

 The AME/AMFS approach

 Data-aware scheduling enabled – by providing the engine the file

location

 POSIX imcompatible – file location encoded in TCP message

 File based

 Dataflow pattern specific optimization – tree topology based data

movement at large scale

 Runtime system detect the data flow pattern based on task information

Design -- AME/AMFS

 The AME/AMFS approach

Design -- AME/AMFS

 The AME/AMFS approach

AME Dispatcher 0

AME Dispatcher I

temp0 = task0(file0) output0 = task1(temp0)

AMFS Meta Server M

AMFS Meta Server N

file0 exists

dispatch task0

task0 returns

update temp0

temp0 doesn’t exist

put task1 in queue

query temp0

register Dis I for temp 0

update temp0

notify Dispatcher I

dispatch task1

task1 returns

Files are mapped to the Meta

Servers by a hash function.

hashvalue = hash(filename)

ServerID = hashvalue % count

Design -- AME/AMFS

 The AME/AMFS approach

 The dispatcher has the information to detect the data flow pattern at

runtime.

 Speedup data movement at large scale (e.g. Sync Gather and Async

Gather)

SyncGather :T = (log2 N)*a+
N -1

N
*S *b+ (M -1)*c

AsyncGather :T = (N -1)*a+
N -1

N
*S *b+ (M -1)*c

N: Number of nodes

S: Total bytes transferred

M: Number of files

a: latency overhead

b: bandwidth overhead per byte

c: overhead per file

Design -- AME/AMFS

 The AME/AMFS approach

 But, how to detect the patterns when the information is distributed across

dispatchers?

 Please come to my talk: “Design and Analysis of Data Management in

Scalable Parallel Scripting”, Thursday, Nov 15th, 1:30PM - 2:00PM,

255-EF

Results -- AME/AMFS

 Montage

 Base Case: Staging, runs in 45% of the time as the MPI implementation

 Four techniques tested:

 Data cache

 Data aware scheduling

 Collective gather

 Asynchronous gather

 Test setup

 a 6x6 degree mosaic of

 the 2MASS data set with

 Galaxy m101 as the center

 on 512 compute nodes

mProject mProject mProject

mImgtbl

mDiffFit

mOverla
ps

...

... ...

G

mProject mProject mProject

mImgtbl

mDiffFit mDiffFit mDiffFit

mOver
laps

mConcat
Fit

mBg
Model

mBack
ground

mBack
ground

mBack
ground

mAdd

P

G

G

P

P P P

File input
File output

Task production

Results -- AME/AMFS

 Montage

 Those bars that are less than 1 show improvements.

 GPFS base case refers to Staging input/output data from/to GPFS

Reduce the execution

time of those stages

by 83.2%

Results -- AME/AMFS

 BLAST

Results -- AME/AMFS

 mtcBLAST vs. mpiBLAST

Comparison of the two approaches

Design Choice MosaStore AMFS

Locality Support Yes, by providing the engine

the locality info

Yes, by providing the engine

the locality info

POSIX Compatibility Yes, by using the extra field

of POSIX file descriptor

No, custom API

Stripe/file based Stripe based File Based

Data movement at large scale Block based data placement Tree topology parallel data

movement

Dataflow pattern detection User inputs/Compiler

detection

Runtime detection

Conclusion

 The data management system of parallel scripting

should consider data locality.

 Data movement optimization for dataflow patterns

improves the overall application performance.

 Runtime system has sufficient information to detect

dataflow patterns.

 Technical solutions should consider scalability.

Future work

 Finish the quantitative MTC applications I/O profile

study.

 Evaluate the existing ideas and make design

decision.

 Integrate the data management system with Swift/T

http://www.mcs.anl.gov/exm/local/guides/swift.ht

ml) as the parallel scripting language.

 Drive more applications through Swift/T with data

management.

http://www.mcs.anl.gov/exm/local/guides/swift.html
http://www.mcs.anl.gov/exm/local/guides/swift.html

Acknowledgements

 ExM Team:

 Michael Wilde

 Daniel S. Katz

 Matei Ripeanu

 Ian Foster

 Justin Wozniak

 Tim Armstrong

 Emalayan Vairavanathan

 Samer Al-Kiswany

 Parallel BLAST:

 David Mathog, Caltech

This work was supported in part by the U.S. Department of Energy under the ASCR X-Stack

program (contract DESC0005380) and contract DE-AC02-06CH11357.

Questions?

 Try Swift/T:

 http://www.mcs.anl.gov/exm/local/guides/swift.html

 My SC12 talk:

 “Design and Analysis of Data Management in Scalable

Parallel Scripting”, 1:30PM - 2:00PM, Thursday, Nov

15th, 255-EF

 Speaker contact:

 zhaozhang@uchicago.edu

 http://www.ci.uchicago.edu/~zzhang

http://www.mcs.anl.gov/exm/local/guides/swift.html
mailto:zhaozhang@uchicago.edu
http://www.ci.uchicago.edu/~zzhang

