
HTCaaS: Leveraging Distributed Supercomputing
Infrastructures for Large-Scale Scientific Computing

Jik-Soo Kim, Seungwoo Rho, Seoyoung Kim, Sangwan Kim,
Seokkyoo Kim, and Soonwook Hwang

National Institute of Supercomputing and Networking
Korea Institute of Science and Technology Information

Daejeon, Republic of Korea
{jiksoo.kim,seungwoo0926,sssyyy77,sangwan,anemone,hwang}@kisti.re.kr

ABSTRACT
In this paper, we present the HTCaaS (High-Throughput
Computing as a Service) which aims to provide researchers
with ease of exploring large-scale and complex scientific prob-
lems by leveraging national supercomputing infrastructures
in Korea. HTCaaS allows users to efficiently submit a large
number of jobs at once by effectively managing and exploit-
ing of all available computing resources. HTCaaS exploits
a synthesis of well known techniques and its own intelligent
scheduling algorithm to effectively support multiple users
independently submitting large numbers of tasks to a col-
lection of geographically distributed computing resources.

Throughout our micro-benchmark and protein docking ex-
periments, we show that our HTCaaS can provide a single
efficient job management system that can support the most
challenging scientific applications.

Keywords
High-Throughput Computing, Many-Task Computing, HT-
CaaS, Multi-level Scheduling, Dynamic Fairnes

1. INTRODUCTION
Computing paradigms such as High-Throughput Com-

puting or Volunteer Computing [1] mainly target compute-
intensive, independent, and long-running applications con-
sisting of many loosely-coupled tasks. Middleware systems
such as Condor [11] or BOINC [1] have successfully achieved
a tremendous computing power by harnessing a large num-
ber of computing resources consisting of either clusters of
workstations or desktop machines over the Internet. How-
ever, recent emerging applications requiring millions or even
billions of tasks to be processed with relatively short per task
execution times have led the traditional HTC to expand into
Many-Task Computing (MTC) [8]. These applications from
a wide range of scientific domains (e.g., astronomy, physics,
pharmaceuticals, chemistry, etc.) often require a very large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MTAGS ’13 Denver, Colorado USA
Copyright 2013 ACM 0-12345-67-8/90/01 ...$15.00.

number of tasks (from tens of thousands to billions of tasks),
and have a large variance of task execution times (from hun-
dreds of milliseconds to hours). This makes the existing
middleware systems difficult to support challenging scien-
tific applications due to lack of enough resources support,
inefficiencies in task dispatching, unreliable and high-latency
interconnects.

Therefore, to effectively support complex and demanding
scientific applications consisting of many tasks, the goals of
middleware systems for HTC/MTC applications must in-
clude the following:

• Ease of Use: User overhead for handling a large amount
of jobs and computing resources should be minimized

• Efficient Task Dispatching: The overhead of task dis-
patching should be low enough to support a very large
number of tasks

• Adaptiveness: The system should be able to adjust ac-
quired resources according to changing load distribu-
tion due to heterogeneity in task execution times and
computing resource capabilities

• Fairness: The system should be able to ensure fair-
ness among multiple users submitting various numbers
of tasks independently in order to reduce per user re-
sponse time and improve the overall system through-
put

• Reliability: By employing job monitoring technique,
failed or suspended tasks (due to either job itself or
computing resource) should be automatically resub-
mitted and managed.

• Resource Integration: The system should be able to
effectively integrate as many computing resources as
possible.

In this paper, we present the HTCaaS (High-Throughput
Computing as a Service) which aims to provide researchers
with ease of exploring large-scale and complex HTC/MTC
problems by leveraging national PLSI Supercomputers [6]
in Korea. HTCaaS allows users to efficiently submit a large
number of jobs at once by effectively managing and exploit-
ing of all available computing resources. HTCaaS exploits
a synthesis of well known techniques and its own intelligent
scheduling algorithm to effectively support multiple users
with large numbers of tasks.

HTCaaS is currently running as a pilot service on top of
PLSI computing resources and supporting a number of sci-
entific applications from pharmaceutical domain and high-
energy physics. The main contribution of our work for the
research community is the evaluation of how different tech-
niques can be effectively integrated to provide a single effi-
cient job management system that can support challenging
scientific applications.

2. HTCAAS: HIGH-THROUGHPUT COM-
PUTING AS A SERVICE

In this section, we introduce architectural details of HT-
CaaS and technologies effectively integrated to provide a
single efficient job management system.

2.1 Architecture
Figure 1 shows the overall architecture of our HTCaaS

system. Account Manager manages user information and
provides integrated authentication and authorization mech-
anisms to access various computing infrastructures. User
Data Manager is responsible for managing user input and
output data (uploads & downloads) during the course of
job executions. Job Manager mostly performs job life-cycle
management, i.e., from the job submission to the comple-
tion. Job Manager maintains separate job queues per user,
receives a Meta-Job (written in JSDL [5]) which can be com-
posed of multiple tasks from a user, validates the Meta-Job,
automatically splits the Meta-Job into multiple tasks, and
controls the execution of each task. Monitoring Manager
periodically checks job executions and active agents by in-
teracting with DB Manager, and if needed it initiates failure
recovery mechanisms for agents (tasks).

Figure 1: HTCaaS System Architecture

Since users may want to submit a large number of jobs by
employing parameter sweeps or N-body calculations, HT-
CaaS introduces a concept of Meta-Job which specifies a
higher-level job description based on the OGF JSDL stan-
dard [5]. Therefore, users of HTCaaS are able to easily sub-
mit and execute hundreds of thousands of jobs at once which
can be simply expressed by a single JSDL script (Ease of
Use). For those who are not familiar with XML style of
scripting, we also provide an easy-to-use GUI tool which
can automatically generate a JSDL script based on user’s
input so that it can be submitted into our system. Once
a Meta-Job is submitted, HTCaaS automatically splits it

into many tasks (by the Job Splitter component of the Job
Manager in Figure 1) and inserts them into the job queue
(implemented in ActiveMQ). While a Meta-Job (consisting
of multiple tasks) is running, the Monitoring Manager pe-
riodically checks the status of agents and tasks. If some of
agents or tasks fail, the Monitoring Manager informs the
Agent Manager (or the Job Manager) to resubmit the failed
agents (tasks) and manage them (addressing Reliability).

Once jobs are submitted into our HTCaaS, agents (imple-
mented in Java) are dispatched from the Agent Manager and
process tasks in geographically distributed supercomputing
resources. HTCaaS employs agent-based multi-level schedul-
ing & streamlined task dispatching (similar to the Falkon [9])
where existing batch schedulers (e.g., LoadLeveler in PLSI)
are utilized for submitting agents and each agent bypasses
the batch scheduler and directly contacts the job queue.
Once deployed, each agent actively pulls the tasks, pro-
cess them and record the statistics independently through-
out the DB Manager which can be utilized for monitoring of
tasks and agents by the Monitoring Manager. By employing
agent-based multi-level scheduling mechanism consistently
across heterogeneous computing resources, HTCaaS can ef-
fectively create a dedicated resource pool on the fly for fast
dispatching of many tasks to circumvent the performance
bottleneck of traditional batch schedulers (Efficient Task
Dispatching, Resource Integration).

HTCaaS maintains separate job queues and agents per
user and this queue management policy aims to achieve
two practical goals: reducing complexities of accounting and
scheduling. Since computing resources in PLSI are shared
among multiple users, it is important to track and meter the
usage of these resources per user. This is because like other
supercomputing infrastructure management systems (such
as XSEDE [15] in U.S. or PRACE [7] in Europe), PLSI also
provides allotment of computing time or data space based
on the certified user account. Also, by maintaining separate
job queues and agents per user, we can simplify the problem
of scheduling computing resources among multiple users in
the system. By carefully calibrating the number of agents
per user, we can address the problem of fair resource sharing
among multiple users (as described in Section 2.2). There-
fore, each agent actively pulls the tasks from its dedicated
job queue which corresponds to a specific user, and if there
are no more tasks to be processed, it automatically releases
the acquired resources and exits.

2.2 User-level Scheduling and Dynamic Fair-
ness

As we mentioned in Section 2.1, HTCaaS maintains sepa-
rate job queues and agents per user which effectively formu-
lates the problem of ensuring fairness among multiple users
as an agent-dispatching problem which decides and allocates
the number of agents per user. However, initial allocation of
agents to a user will not be sufficient since the overall load
distribution can change due to the heterogeneity in task ex-
ecution times and resource capabilities. Therefore, we need
a mechanism that can consistently monitor the overall load
distribution changes and effectively adapt to the changing
load. Since the number of acquired resources are exactly
matching with the number of agents per user in the HTCaaS,
we implement our dynamic load balancing mechanisms by
adjusting the number of agents allocated to a user.

We address Fairness and Adaptiveness by implementing

the dynamic fair resource sharing algorithm which divides
all available computing resources fairly across all demanding
users in the system (when the system is heavily loaded) and
exploits dynamic adjustment of acquired resources as free
computing resources become available (as the overall system
becomes lightly loaded). For this purpose, we use a resource
allotment function, RA(U) (as seen from Equation 1), where
U represents a user in the current system.

RA(U) = min

NumTasks(U),

AvailableCoresP
p∈DU Weight(p)

∗ Weight(U)

!
(1)

In Equation 1, NumTasks(U) is the length of the job
queue assigned to the user U and initially it is same as the
number of tasks submitted by the user U. AvailableCores
is the number of computing resources that can be acquired
by the HTCaaS (including free CPUs and already assigned
ones) and we assume a one-to-one mapping between an agent
and a CPU core in the system. DU is a set of demanding
users and a demanding user is defined as a user who has
more tasks to be processed in his queue than the number
of agents allocated to him due to lack of available comput-
ing resources. Weight(p) represents the weight of a user p
which can consider many different factors such as the num-
ber of tasks submitted by the user p, task running time,
priority, etc. In our current implementation, we consis-
tently set this weight function for all users as one (i.e.,
Weight(p) = 1) so that

P
p∈DU Weight(p) becomes the

number of demanding users in the system. This implies
that our current HTCaaS system divides the entire avail-
able computing resources equally across all demanding users.
However, we can easily apply various factors such as user pri-
ority, expected task execution times, system administrator’s
policy as inputs to the weight function which can realize a
form of weighted fairness.

Note that in Equation 1, AvailableCores and the set
DU can change over time as a new demanding user arrives
at the system or existing demanding users become satis-
fied. A demanding user U becomes satisfied if and only if
NumTasks(U) becomes 0 which means that she is already
allocated enough number of agents to process all of her tasks.
If a demanding user U becomes satisfied, he is no longer
counted as a demanding user which results in the increase
of AvailableCoresP

p∈DU Weight(p)
. Therefore, remaining demanding users

in the system can benefit from newly available computing re-
sources. HTCaaS keeps monitoring overall system load and
sizes of job queues and adjusts them if needed according to
the resource allotment function.

For example, suppose there are total 100 CPU cores avail-
able in the system and, at time t0, all of them are free.
At time t1, user A arrives at the system and submits 200
tasks which is larger than the total amount of computing
resources. According to the Equation 1, RA(A) becomes
100 since there is only one demanding user in the system
so that A is allocated 100 agents (CPU cores). At time
t2, user B arrives at the system and submits total 50 tasks
and user A’s tasks are still being processed. Now, R(A) be-
comes 50 and R(B) becomes 50. Because R(A) has changed
from 100 down to 50 due to the arrival of a new demand-
ing user B, user A should release 50 agents to ensure the
fairness. The way of realizing this mechanism is that rather
than preempting current running tasks, agents will be ex-

pired after finishing the processing of current running tasks.
This is because preempting running tasks requires complex
mechanisms for state storage and resuming the task. Let’s
assume that user A’s 100 agents were processing the first 100
tasks of user A at the time of t2, 50 agents of user A will
exit after processing the current tasks which result in total
100 tasks are already completed at the time of releasement.
Then, user B acquires all of freely available 50 computing
resources and becomes the satisfied user (# of demanding
users decreases into 1). Now, let’s add one more user in the
system. User C arrives at the system at time t3 and submits
20 tasks. Currently the number of demanding users is two
(user A and user C) so that R(A) becomes 50 (user A still
has 50 tasks to be processed) and R(C) becomes 20. There-
fore, until the user C acquires 20 agents (from computing
resources released as the overall processing of user B’s tasks
are completed), user A cannot claim more than currently
assigned 50 agents. If tasks of user B are completed then,
user C will be assigned 20 agents (now user C becomes a
satisfied user) and remaining 30 agents (CPU cores) can be
acquired by user A (if needed).

Therefore, HTCaaS can effectively ensure fairness among
multiple users submitting varying numbers of tasks to a col-
lection of computing resources and dynamically adjust the
fairness according to the load changes.

3. EVALUATION
In this section, we present experimental results from run-

ning our HTCaaS on top of PLSI Supercomputers based on
micro-benchmark and a real application from the pharma-
ceutical domain.

3.1 PLSI: Distributed Supercomputing Infras-
tructures in Korea

PLSI [6] stands for “Partnership & Leadership for the na-
tionwide Supercomputing Infrastructure” and its main ob-
jective is to provide researchers with an integrated view of
geographically distributed supercomputing infrastructures
to solve complex and demanding scientific problems. PLSI
is consisting of 10 supercomputing centers having 18 super-
computers connected via a dedicated 1Gbps network result-
ing in total 100TFLops of computing power (1,115 nodes
with 8,508 CPU cores).

ORG SYSTEM PROCESSOR CORES OS

KIAS helix (x86) AMD Opteron 2GHz 128 CentOS 6.2

KIAS gene (x86) AMD Opteron 2GHz 128 CentOS 6.2

KOBIC kobic (SUN) AMD Opteron 2.1GHz 184 CentOS 5.4

KISTI glory (SUN) AMD Opteron 1.8GHz 514 CentOS 5.4

Table 1: PLSI Computing Resources leveraged by HTCaaS

PLSI provides a common software stack for accounting,
monitoring, global scheduling (based on LoadLeveler) and a
global shared storage system (based on GPFS [3]). Users
of PLSI can utilize the LoadLeveler as a job submission
system and exploit a total 400TB of global home/scratch
directories mounted at every computing node as a shared
storage system for input/output data and executables. The
LoadLeveler scheduling system in the PLSI is configured
as a multi-cluster environment consisting of two or more
LoadLeveler clusters, grouped together through network con-
nections that allow the clusters to share resources. Users of

(a) Makespan (b) Efficiency (c) Job Completion Rate

Figure 2: Micro-Benchmark Performance Results (Sleep 10)

(a) Makespan (b) Efficiency (c) Job Completion Rate

Figure 3: Micro-Benchmark Performance Results (Sleep 100)

PLSI can specify a list of multiple clusters in the job script
and then, LoadLeveler is to decide which cluster is the best
from the list of clusters, based on an administrator-defined
metric (i.e., CLUSTER_METRIC). However, this approach has
some drawbacks since even in the multi-cluster environment,
LoadLeveler assigns all steps of a multi-step job (which cor-
responds to our Meta-Job consisting of multiple tasks) to
the same cluster rather than intelligently partitioning overall
tasks across multiple clusters (lack of Resource Integration).

Table 1 shows the list of computing resources currently
connected with our HTCaaS system which consists of three
different organizations having four different clusters. For
now, HTCaaS is running as a pilot service on top of PLSI
computing resources, however, as our system develop into
a production-level service, we expect more computing re-
sources will be integrated into the HTCaaS.

3.2 Micro-Benchmark Experiments
In this section, we present experimental results from per-

forming micro-benchmark simulating a large number of short-
running tasks (sleep 10) and relatively long-running tasks
(sleep 100), however, both of tasks still fall inside the cat-
egory of MTC in terms of task execution times [9]. In this
experiments, we mainly used computing resources from the
glory cluster in KISTI (Table 1) and at the time of our ex-
periments, some other users were also participating in the
cluster so that HTCaaS could use up to around 300 cores in
the system.

HTCaaS exploits the LoadLeveler as a first-level sched-
uler so that our comparison models include the LoadLeveler
(labeled as LoadLeveler in the figures), HTCaaS with DB
Manager connections from agents to update the status of
tasks (HTCaaS(DB)), and HTCaaS without DB Manager
interactions (HTCaaS(No DB)). DB Manager interactions
play an important role in monitoring the progress of agents/tasks

and dealing with failure recoveries, however, as the number
of agents increases, the overhead of communicating with DB
Manager can be substantial. To see the limits of our HT-
CaaS DB Manager, we tested HTCaaS without DB Manager
connections and performance results were collected through-
out post analysis of agent log files.

Our metrics are Makespan (time to complete a bag of
tasks) and Efficiency. The metric Efficiency is calculated
as following Equation 2:

Efficiency(NT) =
NT∗PTE

NCU

Makespan(NT)
∗ 100 (2)

In Equation 2, NT means the number of tasks in the ex-
periment (in our case, from 250 to 4000), PTE is the per
task execution time (10 or 100 seconds), NCU denotes the
number of cores used to complete the bag of tasks. There-
fore, NT∗PTE

NCU
means the ideal performance to process NT

tasks with NCU computing resources without any dispatch-
ing overhead, i.e., perfect parallelism. Efficiency can show
how much each job scheduling system can approach to the
ideal parallelism with given number of tasks (with execution
times) and computing resources.

Figure 2 and 3 show the performance results of LoadLeveler,
HTCaaS(No DB) and HTCaaS(DB) in terms of makespan and
efficiency. Note that a certain number of tasks (from 250
to 4000) are submitted at once. HTCaaS can submit a bag
of tasks simultaneously by using the concept of the Meta-
Job and to rapidly acquire computing resources, multi-step
functionality of the LoadLeveler was exploited (first-level
scheduler specific optimization). As we can see from Fig-
ure 2a and 2b, HTCaaS (DB & No DB) clearly outperforms
the LoadLeveler in terms of makespan and efficiency as
the number of tasks increases. More specifically, when the
number of tasks becomes 4000, HTCaaS(No DB) achieves only
35% of the makespan compared to that of the LoadLeveler,

(a) Makespan in Single Cluster (b) Makespan in Multiple Clusters (c) Resource Utilization in Multiple Clus-
ters

Figure 4: Autodock Experimental Results

while HTCaaS(DB) gets the 57% of that. Interestingly, the ef-
ficiency of the HTCaaS are still being improved as we increase
the number of tasks submitted, while the LoadLeveler shows
that it already hit the maximum efficiency with given num-
ber of computing resources (about 300) when the number of
tasks becomes 500. As we increase the per task execution
time from 10s to 100s, all of three different job scheduling
mechanisms show competitive results, however, HTCaaS(No
DB) and HTCaaS(DB) still can outperform the LoadLeveler

especially when the number of tasks becomes large. This
means that for relatively long-running tasks, overheads of
task dispatching can be effectively countervailed.

Another interesting results from micro-benchmarks are
shown in Figure 2c and Figure 3c. As we increase the num-
ber of tasks from 250 to 4000, with high probability some
jobs are held during the course of task dispatching from the
LoadLeveler. This problem happens more often when the
per task execution time is shorter as we can see from Fig-
ure 2c. Once a task is held during the dispatching pro-
cess, the user should manually restart or cancel it to make
a progress (lack of Reliability). We attribute the potential
main reason of this problem to multiple simultaneous I/O
operations on the shared storage file system (GPFS as we
described in Section 3.1). When we were performing our
micro-benchmarks, we intentionally generated output files of
running tasks to the shared storage system mounted at every
computing node in the PLSI because this is a typical sce-
nario where many ordinary users are utilizing home/scratch
directories as storing their application executables and data.

HTCaaS can encounter similar problems while it is launch-
ing multiple agents through the LoadLeveler (due to either
the shared storage file system or the batch scheduler itself),
however, HTCaaS can automatically retry the submission
of failed agents and manage them (addressing Reliability).
Also, to circumvent the performance bottleneck of concur-
rent I/O operations on the shared storage file system, each
agent can leverage the local storage of the computing re-
source while it is processing the tasks (adopting some of
Hadoop [12]’s philosophy where computations occur always
close to the data). Since the User Data Manager can man-
age the overall input/output data staging, all of processed
data can be effectively merged into a single data set that
can be delivered to the user. Although it is difficult for us
to support a very large data set such as Hadoop is targeting
(terabytes or even petabytes with a very large block size)
by using this approach, HTCaaS can effectively leverage lo-
cal disks of geographically distributed computing resources
(such as PLSI nodes) to support data-intensive HTC/MTC

applications where typical size of a single input data is rel-
atively small (from hundreds of KBs to MBs) [1, 8].

3.3 Protein Docking Experiments
In this section, we present experimental results from mul-

tiple users submitting various numbers of tasks simulating
the protein docking throughout Autodock [2]. Autodock
is a suite of automated docking tools to predict how small
molecules (such as substrates or drug candidates) bind to a
receptor of known 3D structure (docking) [2]. In our case, we
use this Autodock tool to perform the docking of ligands to
a set of target proteins to discover new drugs for several seri-
ous diseases such as SARS or Malaria with our collaborators
from the School of Biological Sciences and Technology at the
Chonnam National University in Korea (more than 500,000
ligand docking simulations have been performed throughout
HTCaaS on PLSI).

In this experiment, we utilize all of computing resources
connected to the HTCaaS (as seen from Table 1) and com-
parison models include HTCaaS employing the dynamic fair
resource sharing algorithm presented in Section 2.2 (DF),
and a simple resource partitioning mechanism where the en-
tire available resources are equally divided to the users with-
out adjustment (Simple). We assume that total four differ-
ent users are sequentially arriving at our system and submit
various numbers of tasks (i.e., ligands, from 1000 down to
100 for the single cluster, and from 2000 down to 250 for
the multi-cluster) with an average inter-arrival time of 10
minutes (average running time of a single ligand is about
760 seconds). We also tested our HTCaaS schemes on two
different cluster environments: single cluster where only the
glory cluster was used for task processing and multi-cluster
where all of four different clusters (glory, kobic, gene and
helix) are utilized for protein docking experiments.

Figure 4 shows the performance results of DF and Sim-

ple on the single cluster (Figure 4a) and multi-cluster (Fig-
ure 4b) environments. At the time of our experiment for
the single cluster, the glory cluster had total 360 free CPU
cores. Simple divides these available free cores equally across
four different users (i.e., each user has 90 cores for the pro-
tein docking process) to achieve a strict fairness, while DF

dynamically adjusts the number of allocated cores to each
user to achieve the dynamic fairness. As we can see from
Figure 4a, DF outperforms Simple by effectively reducing the
makespans for users with a large number of ligands (1000 or
500) and showing competitive performance for the smaller
number of tasks (250 or 100).
DF can achieve even better performance compared to the

Simple (gets only 64.4% of total makespan) by seamlessly
integrating multiple clusters (as seen from Figure 4b). With
respect to the resource usage, DF can fully utilize available
computing resources as they become available, while Simple

inevitably wastes idle computing resources (as seen from Fig-
ure 4c). The (four) stairs in the Simple graph in Figure 4c
are showing that at each time, a new user arrives at the sys-
tem and submits a number of tasks to be processed. The gap
between Simple and DF graphs are indicating the resource
wastage during the course of experiments.

4. RELATED WORK
Middleware systems such as Falkon [4, 9] and MyClus-

ter [14] employ multi-level scheduling mechanisms to sup-
port a large number of jobs. The dispatcher in the Falkon ef-
ficiently dispatches tasks to the executors (throughout GRAM4)
on the computing resources which can be dynamically ac-
quired by the provisioner. Falkon also implements data dif-
fusion approach [4] by adding the data-aware scheduler in
the dispatcher component which enables each executor to
utilize the data cached in nearby neighbors. HTCaaS can
leverage the local storage file system in each computing node
during the course of computations. MyCluster creates per-
sonal clusters in user-space to support the submission and
management of thousands of compute-intensive serial jobs
to the resources on the TeraGrid by using the Condor or
SGE clusters. Similarly, Sobie et al. created a HTCondor
pool across distributed cloud computing systems for HTC
scientific applications [10]. However, they still rely on heavy-
weight schedulers to dispatch multiple tasks to the virtual
cluster (especially compared to the commercial version of
the LoadLeveler).

Although Falkon and MyCluster show similar approaches
with our HTCaaS system, neither of them can effectively
address Fairness and Resource Integration to support multi-
ple users submitting various numbers of tasks to a collection
of distributed computing resources. DIRAC [13] is another
type of multi-level scheduling system in the Grid Commu-
nity to provide a complete solution for exploiting distributed
computing resources of the LHCb experiment at CERN for
data production and analysis. However, similar to Falkon
or MyCluster, DIRAC cannot effectively leverage fairness
among multiple users who want to actively share the com-
mon resources.

5. CONCLUSIONS
By employing the concept of Meta-Job (with easy-to-use

client tools) and a fault-tolerant agent-based multi-level schedul-
ing mechanism, HTCaaS can reduce the overheads of users
from handling a large amount of jobs and computing re-
sources (addressing Ease of Use, Efficient Task Dispatching
and Reliability). Also, employing dynamic fair resource shar-
ing mechanism enables HTCaaS to effectively address Fair-
ness and Adaptiveness. To circumvent the performance bot-
tleneck of the shared storage system employed in the PLSI,
HTCaaS effectively leverages local disks of geographically
distributed computing resources to support data-intensive
HTC/MTC applications.

Our future work can include supporting more complex
workloads consisting of HTC and HPC tasks, improving the
scalability of HTCaaS, and applying job profiling technique
to realize the weighted form of fairness.

6. REFERENCES
[1] D. Anderson. BOINC: A System for Public-Resource

Computing and Storage. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid
Computing (GRID 2004), Nov. 2004.

[2] Autodock: a suite of automated docking tools.
Available at http://autodock.scripps.edu/.

[3] General Parallel File System: Efficient storage
management for big data applications. Available at
http://www-03.ibm.com/systems/software/gpfs/.

[4] I. F. Ioan Raicu, Yong Zhao and A. Szalay.
Accelerating Large-Scale Data Exploration through
Data Diffusion. In Proceedings of the 2008 ACM
International workshop on Data-aware distributed
computing (DADC’08), June 2008.

[5] Open Grid Forum Job Submission Description
Language. Available at
http://www.gridforum.org/documents/GFD.56.pdf.

[6] Partnership & Leadership for the nationwide
Supercomputing Infrastructure. Available at
http://www.plsi.or.kr/.

[7] PRACE: Partnership for Advanced Computing in
Europe. Available at http://www.prace-ri.eu/.

[8] I. Raicu, I. Foster, and Y. Zhao. Many-Task
Computing for Grids and Supercomputers. In
Proceedings of the Workshop on Many-Task
Computing on Grids and Supercomputers
(MTAGS’08), Nov. 2008.

[9] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman,
K. Iskra, and B. Clifford. Towards Loosely-Coupled
Programming on Petascale Systems. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing
(SC’08), Nov. 2008.

[10] R. Sobie, A. Agarwal, I. Gable, C. Leavett-Brown,
M. Paterson, R. Taylor, A. Charbonneau, R. Impey,
and W. Podiama. HTC Scientific Computing in a
Distributed Cloud Environment. In Proceedings of the
4th Workshop on Scientific Cloud Computing
(ScienceCloud) 2013, June 2013.

[11] D. Thain, T. Tannenbaum, and M. Livny. Distributed
computing in practice: the Condor experience.
Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[12] The Apache Hadoop project: open-source software for
reliable, scalable, distributed computing. Available at
http://hadoop.apache.org/.

[13] A. Tsaregorodtsev, M. Bargiotti, N. Brook, A. C.
Ramo, G. Castellani, P. Charpentier, C. Cioffi,
J. Closier, R. G. Diaz, G. Kuznetsov, Y. Y. Li,
R. Nandakumar, S. Paterson, R. Santinelli, A. C.
Smith, M. S. Miguelez, and S. G. Jimenez. DIRAC: a
community grid solution. Journal of Physics:
Conference Series, 119:062048, 2008.

[14] E. Walker, J. P. Gardner, V. Litvin, and E. L. Turner.
Creating Personal Adaptive Clusters for Managing
Scientific Jobs in a Distributed Computing
Environment. In Proceedings of the Challenges of
Large Applications in Distributed Environments
(CLADE’06), June 2006.

[15] XSEDE: Extreme Science and Engineering Discovery
Environment. Available at https://www.xsede.org/.

