
Application Skeletons: Encapsulating MTC Application
Task Computation and I/O

Zhao Zhang
Department of Computer Science

University of Chicago
zhaozhang@uchicago.edu

Daniel S. Katz
Computation Institute

University of Chicago & Argonne National
Laboratory

d.katz@ieee.org

ABSTRACT
Computer scientists who work on tools and systems meant to
support or enable a variety of distributed computing appli-
cations want to prove that the systems they design actually
help those applications. However, doing this by using the
actual applications can be difficult due to policy or techni-
cal issues when accessing and building the application and
necessary data sets. These issues led us to the idea of an
Application Skeleton – a simple yet powerful tool to build
synthetic applications that represent real applications, with
runtime, I/O, and intertask communication close to those of
the real applications. This allows computer scientists to fo-
cus on the system they are building; they can work with the
simpler Skeleton applications and be sure that their work
will also be applicable to the real applications. Skeletons
currently can create easy-to-access, easy-to-build, and easy-
to-run bag-of-task, map-reduce, and multi-stage workflow
applications. In this initial work, we show that a Skeleton
version of the Montage application has a runtime difference
of 2.6% in total on 64 processors on a BG/P supercomputer.
And six of eight stages have an error within 5%.

1. INTRODUCTION
Computer scientists who build tools and systems (pro-

gramming languages, runtime systems, file systems, work-
flow systems, etc.) to support distributed applications often
have to work on real scientific applications to prove the effec-
tiveness of the system. However, accessing and building the
real applications is time consuming or sometimes infeasible
due to one or more of the following reasons:

• Some applications (source) are privately accessible

• Some data is difficult to access

• Some applications use legacy code and are dependent
on out-of-date libraries

• Some applications are hard to understand because of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the knowledge gap between the computer scientists
and domain scientists

To address these issues, our goal is to build a tool that
let users quickly and easily produce a synthetic distributed
application that is executable in a distributed environment,
e.g. grids, clusters, and clouds. We want the synthetic appli-
cations to have close to identical runtime, I/O, and intertask
communication to the real applications. Also, we want the
synthetic applications to be executable with some well de-
ployed distributed computing middleware, e.g. Swift [14]
and Pegasus [2], as well as the ubiquitous Unix shell.

The challenge of this research is to provide an easy-to-use
programming (specification) model to express a Skeleton ap-
plication with an acceptable performance difference between
it and the real application it represents. Our Skeleton con-
cept uses a top-down approach to abstract the application:
an application is composed by a number of stages, and each
stage has a number of tasks. Users describe an application
by specifying the number of stages and the number of tasks,
input and output file and task mapping, task length, and
file size inside each stage. Our Skeleton tool lets users to
specify task lengths and file sizes as statistical distributions
or a polynomial functions of other parameters. For example,
input file size can be a normal distribution, task length can
be a linear function of input file size, and output size can be
a binomial function of task runtime.

The contributions of this work include:
• An application abstraction that gives users good ex-

pressiveness to capture the key performance elements
of applications.

• A versatile Skeleton implementation that is interopera-
ble with mainstream workflow frameworks and systems
(e.g., Shell, Pegasus and Swift).

The rest of the paper is organized as following: Section 2
presents a number of distributed applications. Section 3
introduces the Skeleton design and its programming (spec-
ification) model. In Section 4, we evaluate the runtime of
all stages of the Montage application against the Skeleton
version of the application. Section 5 discusses related work,
we conclude and discuss future work in Section 6.

2. DISTRIBUTED APPLICATIONS
Application Skeleton is motivated by a wide variety of

application types, so the Skeleton aims to be expressive for
those applications in return. The initial Skeleton implemen-
tation allows the user to express:
• Bag of Tasks: A set of independent tasks. Examples:

MG-RAST [10], DOCK [12]

• MapReduce: A set of distributed application with key-
value pairs as intermediate data format. Examples:
high energy physics histograms [3], object ordering [1]

• Multi-stage Workflow: A set of distributed applica-
tions with multiple stages and use POSIX files as inter-
mediate data format. Examples: Montage [4], BLAST [9]

The Skeleton concept will also allow expressing the follow-
ing types of applications, though this is not yet implemented:

• Iterative MapReduce: MapReduce application with it-
eration requirement. Example: graph mining [8]

• Campaign: An iterative application with a varying set
of tasks that must be run to completion in each itera-
tion. Examples: Kalman filtering [13]

• Concurrent Tasks: A set of tasks that have to be ex-
ecuted at the same time. Examples: Coupled fusion
simulation [5]

3. SKELETON DESIGN AND PROGRAM-
MING MODEL

A Skeleton represents an application using a top-down ap-
proach: the whole application is composed of stages, each of
which is composed of tasks. A synthetic application is spec-
ified initially by the number of stages in the application.
Each stage is defined by the input/output files, tasks (num-
ber and length), and file-task mapping inside each stage.

To understand the Skeleton tool, one should consider its
overall design (§3.1) as well as how a particular application
Skeleton is specified (§3.2).

3.1 Skeleton Tool Design and Usage
The Skeleton tool is implemented as a parser. It reads in

a configuration file that specifies a Skeleton application, and
produces three groups of outputs:

Preparation Scripts: The preparation scripts are
run to produce the input/output directories and input
files for the Skeleton application.

Executables: Executables are the actual tasks of each
application stage. (We assume different stages use dif-
ferent executables.)

Application: The overall Skeleton application can be
implemented in one of three formats: shell commands,
a Pegasus DAG, or a Swift script. The shell commands
can be executed in sequential order on a single ma-
chine. The Pegasus DAG and the Swift script can be
executed on a local machine or in a distributed envi-
ronment. (Executing the Pegasus DAG or Swift script
requires Pegasus or Swift, respectively, to be installed.)

To execute a Skeleton application, the preparation scripts
must first be run to create the initial input date files. Then
the Skeleton application itself can be run (the DAG can
be run with Pegasus, the Swift script with Swift, or the
Shell script with Bash). The executables produced by the
Skeleton tool as the tasks for each stage copy the input files
from the shared file system to RAM, sleep for some amount
of time (specified as the runtime), and copy the output files
from RAM to the shared file system.

Limitations
An application Skeleton should include application-specific
information but not platform-specific information. In I/O
for example, the amount of I/O is application-specific, and
how long the I/O takes is determined when the Skeleton is
run on a particular resource. However, we currently model
the computational work in a task as a runtime. This is
reasonable at this point since most current CPU cores are
roughly the same speed due to power issues, but it doesn’t
match the Skeleton goal. We are investigating better so-
lutions currently, including specifying operation counts and
more complex performance models. Unfortunately, the more
complex this model gets, the harder it will become for a user
to to specify a skeleton.

3.2 Skeleton Specification
Specifying a Skeleton application starts with declaring the

number of stages, as shown in the configuration file fragment
in Listing 1.

Listing 1: Declaring Number of Stages
1 Num_Stage = 3
2

3 Stage_Name = Stage_1
4 ...
5 Stage_Name = Stage_2
6 ...
7 Stage_Name = Stage_3
8 ...

Each stage is described by the following parameters:

• Stage Name: the stage name. The tasks of this stage
are named: ${Stage Name} ${Task id}. (This is par-
ticularly useful when when external mappers are used)

• Num Tasks: the number of tasks in the stage.

• Task Length: the length of the tasks in the stage.
The distribution of task length can be uniform, normal,
triangular, or lognorm. The distribution of task length
can be a function of the input file size if and only if
there is one input file per task.

• Input Source: the source of the input files. This can
be either filesystem or outputs of a previously defined
stage (e.g. Stage 1.output).

• Input Files Each Task: the ratio between number
of input files and the number of tasks.

• Tasks Each Input File: the ratio between number
of tasks and the number of input files. Along with
Input Files Each Task, these two parameters define
the mapping between input files and tasks in this stage,
unless an external mapper is used.

• Input File Size: input file size for the stage. The
distribution of task lengths can be uniform, normal,
triangular, or lognorm.

• Input Task Mapping: user specified input file and
task mapping. The mapping option currently only
supports external mapping. It requires an executable
that writes file grouping to standard output, with each
group of file in a single line, delimited by spaces. This
option lets the user override the mapping scheme im-
plied by Input Files Each Task and Tasks Each I-
nput File when the application uses a more complex
mapping than can be specified with just these two pa-
rameters.

Table 1: Skeleton Parameter Format
Parameter Format Example notes

Num Tasks Integer 16
Task Length dist [parameter][unit] uniform 32s other dists: normal, triangular, lognorm
Input source filesystem|Stage $.Output Stage 1.Output

Input Files Each Task Integer 2
Tasks Each Input File Integer 2

Input File Size dist [parameter][unit] uniform 1048576 the default unit is byte, other dists available
Input Task Mapping external /path/to/exec external map.sh each line of map.sh contains the input files of a task

Output Files Each File Integer 2
Output File Size dist [parameter][unit] uniform 1048576 the default unit is byte, other dists available

• Output Files Each File: the number of output files
per task in the stage. (Multiple tasks writing to one
file are not currently supported.)

• Output File Size: the output file size in the stage.
The distribution of task length can be a statistical dis-
tribution such as uniform, normal, triangular, or log-
norm. It can also be a polynomial function of input
file size or task length.

Listing 2: Sample input for a three-stage application
1 Num_Stage = 3
2

3 Stage_Name = Stage_1
4 Num_Tasks = 4
5 Task_Length = normal [10, 1]s
6 Input_Source = filesystem
7 Input_Files_Each_Task = 2
8 Tasks_Each_Input_File = 1
9 Input_File_Size = normal [1048576 , 1]

10 Output_Files_Each_Task = 1
11 Output_File_Size = normal [1048576 , 1]
12

13 Stage_Name = Stage_2
14 Num_Tasks = 6
15 Task_Length = uniform 32s
16 Input_Source = Stage_1.Output
17 Input_Files_Each_Task = 2
18 Tasks_Each_Input_File = 3
19 Output_Files_Each_Task = 1
20 Output_File_Size = uniform 1048576
21

22 Stage_Name = Stage_3
23 Num_Tasks = 1
24 Task_Length = uniform 32s
25 Input_Source = Stage_2.Output
26 Input_Files_Each_Task = 6
27 Tasks_Each_Input_File = 1
28 Output_Files_Each_Task = 1
29 Output_File_Size = uniform 1048576

Listing 2 shows a complete three-stage application de-
scription file, and Table 1 explains the required data type
and format of the parameters. The first stage has four
tasks. Each reads two distinct files as input, runs for some
time, and produces an output file. The runtime for each
task has a normal distribution, described by a two-value tu-
ple: [average, stdev]Unit. The input and output file size
have a similar distribution. (Supported distributions cur-
rently include: uniform, normal, triangular, lognorm, as fur-
ther discussed in §3.2.1.) The second stage has six tasks.
For each, the input file is the output of the first stage,
denoted by Line 16, and the mapping between input files
and tasks in the second stage is an all-pair combination.
(Mapping is discussed further in §3.2.2.) The mapping is
determined by two parameters: Input Files Each task and
Tasks Each Input File. The third stage has only one task,
which reads as input the six output files from the second
stage, and produces a single output file.

Figure 1: Task flow of the three-stage application

Figure 1 shows the task flow of the synthetic application
that is produced by the Skeleton tool with Listing 2 as input.

3.2.1 Parameter Distribution
The skeleton tool implements two categories of distribu-

tions.
The first category, statistical distributions, can be used for

Task Length, Input File Size, and Output File Size.
If Task Length, Input File Size, Output File Size

are to be described as statistical distributions, one of the
distributions and formats in Table 2 should be used.

Table 2: Statistical Distributions
Name Format Example

uniform [number][unit] 5s, 1048576B
normal [avg, stdev][unit] [5, 1]s, [1048576, 1000]B

triangular [avg, stdev][unit] [5, 1]s, [1048576, 1000]B
lognorm [avg, stdev][unit] [5, 1]s, [1048576, 1000]B

The second category, dependent distributions, can be used
for Task Length and Output File Size. Task Length

can be a polynomial function of Input File Size, and Out-
put File Size can be a polynomial function of Task Length
or Input File Size.

The Task Length can be a polynomial function of In-
put File Size if and only if there is one input file per task.
This is described as:

input: [coefficient, power]x, e.g. [4, 2]x

where task length is computed as: coefficient ∗ filesizepower.
Listing 3 shows an example of this.

Listing 3: Task length as a function of input file size
1 Num_Stage = 1
2

3 Stage_Name = Stage_1
4 Num_Tasks = 4
5 Task_Length = input [4, 2]x
6 Input_Source = filesystem
7 Input_Files_Each_Task = 1
8 Tasks_Each_Input_File = 1
9 Input_File_Size = normal [1048576 , 1000]

10 Output_Files_Each_Task = 1
11 Output_File_Size = normal [1048576 , 1000]

3.2.2 File-Task Mapping
As previously mentioned, mapping files between stages

can be done either based on a default mapping implied by
Input Files Each Task and Tasks Each Input File, or
by an external mapping routine.

The default file-task mapping is calculated by the value
of Input Files Each Task and Tasks Each Input File.
If Tasks Each Input File is 1, then N tasks shall have
N*Input Files Each Task distinct input files, with each
task mapped to Input Files Each Task input files, such as
in lines 7 and 8 in Listing 2. If Input Files Each Task is
set to the number of distinct input files (the number of input

files is implicitly set to Input Files Each Task*Num Tasks
Tasks Each Input File

, or

inherited from previous stage), and Tasks Each Input File
has the same value as Num tasks, then each task in this
stage maps to all input files, such as in lines 26 and 27 in
Listing 2.

External mapping option can be used to describe more
complex mappings between tasks and files. An optional pa-
rameter, Input Task Mapping, overrides the default file-
task mapping. Currently, this can only be set to External.
External mapping requires an shell executable that outputs
the file grouping to standard output, with each line in a
row, and with files delimited by white space. Listings 4 and
5 show an use case and a sample implementation of the ex-
ternal mapper, respectively. The naming rule for the files
is: Stage Name fileusage fileid, e.g., Stage 1 input 0. The
Skeleton tool only checks the naming correctness of the file
names produced by the external mapper: the file names have
to start with the stage name, and output files of other stages
have to exist before they are mapped to tasks.

Listing 4: Use case of external mapper
1 Num_Stage = 1
2

3 Stage_Name = Stage_1
4 Num_Tasks = 4
5 Task_Length = normal [10, 1]s
6 Input_Source = filesystem
7 Input_Files_Each_Task = 2
8 Tasks_Each_Input_File = 1
9 Input_File_Size = normal [1048576 , 1000]M

10 Input_Task_Mapping = External external.sh

11 Output_Files_Each_Task = 1
12 Output_File_Size = normal [1048576 , 1000]M

Listing 5: Sample code of external mapper
1 #!/ bin/bash
2

3 echo Stage_1_input_0 Stage_1_input_4
4 echo Stage_1_input_3 Stage_1_input_5
5 echo Stage_1_input_1 Stage_1_input_6
6 echo Stage_1_input_2 Stage_1_input_7

4. EVALUATION
To compare the performance of the Skeleton application

and the real application, we use a 6x6 degree image mosaic
example from Montage [4] and the first 256 queries of the
NRxNR test of BLAST [9] on 64 IBM BG/P processors.
The tasks are launched with AMFS [15] and the input and
output files are read and written from/to the GPFS shared
filesystem. Figure 2 shows the data flow patterns between
Montage stages.

mProject mProject mProject

mImgtbl

mDiffFit mDiffFit mDiffFit

mConca
ctFit

mBackgr
ound

mBackgr
ound

mBackgr
ound

mBgMod
el

mOverla
ps

mAdd

...

... ...

1

2

3

mProject mProject mProject

mImgtbl

mDiffFit

mOverla
ps

Figure 2: Montage dataflow. Ovals represent tasks
and boxes files. Solid lines show file transfers,
dashed lines show additional control flow dependen-
cies.

Table 3 shows basic statistics for each Montage stage.
Measured Time Avg shows the average time-to-solution of
all tasks in each stage. The Skeleton Task Length column
shows the exact task length we set in the Skeleton, deter-
mined as follows: For the mProjectPP, mOverlaps, mDiff-
Fit, mConcatFit, mBgModel, and mBackground stages, we
place the input/output files on RAM disk then round the av-
erage time-to-solution up to the nearest integer as the task
length. For stages of mImgtbl and mAdd, the input size ex-
ceeds the RAM disk size on a compute node, so we cannot
execute the tasks with the data on RAM disk. Based on
observation and validation, we see that the task’s time-to-
solution is proportional to the number of input files when
the file number is small (10-30), so we project the time-to-
solution with the full input data set based on the measured
time-to-solution on a smaller data set.

In the Skeleton configuration for the stages where there
are a large number of input/output files of the same size,
(mProject, mImgtbl, mDiffFit, mBackground and mAdd),
we specify that all files for a stage are that size. For mCon-
catFit, the input file sizes vary from 157 bytes to 292 bytes.
To simplify the the Skeleton specification, we set all input

Table 3: Number of tasks, inputs, and outputs, and input and output size, for each Montage stage
Stage # Tasks #

Inputs
Out-
puts

In (MB) Out (MB) Measured Time
Avg (sec)

Measured
Time Stdev

Skeleton
Task Length

mProject 1319 1319 2594 2800 10400 11.1 2.5 12
mImgtbl 1 1297 1 5200 0.8 N/A 0 16
mOverlaps 1 1 1 0.8 0.4 9 0 9
mDiffFit 3883 7766 7766 31000 487 1.7 0.6 2
mConcatFit 1 3883 1 1.1 4.3 14 0 14
mBgModel 1 2 1 4.5 0.07 283.1 0 284
mBackground 1297 1297 1297 5200 5200 0.4 0.08 1
mAdd 1 1297 1 5200 7400 N/A 0 519

Table 4: Time-To-Solution Comparison of Skeleton Montage and Real Montage (seconds)
mProject mImgtbl mOverlaps mDiffFit mConcatFit mBgModel mBackground mAdd Total

Montage 290.4 139.7 10.2 359.2 64.6 283.3 102.6 793.4 2040.6
Skeleton 283.4 124.3 10.5 313.5 67.0 283.2 98.2 807.6 1987.6
Error -2.4% -11.1% 2.9% -12.7% 3.9% -0.04% -4.3% 1.8% -2.6%

files of mConcatFit (the output of mDiffFit) to the average
file size of 200 bytes. Note that for both the real Montage
application and the Skeleton, we use a staging approach to
execute the task: we first copy the input files from GPFS to
RAM disk, execute the task, write the output files to RAM
disk, then copy the output files back to GPFS.

Table 4 compares performance of the Montage Skeleton
with the real Montage application on 64 IBM BG/P quad-
core processors with GPFS as the shared filesystem. For
each data point, we measured the performance three times
and show the average value. In total, the Skeleton Montage
runs in 2.6% less time the real Montage application.

Among the eight stages, mProject, mDiffFit, and mBack-
ground are those with parallel execution. The measured er-
ror is -2.4%, -12.7% and 1.8% respectively. The significant
error of mDiffFit is due to the time-to-solution distribution
of all tasks: a distribution with an average of 1.7 seconds and
a standard deviation of 0.6. The ratio between standard de-
viation and average is 35.4%, while the ratio for mProject
and mBackground is 22.5% and 20.0% respectively. This
higher ratio implies a higher variability of mDiffFIt tasks,
thus using average time-to-solution for all tasks should re-
sult worse precision than the other two stages. We believe
this gap can be improve by using Skeleton’s statistical dis-
tribution functionality.

mOverlaps, mConcatFit, and mBgModel each have a sin-
gle task, and the input/output fit in a compute node’s RAM
disk. The Skeleton versions have errors of 2.9%, 3.9% and
-0.04%. mImgtbl and mAdd are each a single task with 1297
input files, whose size exceeds a single node’s RAM disk size.
With the projected task length, the errors of the two stages
are -11.1% and 1.8%. We can tell that mImgtbl’s time-to-
solution grows more than linearly with the number of input
files as the variable, while mAdd’s time-to-solution grows
close to linearly.

For BLAST, we run the first 256 queries from the NRxNR
test case on 64 BG/P compute nodes. We set up the task
length as uniform for the formatdb and blastp stages. The
task lengths of the merge stage vary from one second to 14
seconds, so we use the actual task length for these 16 skele-
ton tasks. The input file sizes of formatdb tasks are uniform,
but the outputs are not. Each formatdb task has three out-
put files, their sizes are 56 MB, 16MB, and 1MB respectively.
Due to the limitation of the present Skeleton implementa-
tion, we define the synthetic output files as 3, with uniform
size of 21 MB. Table 5 shows some basic statistics of BLAST

stages and Table 6 shows the measured performance and the
comparison between the Skeleton BLAST and real BLAST.

The formatdb stage’s error is 7.2%. One possible reason is
that the real formatdb task has ∼500,000 small writes, each
with hundreds of bytes, while our Skeleton synthetic appli-
cation’s writes has a much larger buffer. The 8.0% error of
blastp stage could be due to the uniform task length distri-
bution, as the real distribution ranges from 80s to 160s. The
predicted merge time-to-solution is low because of the per
sequence reads of the input files, which are each hundreds
of bytes, while the Skeleton merge has a single large read.

5. RELATED WORK
Skel [7] uses a similar idea to understand the I/O per-

formance of parallel applications on supercomputers. Users
can extract the I/O behavior from an application, then pro-
duce a skeletal application that mimics the I/O operations
and pattern by specifying a Skel configuration file. The pro-
duced skeletal application can run on ADIOS [6]. WGL [11]
lets users generate a Swift script for a workflow application
by describing the data flow patterns between stages.

6. CONCLUSIONS AND FUTURE WORK
We have shown the Skeleton tool can produce synthetic

distributed applications that correctly capture important
distributed properties of real applications but are much sim-
pler to define and use. The Skeleton tool currently can gen-
erate applications that represent bag-of-tasks, MapReduce,
and multi-stage workflows. Skeleton applications can be run
with mainstream workflow frameworks and systems: Shell,
Pegasus, and Swift. The execution comparison between the
the initial Skeleton Montage and BLAST and the real Mon-
tage and BLAST on 64 BG/P processors shows an accept-
able runtime difference of 2.6% and 8.0%, and for each in-
dividual stage, the difference ranges from 0.04% to 12.7%,
with six out of eleven stages within 5%. These can be im-
proved by more carefully configuring the Skeleton.

In the near future, we will open source the Skeleton code,
and invite users and contributors from a wider community
to try it and expand it. Our longer term plan includes:

• Use application trace data to produce synthetic appli-
cations ideally purely from the trace data but initially
from a combination of trace data and user guidance.

• Determine a way to represent the computational work

Table 5: Number of tasks, inputs, and outputs, and input and output size, for each BLAST stage
Stage # Tasks #

Inputs
Out-
puts

In (MB) Out (MB) Measured Time
Avg (sec)

Measured
Time Stdev

Skeleton
Task Length

formatdb 64 64 192 3800 4400 41.9 0.1 42
blastp 1024 4096 1024 70402 966 109.2 14.9 110
merge 16 1024 16 966 867 4.4 4.1 real length

Table 6: Time-To-Solution Comparison of Skeleton
BLAST and Real BLAST (seconds)

formatdb blastp merge Total

BLAST 82.1 1996.3 35.9 2114.3
Skeleton 76.2 1835.9 34.0 1946.1
Error 7.2% 8.0% 2.9% 8.0%

in a task that when combined with a particular plat-
form can give an accurate runtime for that task.

• Support tasks with interleaved computation and I/O,
rather than just read-compute-write.

• Support tasks that are not generic single core tasks,
such as those that internally include OpenMP or MPI,
or those that should be bound to specific hardware,
e.g., GPUs.

• Support concurrent tasks that need to run at the same
time to exchange information.

• Support iterations in Skeleton configuration model.

• Investigate an accurate task-file mapping specification
that supports cases other than 1-1 and n-1 that re-
quires less user programming.

Acknowledgments
This work was supported in part by the U.S. Department of
Energy under the ASCR award DE-SC0008617 (the AIMES
project). It has benefited from discussions with Shantenu
Jha, Andre Merzky, Matteo Turilli, Jon Weissman, and La-
vanya Ramakrishnan. Computing resources were provided
by the Argonne Leadership Computing Facility. Work by
Katz was supported by the National Science Foundation
while working at the Foundation. Any opinion, finding, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

7. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahl, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, and D. S. Katz.
Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific
Programming Journal, 13(3):219–237, 2005.

[3] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce
for data intensive scientific analyses. In 4th IEEE
International Conf. on eScience, pages 277–284, 2008.

[4] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good,
A. C. Laity, E. Deelman, C. Kesselman, G. Singh,
M.-H. Su, T. A. Prince, and R. Williams. Montage: a
grid portal and software toolkit for science-grade

astronomical image mosaicking. Intl. J. of Comp. Sci.
and Eng., 4(2):73–87, 2009.

[5] S. Klasky, M. Beck, V. Bhat, E. Feibush,
B. Ludäscher, M. Parashar, A. Shoshani, D. Silver,
and M. Vouk. Data management on the fusion
computational pipeline. Journal of Physics:
Conference Series, 16:510–520, 2005.

[6] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki,
and C. Jin. Flexible IO and integration for scientific
codes through the adaptable IO system ADIOS. In
Proceedings of 6th International Workshop on
Challenges of Large Applications in Distributed
Environments, CLADE ’08, pages 15–24. ACM, 2008.

[7] J. Logan, S. Klasky, H. Abbasi, Q. Liu,
G. Ostrouchov, M. Parashar, N. Podhorszki, Y. Tian,
and M. Wolf. Understanding I/O Performance Using
I/O Skeletal Applications. In C. Kaklamanis,
T. Papatheodorou, and P. Spirakis, editors, Euro-Par
2012 Parallel Processing, volume 7484 of Lecture Notes
in Computer Science, pages 77–88. Springer, 2012.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proc. of the
2010 ACM SIGMOD International Conf. on
Management of Data, pages 135–146, 2010.

[9] D. R. Mathog. Parallel BLAST on split databases.
Bioinformatics, 19(14):1865–1866, 2003.

[10] F. Meyer et al. The metagenomics RAST server–a
public resource for the automatic phylogenetic and
functional analysis of metagenomes. BMC
Bioinformatics, 9(1):386, 2008.

[11] L. Meyer, M. Mattoso, M. Wilde, and I. Foster. WGL
- a workflow generator language and utility.
http://dx.doi.org/10.6084/m9.figshare.793815.

[12] D. Moustakas, P. Lang, S. Pegg, E. Pettersen,
I. Kuntz, N. Brooijmans, and R. Rizzo. Development
and validation of a modular, extensible docking
program: DOCK 5. J. of Computer-Aided Molecular
Design, 20:601–619, 2006.

[13] H. W. Sorenson. Kalman filtering: theory and
application, volume 38. IEEE Press, 1985.

[14] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Par. Comp., pages
633–652, September 2011.

[15] Z. Zhang, D. S. Katz, T. G. Armstrong, J. M.
Wozniak, and I. Foster. Parallelizing the execution of
sequential scripts. In Proc. of the International Conf.
on High Performance Computing, Networking, Storage
and Analysis (SC13), 2013.

