FPGA-Based Prototype of Nexus++ Task Manager

Tamer Dallou, Ahmed Elhossini, Ben Juurlink
Embedded Systems Architecture
Technische Universitat Berlin
Einsteinufer 17, 10587 Berlin, Germany

{dallou, ahmed.elhossini,

ABSTRACT

StarSs is one of several programming models that try to relieve
parallel programming. In StarSs, the programmer has to identify
pieces of code that can be executed as tasks, as well as their inputs
and outputs. Thereafter, the runtime system (RTS) determines the
dependencies between tasks and schedules ready tasks onto worker
cores. Previous work has shown, however, that the StarSs RTS may
constitute a bottleneck that limits the scalability of the system and
proposed a hardware task management system called Nexus++ to
eliminate this bottleneck. The first prototype of Nexus++ was im-
plemented in SystemC. Its architecture also had a nondeterminis-
tic multi-cycle search algorithm in its critical path, potentially lim-
iting its scalability. In this paper, we improved the architecture
of Nexus++ and employed a multi-way set-associative cache-like
data structures to optimize its search algorithm and increase task
throughput. We also modeled the new architecture in VHDL and
targeted a Virtex 5 FPGA from Xilinx. Experimental results show
that the new architecture is very resource-efficient utilizing only
19% of the target FPGA. It also shows that Nexus++ achieves a
speedup of up to 81 x using some synthetic benchmarks modeled
after H.264 decoding. Hence, Nexus++ significantly enhances the
scalability of applications parallelized using StarSs.

1. INTRODUCTION

Due to the advent of multicore architectures, several parallel pro-
gramming models have been proposed that aim at relieving par-
allel programming. Examples include Google’s MapReduce [5],
Intel’s TBB [14], and StarSs [13]. StarSs, like OpenMP [3], en-
ables the programmer to express parallelism by adding pragmas to
the code. These pragmas identify pieces of code that can be exe-
cuted as tasks, as well as their inputs and outputs. Based on the in-
puts and outputs, the RTS can determine the dependencies between
tasks and schedule ready tasks onto cores that execute the tasks.
The programmer, therefore, does not have to explicitly express de-
pendencies between tasks and the corresponding synchronization.
Furthermore, the RTS can also transparently optimize data reuse
between tasks and coarsen tasks, thereby relieving the programmer
from these burdens. Previous work [11] has shown, however, that
the StarSs RTS, when implemented in software, can be a bottleneck
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that limits the scalability of applications parallelized using StarSs.
Roughly speaking, the RTS cannot compute task dependencies and
attend to finished tasks fast enough to keep all worker cores that ex-
ecute the tasks busy. The same work therefore proposed a hardware
task management system called Nexus to accelerate the RTS. Nexus
was integrated in a simulator of the Cell processor, and could im-
prove the scalability of a synthetic application modeled after a trace
of parallel H.264 decoder by a factor of 4.3 when using 16 cores.

Even though Nexus improves the scalability significantly, it has
limitations on the number of inputs and outputs a task can have (up
to 5in [11, 10]). Similarly, the number of tasks that can depend on
a certain data segment is limited, which limits the applicability of
Nexus. Moreover, Nexus does not support double buffering.

In our earlier work [4], these limitations were solved, where a
new architecture (Nexus++) is described and implemented in Sys-
temC, which is also more efficient than that in Nexus [11], since it
uses fewer and simpler tables. Nevertheless, Nexus++ has a non-
deterministic search algorithm for the task graph, which might take
more than 10 cycles to search for a certain memory address. More-
over, since implemented in SystemC, Nexus++ makes many as-
sumptions and approximations regarding for example, memory ac-
cess times, communication times, driving clock frequency, etc. For
this, we present in this paper a VHDL implementation of Nexus++.

The main contributions of this paper include: (1) a proof-of-
concept fully configurable VHDL prototype targeting a Virtex 5
FPGA from Xilinx. (2) A generic way to be integrated in any
task-based RTS, by implementing the Nexus++ Plugin, which de-
fines the interface between the target multicore RTS and the VHDL
prototype. (3) An improved search algorithm which implements a
cache-like multi-way set-associative task graph. Furthermore, the
VHDL prototype proves its resource-utilization effectiveness since
it utilizes only 19% of the available resources on the target FPGA
which is at least 6x more efficient compared to one other major
StarSs hardware task manager.

This paper is organized as follows. Overview of the StarSs pro-

gramming model and related work are described in Section 2. Nexus++

and its features are described in Section 3. In Section 4 the simula-
tion environment and the employed benchmarks are described. The
experimental results are presented in Section 5, and conclusions are
drawn in Section 6.

2. BACKGROUND
2.1 StarSs

StarSs is a task-based programming model, which enables ex-
ploitation of task-level parallelism, regardless of the target architec-
ture. StarSs provides programmers with pragmas, an annotations
added to the serial code, to identify potential pieces of code that can
run in parallel. The programmer does not need to care about syn-
chronization between tasks, as this is done implicitly by the StarSs



RTS. Listing 1 shows an example of exploiting parallelism using
pragmas.

The example in Listing 1 shows that function decode() is called
inside a nested loop, processing the elements of matrix X. Calculat-
ing decode() for each element requires the values of the left and up-
right cells.This example represent macroblock wavefront decoding
in H.264 [16], for one 1920 x 1088 frame in blocks of 16 x 16,
and it is one of the benchmarks used to evaluate Nexus++.

MB_typex X[120][68];
//MB_type: a data str. that rep. MB dependencies.
#pragma css task input (left, upright) inout (this)
void decode (intx left, intx upright, intx this){...}
void main () {
int i, J;
init_matrix(X) ;
for (i=0; 1<120; i++)
for (j=0; 3j<68; Jj++)
decode (X[1][Jj-1], X[i-11[3+1], X[i1[31);
#pragma css barrier

}

Listing 1: StarSs example of macroblock wavefront decoding
in H.264

Annotating a function with the css task pragma defines a task.
The inputs/outputs of the task should also be specified as with func-
tion decode() in Listing 1. StarSs also provides several synchro-
nization pragmas such as the css barrier pragma.

A source-to-source compiler transforms the annotated function
calls to runtime library calls, which generate a task out of each
function call, and add it to the task graph. As in the example of
Listing 1, every time function decode() is called, a task is generated.

Having identified the tasks and the direction of their parameters,
the StarSs environment builds, at run time, the task graph, and the
task-level parallelism is detected and exploited.

2.2 Related Work

Several hardware scheduling units have been proposed in liter-
ature. Most of them, however, assume independent tasks and are
optimized for a certain application, a certain platform, or both. For
example, Carbon [8] assumes independent tasks and uses hardware
queues to retrieve tasks with low latency.

In StarSs, tasks can be dependent and it is the responsibility of
the RTS to determine their dependencies. An example of a hard-
ware accelerator that targets a certain application domain is a hard-
ware task scheduler optimized for H.264 decoding [1]. It requires,
however, that the programmer specifies the dependencies between
blocks. Etsion et al. [7] also proposed a hardware task manage-
ment unit for the StarSs RTS, based on the similarity between task
dependency checking and the instruction scheduler of an out-of-
order processor. Although a VHDL prototype was presented for
it in [22], it was only evaluated using high-level simulations. The
hardware implementation, compared to ours, is relatively expen-
sive.

As mentioned before, our work builds upon Nexus [11], which
was integrated in a simulator of the Cell processor.

3. NEXUS++ HARDWARE TASK MANAGER

The Nexus++ [4] task manager is a hardware accelerator for run-
time systems of task-based programming models, StarSs for exam-
ple. Nexus++ tracks tasks inputs/outputs information and utilizes
simple table lookups to find out ready tasks and schedule them to
worker cores.

In [4], we presented a SystemC prototype of Nexus++, which
thoroughly describes the design and implementation, as well as a
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trace-driven evaluation testbench. In this section, we briefly de-
scribe Nexus++ highlighting some design changes.

3.1 Design Overview

Nexus++ is rethought to be integrated with real multicore sys-
tems. For this, Nexus++ was implemented in VHDL with the Xil-
inx XUPV5-LX110T [20] FPGA development board. The high
level design is depicted in Figure 1. The Nexus++ task manager
resides on the FPGA board, and communicates with the RTS on
the multicore system using the PCle bus.

To achieve this:

e Nexus++ has to be implemented, synthesized, and realized
on the FPGA board,

e acommunication interface that utilizes the (1-lane) PCle port
on the FPGA and exchanges data with Nexus++ has to be
implemented,

e asoftware driver that enables data flow between the RTS and
the FPGA using the PCle bus has to be implemented,

e the RTS has to be modified in order to replace its current
task graph management mechanism by a communication unit
(Nexus Plugin) with Nexus++,

Eventually, the FPGA board can be plugged in the host multi-
core machine and the task graph management responsibilities can
be downloaded to Nexus++.

3.2 Functional Overview

Figure 2 shows the block diagram of our proposed task manager.
It is mainly composed of two units; Nexus input/output unit (Nexus
10) which handles communication with the host RTS, and the task
management unit known as the Task Maestro, which manages the
task graph at runtime and issues tasks when they are ready.

The multicore system under consideration is assumed to have
one Master Core that executes the main thread and creates Task
Descriptors, and several worker cores that execute the tasks. A Task
Descriptor contains task-related information such as its function
pointer and input/output list. Nexus++ is responsible for task graph
management carried out by the RTS.

As shown in Figure 1, data communication occurs between Nexus++

and the RTS (via the Nexus Plugin). So when the master thread cre-
ates new tasks, the RTS submits them to Nexus++. Nexus++ sends
ready tasks ids to the RTS, and whenever a worker core finishes a
task, the RTS notifies Nexus++ of that.

Each FIFO list in the design is generated using Xilinx Coregen
v14.4 FIFO Generator 9.3 [21]. We chose to use First-Word Fall-
Through FIFOs, which are FIFOs with registered output. This en-
ables the designer to look ahead to the next available word in the
list without issuing a read operation.

The Nexus 10 unit is designed to communicate with the PCle
port at the FPGA board. Xilinx provides an integrated endpoint
for PCle designs Compliant with the PCI Express Base 1.1 speci-
fication, along with an example design that supports single double
word (32-bit) payload read and write PCle transactions [18].

The RTS submits new tasks to the Nexus IO unit, which stores
them as 32-bit (PCle payload width) words in the New Tasks FIFO
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Figure 2: Nexus++ block diagram in a multicore system

list. Each task starts with a header word containing its function
pointer and the number of inputs/outputs, and later words contain-
ing task’s inputs/outputs. Checking the New Tasks FIFO list’s full
flag before submitting new tasks, the RTS stalls when necessary.

The Task Maestro then reads the New Tasks FIFO list, generates
Task Descriptors and stores them in (1) a temporary task storage
table called the Task Buffer, and (2) in the Task Pool, the main task
storage table in Nexus++, where tasks reside until the end of their
life cycles. The Task Pool index at which a certain Task Descriptor
is being stored becomes the unique identifier of this task inside
Nexus++. This is a smart way of addressing the Task Pool, since
no address lookup is required at all.

The Task Buffer and Task Pool are shown in Figure 2. The Task
Buffer is relatively small (8 - 16 tasks) and is important, along with
the New Tasks FIFO list, to decouple task submission from pro-
cessing new tasks. Both tables are implemented as dual-port block
rams. One port is accessed by the process writing new tasks to
them. The second port of the Task Buffer is accessed when pro-
cessing new tasks, and this happens in order. That is why this table
is of a small size and tasks’ data is not preserved after processing it.
The Task Pool, on the other hand, is much larger (256 - 1024 tasks),
and its second port is accessed arbitrarily upon processing finished
tasks. Having three processes accessing the dual-port tables, the
Task Buffer could not be merged in the Task Pool.

The Task Maestro reads incoming tasks one by one from the
Task Buffer, builds up the task graph and calculates the Depen-
dence Count for the task in progress. This is done by comparing
every single input/outputof the new task against all inputs/outputs
of all previously submitted tasks. The resulting Dependence Count,
if > 0, is stored in the Dependence Counts table shown in Figure 2.
Otherwise, the task is ready to run and the Task Maestro writes its
function pointer along with its Task Pool index to the Ready Tasks
FIFO list inside the Nexus IO unit. The RTS polls the later list valid
flag, reads it when it goes high, and schedules ready tasks to run.

Whenever a task is finished, the RTS communicates its Task Pool
index to the Nexus 10, which writes the incoming data to the Fin-
ished Tasks FIFO list. After that, the Task Maestro reads the latter
list for the address of the finished task in Task Pool, then reads the
finished task info from the Task Pool and updates the task graph,
and finally deletes the finished task entry from the Task Pool.

The detailed data/control flow inside Nexus++ was described
in [4]. There, a Task Controller per worker core was responsible for
double buffering and communicating with Nexus++. In the new de-
sign described above, those Task Controllers are to be implemented
as part of the Nexus Plugin of the RTS.

3.3 Set Associative Dependence Table

The Dependence Table shown in Figure 2 is the storage place of
the task graph. Every memory location accessed by one or more
tasks will have an entry in the Dependence Table. Every time a
new memory location is submitted (as an input/output of a task) to
Nexus++, the Task Maestro searches the Dependence Table for this
memory location. If it was not found, the Task Maestro inserts the
new memory location to the dependence table (by writing the Tag
and access mode m fields).

In [4], the dependence table was a hash table with a simple sepa-
rate chaining hash collisions resolution algorithm /(). There, each
memory location can map to one location in the Dependence Ta-
ble. If a collision occurred between memory locations x and y on
a certain Dependence Table entry, a for example, the later memory
location (y) will be assigned another entry in the Dependence Ta-
ble, b for example, and a link to b will be inserted in a, creating a
linked-list structure inside the Dependence Table. This implies that
searching the Dependence Table will include multi-hub accesses
until finding the correct memory location. Moreover, if a certain
memory location was accessed for the first time, but its hash ad-
dress in the Dependence Table had a long chain of entries, then
the Dependence Table will be accessed many times until the end of
the chain, with ultimately a negative search result. For this reason,
we introduce the Set-Associative Dependence Table, a cache-like
structure for maintaining the task graph.

When Inserting a memory location in the new Dependence Table
shown in Figure 2, it can be stored in one of the n-way structure.
If all n locations, which a certain memory address A maps to, are
full, then A has to wait and the Task Maestro stalls. Unlike the De-
pendence Table in [4], searching the n-way set-associative table for
a certain memory address costs only one read operation of the dif-
ferent lanes. Comparing the valid(v) and Tag fields will determine
whether the searched memory address is found or not.

Dependency resolution is performed by maintaining a Kick-Off
List for each memory address. A Kick-Off List of a memory ad-
dress has room for 8 tasks. It records for each task valid and access
mode flags, in addition to the task’s TP index. There is a counter per
Kick-Off List in addition to pointers to the head and tail of the list.
For example, when task 72 is submitted to Nexus++, its input/out-
put list will be processed one by one. Task 72 has 4 inputs and 2
outputs as shown in Figure 2. When searching the Dependence Ta-
ble for T2’s first input, namely memory address c, the Task Maestro
will find that ¢ was previously inserted to the Dependence Table as
an output to an older task. Therefore, 72 will be added to the Kick-
Off List of ¢, and the Dependence Count of T2 will be incremented
once. On the other hand , if ¢ was inserted as input to an older task,
and since that c is also input to 72, then only the readers count Rdrs



field in the Dependence Table will be incremented, without chang-
ing the Dependence Count. After processing all memory pointers
in the input/output list of the new task, if the resulting Dependence
Count is 0, then this task is ready and will be written in the Ready
Tasks FIFO list.

Whenever a task has finished executing, its input/output list will
be fetched from the Task Pool and processed. For example, when
task 7' finishes, its input/output list is looked up in the Dependence
Table. Memory address b has an empty Kick-Off List, and therefore
can be invalidated. Memory address ¢, on the other hand, has some
tasks in its Kick-Off List. The Task Maestro reads the first task (72)
in this Kick-Off List and decrements its Dependence Count. If the
resulting Dependence Count equals 0, then task 72 will be sent to
the Ready Tasks FIFO list. Finally, depending on whether 72 is
reading-only or writing memory address ¢, the Task Maestro de-
cides to further read tasks from the Kick-Off List(c) or not.

The short example above shows how Nexus++ handles read-
after-write dependencies. Nexus++ handles also write-after-read
and write-after-write hazards (although these two are false depen-
dencies) as was described in [4].

3.4 Dummy Tasks and Entries

In order to support arbitrary number of of inputs/outputs per task,
we introduced dummy tasks in [4]. For example, task 72 shown in
the Task Pool in Figure 2 has 6 memory locations in its input/output
list. Since in our design, each entry in the Task Pool can have up to
4 inputs/outputs, the 2 extra parameters are stored in another entry
(at TP(3)) in the Task Pool, and a pointer to TP(3) is inserted in the
next dummy (N-Dummy) field of TP(2) where the first 4 param-
eters reside. Although this solves the problem of having a fixed,
limited number of inputs/outputs per task, the maximum number
of inputs/outputs is still bounded by the size of the Task Pool.

The same principle can be deployed in the Dependence Table,
where the Kick-Off List has a limited size of 8, thus restricting the
number of tasks that might depend on a certain memory segment.
An example is shown in the Dependence Table in Figure 2. Mem-
ory address ¢ has more than 8 tasks waiting for it. The first 8 tasks
are recorded in the direct Kick-Off List of ¢, and the extra ones are
recorded in an additional table specially created to handle dummy
Kick-Off Lists. Two pointers point to the dummy Kick-Off List(s)
are recorded in the original Dependence Table. The next dummy
(N-Dummy) pointer which points to the immediate following Kick-
Off List, and the last dummy (L-Dummy) pointer which points to the
last dummy Kick-Off List that might still have some room for more
task ids. The L-Dummy pointer indicates where should any other
waiting tasks be added to, while the N-Dummy pointer is important
when the Kick-Off List(c) is to be read, since reading Kick-Off Lists
should be performed in a first-in first-out order.

4. EXPERIMENTAL SETUP
4.1 Benchmarks

Several benchmarks were used to evaluate Nexus++. First, we
used a trace of parallel H.264 decoder decoding one full HD frame
on a Cell Broadband Engine processor [12], consisting of 8160
tasks in total. The trace consists of tasks input/output information,
tasks execution times and the time they have spent reading/writ-
ing their inputs/outputs from/to memory. On average a task spends
7.5 for accessing off-chip memory and 11.8us for execution [2].
The benchmark processes a matrix of 120 X 68 macroblocks and
the dependency pattern is shown in Figure 3(a) [15].

To evaluate Nexus++ for a range of dependency patterns, we cre-
ated two additional synthetic benchmarks derived from the H.264
benchmark. Their dependency patterns are shown in Figure 3(b)
and (c). We also used an additional benchmark without dependen-
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Figure 3: Dependency patterns (120 x 68 blocks): (a)
Ramp effect, (b, c) Fixed # of parallel tasks

System Parameter Value

Cores clock freq. 2.0 GHz

Nexus++ clock freq. 100 MHz

Nexus++ interface clock freq. | 100 MHz

On chip bus bandwidth 2 GB/s

Memory bandwidth 10.67 GB/s

Task Pool size 1024 tasks * 250 bits
No. Parameters per 7D 4

Task Buffer size 8 tasks * 218 bits
Dependence Table size 8-way * 256 entries * 190 bits
Dummy Kol table size 256 entries * 96 bits
Kick-Off list size 8 tasks

Table 1: System parameters

cies, i.e., one that has only independent tasks, in order to measure
the maximum scalability of Nexus++.

To validate the dummy tasks/entries approach, the task graph
of Gaussian elimination with partial pivoting [16] is used. In this
benchmark, the number of tasks that depend on a certain memory
segment depends on the size of the input matrix as depicted in the
dependency pattern of Figure 4, assuming an n X n matrix.

4.2 Test Environment

A VHDL test bench was implemented to simulate a configurable
multicore system. Among the configurable parameters are the num-
ber of cores, core clock frequency, onchip/offchip memory access
times, etc. The test bench simulates the RTS and the Nexus Plugin.
It submits new tasks to Neuxs++, receives ready tasks information
from it, schedules ready tasks to worker cores and simulates their
execution, and finally notifies Nexus++ of finished tasks.

Nexus++ is simulated assuming a clock cycle time of 10 ns (100
MH?z frequency). Tasks are based on experimental traces, which in-
clude tasks input/output information, and their execution and mem-
ory access times. Thus task execution and memory access delays
are simply modeled by waiting for a certain time. These traces
were generated after parallel H.264 video decoding on a Cell pro-
cessor [12]. Thus, the experiments are assuming a local-stores,
shared-memory architecture. Nevertheless, Nexus++ concept can
be applied to any other multicore architecture.

The list of configurable parameters and their experimental values
are shown in Table 1. The size of the different tables and lists
in the Task Maestro were empirically determined, enlightened by
the design space exploration in [4]. The size of one entry in the

Figure 4: Dependency pattern for the Gaussian elimina-
tion benchmark. 77: 7,j row and column numbers re-
spectively



Synthesis Parameter Value Total | Utilization
Slice Registers 6655 69120 | 9%

Slice look-up tables (LUTSs) 13676 69120 | 19%
Number of Block RAM 69 148 46%
Nexus++ Maximum Frequency | 125 MHz | - -

Table 2: FPGA resources utilization

Task Pool, for example, equals 250 bits (50-bit per parameter, 22-
bit task ID, 8-bit #I0s, 10-bit N-Dummy and 10-bit Dependence
Count), assuming 4 parameters per entry. Hence the total size of
the Task Pool, assuming 1024 in-flight tasks, equals 32,000 bytes.
The 1024 Task Pool size implies the 10-bit width of the N-Dummy
and Dependence Count fields. It also implies the 22-bit task ID
field, since when a task becomes ready, its ID (22 bits) along with
its TP index (10 bits) will be concatenated in one 32-bit word and
sent to the RTS using the 32-bit PCle bus.

The Dependence Table on the other hand, has 8-way x 256
entries, with 190 bits per entry, resulting in a total table size of
48,640 bytes. The other tables are relatively smaller, with the Task
Buffer consuming 218 bytes, and the dummy Kick-Off List table
consuming 3,072 bytes. In total, the main Task Maestro’s data
structures shown in Figure 2 occupies less than 84 KB of memory.

Table 2, shows device resource utilization collected from the
synthesis report of Xilinx tools ver. 14.6 (the latest version at
the time of writing this paper) targeting the XUPV5-LX110T [20]
FPGA. It shows that the maximum frequency at which our pro-
posed design can be clocked is 125 MHz. It also shows that the
number of block rams (brams) used by our design is 69, each of
size 36 Kb [17], i.e., total of 310.5 KB. This covers the Task Mae-
stro’s main 84 KB structures, along to the other FIFO lists, and
the Nexus IO unit. Moreover, Table 2 shows that our proposed de-
sign consumes relatively few number of slice registers and look-up
tables on the target FPGA (9% and 19% respectively of the total
available resources).

Off-chip memory (RAM) access time is determined using Cacti
5.3 [9], and was found to be 12 ns per 128 bytes RAM chunk, as-
suming 32-bank 1GB of RAM, which is equivalent to a maximum
memory bandwidth of 10.67 GB/s. To evaluate the maximum scal-
ability of Nexus++, we assume a contention-free memory system.

To simulate the PCle bus, every time the Master Core generates
a task, the RTS submits it to Nexus++ in 32-bit words, two bits
of each as word ID. The first word specifies the 22-bit task’s ID
(encoded function pointer) and the 8-bit number of inputs/outputs,
and every other two words specifies a single parameter(including
its 48-bit memory address and 2-bit access mode). The PCle inter-
face clock frequency according to [19] can be either 62.5 MHz or
125 MHz. For this, we chose to simulate it at 100 MHz. Hence,
we assume a bus bandwidth of 400 MB/sec. Therefore, and since
the state-of-the art processors run at relatively much higher speed
than the 100 MHz driving our communication interface, we did not
consider any task preparation delay (30 ns per task in [4]), since it
will be masked by the slow communication delay.

S. EVALUATION

Nexus++ was tested under different conditions, varying the num-
ber of worker cores, the buffering depth, and with different depen-
dency patterns.

We examined buffering depths in detail in [4], and it was con-
cluded that using double buffering (a worker core reads memory
for next task inputs/outputs, while executing another task) is op-
timal for performance. Using double buffering, the independent
tasks benchmark was tested varying the number of cores. Measur-
ing the speedup against the single core experiment, the indepen-
dent tasks benchmark achieved a speedup of 81 on 128 cores as
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Figure 5: Speedup achieved varying number of cores
running tasks with dependencies shown in Figure 3, in
addition to the independent tasks benchmark.

shown in Figure 5. Compared to our earlier work [4], the achieved
speedup for the same experiment was 221 x using 256 cores. This
is mainly because Nexus++ SystemC prototype in [4] was clocked
at 500 MHz with a bus bandwidth of 2 GB/s. Therefore, we assume
that the speedup of 81 on 128 cores is relatively good, especially
when compared to StarSs [11], which achieved merely 4 x using a
similar benchmark with similar average execution times.

Figure 5 also shows the speedup achieved after running the bench-
marks in Figure 3. As before, we simulate 8160 tasks with ex-
ecution and communication times obtained from a parallel H.264
decoder [2]. Showing the same speedup patterns as in [4], the in-
dependent tasks and vertical tasks scaled well, while the other two
relatively achieved small speedup (Max 4.7x). This is due to the
complex dependency pattern in the H.264 benchmark, and the se-
rial dependency pattern in the horizontal tasks, which matches the
order of task submission. In addition to the low bus bandwidth
(400 MB/sec) which highly increases task submission overhead.

Figure 6 shows the speedup achieved by running the Gaussian
elimination problem (Figure 4) on different multicore systems for
different matrices of sizes ranging from 250 x 250 to 10000 X
10000. In this benchmark, a certain memory segment can have
huge number of dependent tasks. Although the size of the Kick-Off
List of each of the Dependence Table entries is equal to 8, employ-
ing dummy entries as described in Section 3.4 in the Dependence
Table, Nexus++ could handle the Gaussian elimination problem for
matrices of large sizes. As shown in Figure 6, the matrix size has
a great impact on the speedup gain and the scalability of the sys-
tem, since a larger matrix results in a larger number of tasks of
larger granularity. A 5000 x 5000 matrix scaled up to 32 cores
with a speedup factor of 25x. This experiment includes building
and managing a task graph of 12,502,499 tasks with 3,523 FLOPs
per task on average [4]. Each single core is assumed to be able
to do 2 GFLOPS, which means that the average computation time
of each of the aforementioned tasks equals 1.77us. As compared
to [4], the speedup achieved for the same matrix size was 45X on
64 cores. The new VHDL design performs relatively better than our
SysctemC prototype in [4] since the former runs at 100 Mhz com-
pared to 500 MHz driving the latter, and the bus bandwidth in [4]
was 2 GB/s, compared to 400 MB/s in the VHDL prototype. This
demonstrates the effect of using set-associativity in the new design
of the Dependence Table, compared to the linked-link structure im-
plemented in [4]. Maximum matrix size tested was 10000 x 10000,
and Nexus++ achieved a speedup of 50 x on 64 cores.

Although the 250 x 250 has very small tasks (83.5ns per task
on average), Nexus++ scaled to 2 cores with a speedup of 2x. This
demonstrates the applicability of Nexus++ to any kind of applica-
tions, even those with very fine grained tasks.

All tables and FIFO lists in the Nexus++ task manager do not ex-
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Figure 6: Speedup achieved with different multicore sys-
tems running Gaussian elimination for different matrix
sizes (legend shows matrix dimension)

ceed 84 KB of memory (mapped to 310.5 KB brams on the target
FPGA). Nevertheless, they are sufficient to perform all the objec-
tives of Nexus++. The Task Superscalar [6], on the other hand,
consumes more than 6.5MB and still has a static limit (19) on the
number of inputs/outputs per task.

Hardware-wise comparison with [22] shows that their design
consumes 29,138 registers and 110,729 LUTs respectively, which
is at least 6 x more than the resources needed by our design (6,655/
13,676 registers/LUTs respectively). In fact, their design utilizes
more than 51% of a Virtex 7 FPGA resources, ours uses only 19%
of the smaller Virtex 5 FPGA . Moreover, while Nexus++ achieves
81x on 128-core machine running synthetic benchmark, no evalu-
ation is presented in [22].

Utilizing only 19% of the target Virtex 5 FPGA, proves the com-
pactness and optimization of Nexus++ while being able to achieve
decent speedups. This also leaves so much room to increase the size
of some tables to accommodate larger number of in-flight tasks, or
even for more research ideas like distributed task management ar-
chitecture by duplicating some structures and building the synchro-
nization/communication logic between them.

The main limiting factor we observed is the PCle communica-
tion overhead, which becomes obvious if tasks have any kind of
dependencies. Although simulated at 400 MB/sec, some packets
are reserved for control data in real life, which means that the PCle
provides less bandwidth in practice. Therefore, we conclude that
our design should be moved on-chip.

6. CONCLUSION

We have presented the first VHDL hardware implementation of
Nexus++, our hardware task management accelerator for the StarSs
RTS. In addition to supporting double buffering and being able
to handle tasks of arbitrary number of inputs/outputs, and arbi-
trary number of dependent tasks on a certain memory segment, our
hardware prototype makes two other main contributions. First, it
presents a proof-of-concept prototype of Nexus++. Second, it can
handle large task graphs more efficiently using very low-latency

lookup tables, by employing set-associativity, smart addressing scheme,

and FIFO lists with registered output. Moreover, Nexus++ presents
a fully configurable architecture.

Experimental results obtained using a ModelSim testbench show
that Nexus++ achieved a speedup of 81x on a 128-core pseudo-
machine for a benchmark modeled after H.264 decoding. We have
also shown that a benchmark modeled after Gaussian elimination,
where the number of tasks that depend on a certain task is not con-
stant, ran successfully and efficiently with an achieved speedup of
50x for an 10000 x 10000 matrix using 64 cores. Finally, we have
found that the PCle communication overhead limits the scalabil-

ity of Nexus++, therefore, we will focus in the future to integrate
Nexus++ on chip with the multicore system. Although Nexus++
targets StarSs applications, parts of it can be reused for other pro-
gramming models. For example, it contains hardware queues that
can be used for low-latency retrieval of independent tasks.
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