
Energy Prediction for I/O Intensive Workflow Applications
Hao Yang, Lauro Beltrão Costa, Matei Ripeanu
University of British Columbia, Vancouver, BC, Canada

ABSTRACT
As workflow-based data-intensive applications have become in-
creasingly popular, the lack of support tools to aid resource
provisioning decisions, to estimate the energy cost of running
such applications, or simply to support configuration choices has
become increasingly evident. Our goal is to design techniques to
predict the energy consumption of these workflow-based applica-
tions, evaluate different optimization techniques from an energy
perspective, and explore energy/performance tradeoffs. In this
paper, we propose a methodology to predict the energy consump-
tion for workflow applications that follows a two-step approach:
First, we build an analytical energy consumption model to link
the energy characteristics of the underlying platform and those
of the workflow application. Second, we augment an applica-
tion performance predictor our group has built with the energy
model to enable energy consumption predictions. We use this
methodology to create an energy predictor and demonstrate
its utility by: (1) exploring the energy impact of performance-
and power-centric tuning, and (2) exploring energy/performance
tradeoffs for representative workflow applications.

1. INTRODUCTION
Scientific investigation relies increasingly on workflow-based

data-intensive applications. These workflow applications are
typically assembled using different standalone binaries, which
communicate via temporary files stored on a distributed storage
system [15]. A workflow management system schedules the
tasks resulted from the execution of these binaries based on
completion of dependent tasks [18].
In this setup, the performance of the storage system plays a

key role in the overall workflow performance [8,9]. In fact, the
storage systems have evolved to incorporate advanced techniques
that enable trade-offs over interrelated performance metrics such
as throughput, reliability, and generated I/O overhead, to best
match the application/deployment scenario at hand [4]. At
the same time, user decisions involve allocating resources (e.g.,
total number of nodes) and configuring the storage system (e.g.,
choosing the chunk size or the data placement policy). While the
trade-off space over traditional performance metrics has been
extensively studied over the past decades [9], the focus on energy
efficiency is relatively new. Moreover, this aspect has grown in
importance due its impact on the cost or even on the feasibility
of building large-scale data-centers/supercomputers [6].
This context presents us with two main questions: First, In

what scenarios, if any, existing optimization techniques lead to
energy savings? Second, What is the performance impact, in
terms of time-to-solution, of energy-centric tuning? Our goal is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to answer these questions and additionally build tools to support
the user/administrator in the complex and relatively unexplored
task of determining the desired balance between application’s
time-to-solution and its energy bill.
Specifically, the focus of this paper is a mechanism to pre-

dict energy consumption of an workflow application given the
resource allocation and storage system configuration. This
work focuses on RAM-based shared storage system that har-
nesses node-local storage space. The contributions of this work
are: First, we propose a simple analytical energy consumption
model that enables adequately accurate energy consumption
predictions. This makes it possible not only to estimate en-
ergy consumption but also to reason about the relative benefits
different system configuration and provisioning decisions offer.
Second, we carry out an empirical evaluation of energy con-
sumption using both synthetic benchmarks and real workflow
applications. This evaluation quantifies the energy savings of
performance optimizations for the distributed storage system
as well as the energy and performance impact of power-centric
tuning techniques. Third, we demonstrate the predictor’s ability
to expose energy/performance tradeoffs. Overall, the average
prediction accuracy is higher than 85% and the median accuracy
is 90% across different scenarios. This accuracy is sufficient to
use the predictor to make system configuration choices.

The rest of the paper is organized as follows: Section 2 presents
the background for this work. Section 3 discusses the predictor’s
requirements, the energy consumption model, and our imple-
mentation. Section 4 presents the evaluation using synthetic
benchmarks and real workflow applications. Section 5 surveys
related research, and Section 6 presents discussion and summary.

2. BACKGROUND
This section presents the context in which workflow applica-

tions are executed and the performance predictor we build upon.

2.1 Intermediate Storage System
One widely adopted approach to support workflow appli-

cations is the many-task approach [15]. With this approach
workflows use a loose task-coupling model: the standalone ex-
ecutables that compose the workflow communicate through
temporary files stored in a shared storage system. Because of
the loosely task-coupled model, the tasks can be scheduled in
a distributed systems easily as long as the storage is shared.
To avoid the latency to access the backend storage system

(e.g., NFS, GPFS) during workflow application executions, recent
work [4,19] proposes using an in-memory shared storage layer
as an intermediate storage system for inter-task communication.
Each compute node that participates in the workflow execution
contributes its local storage to form a shared intermediate stor-
age. The workflow runtime engine schedules workflow tasks to
the compute nodes that produce intermediate files to the shared
storage, and the files are consumed by later workflow tasks.

This relatively simple execution model has allowed assembling
complex workflow applications and executing them on large
shared-nothing infrastructures. This execution model, however,
offers many configuration choices (e.g., data placement poli-

Shared Intermediate Storage

App. Task

Local
storage

Workflow
Runtime
Engine

Compute
Nodes

 ... App. Task

Local
storage

App. Task

Local
storage

Schedules workflow
tasks

Progress
update

Figure 1: High level architecture of a workflow system.

The shared intermediate storage harnesses the storage

space of the participating compute nodes and provides a

low latency shared storage space. The input/output data

is staged in/out from the backend storage.

cies, file chunk size, number of nodes to allocate to storage) [8].
Different workflow applications, however, achieve optimal perfor-
mance with different configuration choices [4,9]. Exploring the
configuration space via application runs is time consuming and
costs substantial computational resources. As a result, there
has been increasing demand for optimized configuration and
resource provisioning decisions via time-efficient and lightweight
approaches. To this end, we have built a performance predictor
to efficiently predict the application performance given a certain
resource and storage configuration [9]. This paper extends this
work and to support energy-oriented decision making.

2.2 The Discrete-event Performance Predictor
This section briefly presents the performance predictor our en-

ergy prediction mechanism builds upon (Costa et al. [9] present
the full details). The performance predictor takes as inputs a
description of the overall workflow composition, a characteriza-
tion of the workload, the storaged system configuration (e.g.,
the replication level, system-wide chunk size), and the perfor-
mance characteristics of the hardware platform. The workload
description drives a discrete-event simulation to obtain runtime
estimates for each stage of the workflow and for the aggre-
gate runtime. This work augments the predictor to output the
detailed runtime breakdown of different states (§3.4).
Workload Description. The workload description is an

application trace logged by the distributed storage. The trace
contains I/O operations with timestamps, operation size, offset
and type as well as application compute times between these
operations. The predictor uses this description to simulate
the application by replaying the I/O operations and inferring
compute times during simulation.
The System Model. Each participating system component

is modeled using a service module with its in- and out- queues.
An application driver emulates the workflow scheduler and re-
plays the application traces for all workflow stages. The manager
component is responsible to store metadata operations. The
storage component stores file chunks. The client component
provides an I/O interface to the application and coordinates the
storage components and the metadata manager.
Model Seeding. The predictor uses a lightweight identifi-

cation process for its key performance-related parameters. A
non-intrusive procedure at the client-level (i.e., no changes re-
quired to the underlying system) identifies the value to seed
storage system’s parameters. A script runs a network utility
tool (e.g., iperf) to measure the network service times.

3. DESIGN OF THE ENERGY PREDICTOR

Net

Manager

Service

Net

Storage

Service N
e

tw
o

rk

c
o

re

In queue

Out queue

Service queue

Net

Client

Service

Application Driver

Figure 2: The queue-based model: The application

driver replays the workflow trace to emulate the workflow

execution [9].

3.1 Requirements
Our goal is to design energy prediction tools that enable

evaluating performance/energy tradeoffs and exploring the con-
figuration and provisioning space from an energy perspective.
To this end predicting energy consumption should not be time-
consuming and should provide adequate accuracy (so that the rel-
ative estimates of energy performance tradeoffs are valid among
different configurations, thus making it possible to evaluate the
tradeoffs among different configuration choices). Additionally,
the prediction tools should be simple to use: we aim for tools
that do not require complex system instrumentation or seeding
measurements.
These considerations make the performance predictor de-

scribed in §2.2 a good starting point for our energy prediction
tools. It is: (i) based on a simple model and seeding mechanism,
(ii) effective identification of the desired system configuration,
(iii) scales to model a workflow application run on an entire
cluster while using over 2000x less resources [9].

3.2 Energy Model Description
A typical stage of a workflow progresses as follows: (i) each

node brings the input data from the intermediate storage to
memory (likely through multiple I/O operations), (ii) the pro-
cessor loads the data from the memory and processes it, (iii)
the output is pushed back to the intermediate storage.

Based on this observation our energy model associate different
phases of the workload with different power profiles: (1) Idle
state - part of the power is spent simply to keep the node on;
(2) Application processing state - the node runs application task
binaries on the CPU with the data already in memory (once
it has already been fetched from storage); (3) Storage servicing
state - serving read/write requests; and (4) Network IO state
- performing inter-node data transfers.

We guide the energy usage modeling according to the power
consumption profile of each of these states: idle (P idle), CPU
processing (PApp), storage operations (P storage), and network
transfers (Pnet). As we use RAMDisks for the shared storage1,
the I/O operations are mainly operations over RAM.
With this mindset, the total energy spent during a workflow

application execution can be expressed as the sum of the energy

consumption of individual nodes: Ecluster =
N∑
i

Etotal
i , where

N is the total number of nodes, and Etotal
i is the total energy

consumption of node i. For each node the energy usage during
a workflow execution is Etotal

i = Ebase
i +EApp

i +EWS
i . The

base energy is the energy spent to maintain the node active:

1
This is a common setup for running workflow applications sometimes

imposed by the infrastructure (e.g., IBM BG/P nodes are not equipped
with hard drives.)

Ebase
i =P idle

i ∗T total, where P idle
i is the node’s idle power and

T total is the predicted application runtime. This base portion
of the total energy consumption accounts mainly for the non
energy-proportionality of the hardware platform. As platforms
become increasingly energy proportional, the share of this por-
tion in the total energy envelope will decrease.
The application energy is the additional energy the workflow

stages consume once the data needed has been fetched. It is
modeled by EApp=(PApp−P idle)∗TApp.
The workflow system energy (EWS

i) is modeled by EWS
i =

Estorage
i +Enet

i , which is the sum of the energy spent on read-
ing/writing from/to the local storage and sending/receiving
data to/from other compute nodes. Estorage

i is modeled by
Estorage

i = (P storage−P idle) ∗T storage
i , where P storage is the

node power consumption performing storage operations and
T storage
i is the time spent on these operations. Similarly, Enet

i =
(Pnet−P idle)∗Tnet

i is the estimation for the energy spent on
network transfers. As the performance predictor tracks the
network events, it is feasible to estimate the time spent on each
read/write data from/to the network.
This linear model requires both power and time input. §3.3

explains how the power parameters are gathered, and §3.4 ex-
plains the extensions made to the performance predictor [9] to
generate the input for the energy model.

3.3 Energy Model Seeding
To seed the parameters in the energy model, one needs to get

the power characteristics of the nodes. We use synthetic work-
loads that resemble different phases of the workflow application
execution to get the power states: (i) P idle

i , we retrieve the power

samples when the nodes are idle; (ii) PApp
i , we use stress [1] to

impose load on CPU and measure power; (iii) P storage
i , we use

local write and read throughput tests; and (iv) Pnet
i , we perform

remote writes from a client to a storage service, and measure the
power at the client side. Table 1 shows the gathered power pa-
rameters and average values for the cluster we use. These values
change when we apply power tuning techniques (described §4.3).

3.4 Implementation

Prediction Framework

Performance
Predictor

Workload
Description

Time
Profiles Energy

Model

Predicted Energy

Platform Power
characteristics

System
Configuration

Platform
Performance

characteristics

Figure 3: The predictor receives the application de-

scription, platform performance characteristics, estimates

the time for several events in the system and passes this

information to a module that uses power characteristics of

the platform and uses the energy model to estimate the

energy consumption.

Figure 3 presents the performance predictor and the energy-
related additions. We have augmented the predictor to track
the time each node spends on the different phases of a workflow
task: executing the compute intensive part of the application,
writing to/reading from storage, and receiving/sending network
data. The energy module added to the performance predictor [9]
estimates the energy consumption. This module implements the
model described in §3.2, receives the parameters that describes

the power consumption of the platform (§3.3) in each different
phase of a workflow task, and obtains the estimated time that is
spent on different power states from the performance predictor.

4. EVALUATION
We use synthetic benchmarks and real workflow applications

to evaluate the accuracy of our energy consumption predictor.
The synthetic benchmarks mimic the patterns previous work
has identified in real applications [16,19] and is used to evaluate
the prediction accuracy for each pattern independently. The two
representative applications we use incorporate multiple patterns
to demonstrate the accuracy of the predictor. Additionally,
we evaluate the predictor using different configuration choices,
power tuning techniques (§4.3) and analyze energy-performance
tradeoffs when one varies the size of the resource allocation (§4.4).
Experimental setup. We use an open source distributed

storage system [4,8] for the evaluation because it has multiple
configuration knobs (e.g., replication level, chunk size, data
placement policy) and we can evaluate their impact on energy
consumption. We use the label DSS for experiments running a
(Default Storage System) configuration: data chunks are striped
across storage nodes in a round-robin fashion and no optimiza-
tion data-placement optimization is used. We label WOSS
(Workflow Optimized Storage System) the experiments where
the system is optimized for a specific workflow pattern (including
location-aware scheduling, data-placement, or replication) [3,8].
The goal of showing results for these two configurations is two-
fold: (i) demonstrate the accuracy in a default configuration
setting (§4.1.1), and (ii) show its ability to predict energy savings
when performance oriented configurations are used (§4.1.2).

Table 1: Platform power parameters for Taurus cluster (These

values change when we apply power tuning techniques and

evaluate other clusters)

idle power P idle
i 91.6W

power when stressing CPU only PApp
i 125.2W

power when performing storage operations Pstorage
i 129.0W

power when doing network transfer Pnet
i 127.7W

peak power Ppeak
i 225.0W

Testbed and Power Meters. We use 11 nodes from
Grid5000 ‘Lyon’ Taurus cluster [7]. Each node has two 2.3GHz
Intel Xeon E5-2630 CPUs (each with six cores), 32GB memory
and 10 Gbps NIC (the size of infrastructure with power meters
limits our evaluation scale). Table 1 shows the gathered power
profiles at Taurus. A dedicated node runs the metadata man-
ager and workflow scheduler, while each of the others run the
storage service, the I/O client service, and application processes.
Each node is connected to a SME Omegawatt power-meter,
which provides 0.01W power resolution at 1Hz sampling rate.
We aggregate the power consumption, for each node, for the
duration of the workflow execution to measure the total energy
consumption. The evaluation does not consider the energy con-
sumed by the node that runs metadata service and workflow
scheduler as these are fixed and not subject to the configuration
changes that we target (e.g., replication level, number of nodes).
Evaluation Metrics. The evaluation focuses on prediction

accuracy by comparing the energy consumption and execution
time of actual runs and predictions. We report prediction inac-
curacy as defined by I(E)= |1−Epred/Eactual|. Plots report av-
erage of 10 trials with error bars showing the standard deviation.

4.1 Synthetic Benchmarks: Workflow Patterns

The workflow patterns used to evaluate are: pipeline, reduce
and broadcast. The synthetic benchmarks involve multiple con-
current clients and storage nodes, and each client performs inten-
sive ‘read-process-write’ procedures mimicking workflow stages.

 ...

Pipeline

 ...

Reduce Broadcast

1GB

2GB

2GB

100MB

1GB

2GB

2GB

100MB

2
0
0
M
B

2
0
0
M
B

2
0
0
M
B

2
0
0
M
B

2GB

2GB

2
G
B

200MB 200MB200MB

Figure 4: Pipeline, Reduce and Broadcast benchmarks.

Circles represent a workflow task performing CPU pro-

cessing using stress [1] and arrows represent data transfers

among stages. The labels on arrows represent the file sizes

used.

Pipeline benchmark models a set of compute tasks assem-
bled in parallel sequences in such a way that the output of a
previous task is the input of a next task in a chain (Figure 4). 10
application pipelines run concurrently on 10 compute nodes and
perform three processing stages that read/write files from/to
the distributed shared storage and also stress CPU.
Reduce benchmark represents a single task that consumes

the outputs produced by multiple computations. 10 processes
run in parallel on different nodes and each produces an interme-
diate result. A following reduce task consumes the intermediate
files, and produces the final output.
Broadcast benchmark has a single task producing an out-

put file that is consumed by multiple concurrent tasks. 10
processes run in parallel and consumes the file produced in an
earlier stage.

4.1.1 Evaluating Energy Prediction Accuracy on DSS
We first evaluate the predictor’s accuracy when the workflow

patterns are running on a default storage system (DSS). Left
plots in Figure 5(a), 5(b), and 5(c) present the predicted and ac-
tual energy consumption for the synthetic patterns. The pipeline
benchmark exhibits the best accuracy (only 5.2% inaccuracy)
(Figure 5(a)). For reduce the average inaccuracy is 16.4%, while
for broadcast it is 15.9%. Overall, the predictions have an av-
erage of 12.5% inaccuracy and typically close to one standard
deviation interval. Importantly, the predictor response time is
20-30x times faster than running the actual benchmark, resulting
in the usage of 200x-300x less resources (machines × time) and
showing that our results satisfy the objectives presented in §3.1.

4.1.2 Evaluating Energy Prediction Accuracy on WOSS
In the default storage system configuration (DSS), a round-

robin data placement policy is used: the files produced by
workflow tasks are striped across all the nodes of the shared
storage. Thus, when one task consumes the input files, it needs
to connect to other compute nodes and receive file chunks, which
generates high network contention and results in suboptimal
performance. Past work [3] proposes using file system custom
metadata to enable workflow optimizations including moving
computation near data, and location aware scheduling. Hence,
we evaluate the predictor’s ability to capture the energy savings

0

10

20

30

40

50

60

70

80

DSS WOSSE
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

k
J)

 Actual Predicted

(a) Pipeline

0

5

10

15

20

25

30

35

40

DSS WOSS

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

(k
J)

Actual Predicted

(b) Reduce

0

10

20

30

40

50

60

DSS WOSSE
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

k
J)

 Actual Predicted

(c) Broadcast

Figure 5: Actual and predicted energy consumption
for synthetic benchmark for DSS (left bars) and
WOSS (right bars) storage systems.

when using a workflow optimized storage system (WOSS).
In the pipeline scenario, WOSS stores the intermediate pipeline

files on the storage node co-located with the application. The
workflow scheduler later places the task that consumes the file
on the same node to improve performance via data locality. The
right plot in Figure 5(a) shows the actual and predicted energy:
the predictor achieves 13.4% inaccuracy. In the reduce pattern
scenario, WOSS co-places the output files on a single node and
exposes their location, so that the scheduler can schedule the
reduce task on the machine. The predictor achieves 12.2% inac-
curacy. In the broadcast pattern scenario, parallel tasks consume
the same file concurrently, which creates an access bottleneck.
WOSS creates multiple replicas of the bottleneck file so that
the parallel tasks have multiple data access points. Figure 5(c)
shows the results using 4 replicas: the predictor achieves 16% in-
accuracy. For performance prediction using WOSS configuration
the predictor achieves 2.2 - 4.5% inaccuracies.

4.1.3 Summary
The predictor captures the energy consumption for both DSS

and WOSS configurations with adequate accuracy and, more
importantly, accurately predicts the energy savings brought by
WOSS. As a result, the predictor can help users to make storage
system configuration decisions based on the energy consumption
metric.

4.2 Energy Predictions for Real Applications
This section evaluates the framework’s prediction availability

when it is used for real workflow applications: BLAST and
Montage. BLAST [5] is a DNA search tool. Each node receives
8 DNA sequence queries as input (a file for each node) and
all nodes search the same database file (i.e., BLAST has the
broadcast pattern). Montage [14] is a complex astronomy work-
flow composed of 10 different stages, and a highly variable I/O
communication intensity among the workflow stages (Table 2).
Additionally, it has a number of distinct workflow patterns (e.g.,
mProject, mDiff and mBackground are pipelines; mConcatFit
and mAdd have reduce). In total, the workload contains around
2000 tasks.
Overall, the energy predictions are more accurate for the

real applications than for synthetic benchmarks. This happens
because the synthetic benchmarks are designed to produce a
high stress on the I/O subsystem, which results in contention

Table 2: Characteristics of Montage workflow stages
Stage Data #Files File Size
stageIn 320MB 163 1.7MB-2.1MB
mProject 1.3GB 324 3.3MB-4.2MB
mImgTbl 50KB 1 50KB
mOverlaps 54KB 1 54KB
mDiff 409MB 895 100KB - 3MB
mFitPlane 1.8MB 449 4KB
mConcatFit 21KB 1 21KB
mBgModel 8.3KB 1 8.3KB
mBackground 1.3GB 325 3.3MB - 4.2MB
mAdd 1.3GB 2 503MB
mJPEG 15MB 1 15MB
stageOut 518MB 2 15MB-503MB

0

50

100

150

200

Actual Predicted

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

k
J)

(a) BLAST

0

20

40

60

80

100

120

140

160

Actual Predicted

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

k
J)

(b) Montage

Figure 6: Actual and predicted average energy consump-

tion for BLAST and Montage.

and higher variance that is harder to capture when modeling the
storage system. Specifically, Figure 6(a) shows 5.2% inaccuracy
in energy for BLAST and Figure 6(b) shows 15.9% inaccuracy in
energy for Montage. Although the evaluation is not large-scale
due to the platform limitation, the workloads discussed are I/O
intensive and representative. We previously evaluated the perfor-
mance prediction using large-scale platform and demonstrated
satisfying accuracy [9]. We expect adequate energy prediction
accuracy when moving to a larger scale testbed.

4.3 The Impact of Power-centric Tuning
CPU frequency scaling (a.k.a. CPU throttling) is an im-

portant energy conservation technique where processors run at
less-than-maximum frequency. To evaluate the predictor’s abil-
ity to predict the energy impact of CPU frequency scaling, we
use two types of representative applications: (i) BLAST, with
same workload as in the previous section, representing a mix of
I/O and CPU intensive applications; (ii) the pipeline benchmark,
performing just I/O operations (we reduced to a minimum CPU
stress stage), representing an I/O intensive application. We set
the processors at different frequencies (1200MHz, 1800MHz and
2300MHz), and for each frequency perform independent seeding.

0

50

100

150

200

250

300

350

400

450

1200 1800 2300E
n
e
rg

y
 C

o
n
u
s
m

p
ti
o
n
 (

k
J)

CPU frequency (MHz)

Actual Predicted

(a) BLAST

0
5

10
15
20
25
30
35
40
45
50

1200 1800 2300

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

k
J)

CPU frequency (MHz)

Actual Predicted

(b) pipeline

Figure 7: Actual and predicted average energy consump-

tion for BLAST and pipeline for various CPU frequencies.

Energy model seeding is performed at each frequency level.

Figures 7 show the actual and predicted energy consumption
for BLAST and, respectively for the pipeline benchmark, for dif-
ferent frequencies. Since BLAST is more CPU intensive, using
the minimum frequency (1200MHz) just prolongs the runtime
and leads to 85.5% more energy consumed than when using the
maximum frequency. The predictor accurately estimates the
much higher energy cost. For pipeline, using minimum frequency
does not increase runtime. In fact, since the instantaneous power
is reduced, CPU throttling actually brings energy savings, which
is partially captured by the predictions. The actual runs show
17% energy savings, while the predictor estimates 11% savings.

The results for the two workloads highlight that, depending
on the computational and I/O characteristics of the workflow
application, CPU throttling can bring energy savings or lead
to additional energy costs. The predictor provides an effective
mechanism to predict the energy consumption when the plat-
form enables power tuning techniques like frequency scaling and
can be used in practice to make configuration decisions.

4.4 Predicting Energy-performance Tradeoffs
Another important decision available to users/administrators

is the allocation size. As one allocates more compute and stor-
age nodes for executing workflow applications, the performance
should improve because of the extra resources. However, due to
scale overheads and non-energy proportionality the total energy
cost will likely increase. For instance, the Montage workload we
evaluated has the lowest energy footprint when using only one
node (yet in this case it displays the highest time to solution).
A popular hybrid metric that finds a compromise between these
two metrics is the energy-delay product (EDP).

0

50000

100000

150000

200000

250000

300000

0 5 10 15

E
n
e
rg

y
-D

e
la

y
 P

ro
d
u
c
t

(k
Js

)

Nodes

Actual

Predicted

(a)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10

E
n
e
rg

y
-D

e
a
ly

 P
ro

d
u
c
t

(k
Js

)

Nodes

Actual Predicted

(b)

Figure 8: Montage energy-delay product (EDP). (a)

Actual and Predicted EDP at Sagittaire. (b) Actual and

Predicted EDP at Taurus.

We estimate energy-delay product while varying the number
of allocated nodes. Due to platform size limit, we run the same
Montage workload used in previous sections on up to 10 nodes
at Taurus cluster. We also uses 15 nodes (each of which has two
2.4GHz AMD Opteron CPUs (each with one core), 2GB RAM
and 1 Gbps NIC) from Grid5000 Sagittaire cluster. Figure 8
shows the accuracy of the predictor. Our experiments suggest
that the predictor can be used to make resource allocation deci-
sions: for Sagittaire the actual and predicted runs both indicate
that 5 nodes is the best choice; for Taurus the actual runs indi-
cate that using 8 nodes gives the best EDP for the workload we
use, and the predictor suggests that 8 - 10 nodes are good choices.

5. RELATED WORK
Previous work addressed modeling the full system power. For

example, Economou et al. [10] presents a non-intrusive method
for modeling full-system power consumption based on the idle

power and utilization metrics. Soft-Watt [13] provides low-level
analytical models tied to architectural events and uses simu-
lations to predict power consumption. These more granular
models, however, typically lead to a longer prediction time and
are often highly coupled to the underlying architecture. Addi-
tionally, some parameters of the model are hard to obtain unless
one executes the application in every possible configuration.
Some work use analytical models to evaluate the energy ef-

ficiency of distributed scientific applications. Feng et al. [11]
developed a predictor for profiling power and energy charac-
teristics of parallel scientific applications. Ge et al. [12] have
similar scope as this paper. The main difference from this paper
is that Ge et al. [12] focus on parallel applications while we
focus on the distributed storage layer of workflow applications
that have various patterns and much more I/O operations. We
use discrete event based simulation to obtain the runtime and
obtain higher accuracies.
Similar to our approach, past work uses simulation instead

of only analytical modeling. For instance, OMNeT++ [17] pro-
vides general and accurate network modeling, while DiskSim [2]
can model the storage devices at the hardware level. These tools
could be modified and integrated to build a detailed simulator.
However, due to the low component level simulation, they often
lack fast time to solution. Our approach has achieved reasonable
accuracy while remains lightweight and provides a simple and
effective way to seed the model [9].

6. DISCUSSION AND SUMMARY
What are the Causes of Inaccuracies? Although some

inaccuracy is expected from the simplicity of the model and its
seeding mechanism as mentioned in §3 (e.g., the energy model
does not capture scheduling overleads and metadata operations,
which could lead to underprediction), it is important to discuss
in more depth the sources of inaccuracies. They fall in three
main categories: first, the cluster used in the evaluation shares
the same networking switch with two other clusters, thus interfer-
ence can impact the accuracy of the seeding measurements. This
factor can be addressed by having more exclusive reservations
to limit network interference. Second, despite that the nodes in
the cluster used for evaluation are homogenous machines, they
can have different performance and power profiles. For instance,
the idle power can vary around 5%. The seeding process can be
performed on multiple nodes to obtain the average profiles. The
third source, and more important in this context, is attribut-
ing inaccuracies precisely to time or to energy modelling. One
approach to validate the inaccuracy source is to compare the
energy prediction results between giving real time inputs to the
energy predictor and giving predicted times to the predictor.
Consider the synthetic benchmark results on DSS, the energy
predictor achieves 5% inaccuracy for the pipeline benchmark,
while for the reduce benchmark the inaccuracy is 16%. For the
pipeline scenario, the predicted times and actual times are close
(within 1%), thus the final 5% inaccuracy can be attributed
to the energy model. For the reduce benchmark, the overall
predicted time is underestimated by 6%, which leads to energy
underprediction. When giving the actual time inputs to the
energy model, the prediction inaccuracy is reduced to 9%. Thus,
out of the 16% inaccuracy, 9% can be attributed to the energy
model and 7% can be attributed to the time prediction.
What to do to improve accuracy? As discussed previ-

ously, the nodes in a cluster can have different characteristics.
One approach to increase accuracy is to perform performance
and power seeding process on multiple nodes and obtain the

average power value per state. The energy model captures
the major execution states, however, it does not include the
energy spent on metadata path and workflow scheduling. Im-
plementation the energy cost of those operations can improve
the prediction accuracy. Since the energy predictor requires
time estimates from the performance predictor, and good time
estimates lead to accurate energy prediction. As suggested by
Costa et al. [9], currently the performance predictor does not
capture workflow scheduler overheads, the workflow task launch
overheads. Modeling these overheads can improve the accuracy
of the time to solution, as well as the spent energy.
Optimizing for Time vs. Optimizing for Energy To

optimize for time, one can use optimized storage configuration or
add more resources. The former approach usually exploits data
locality and location-aware scheduling, which generally reduces
the amount of data transfers, thus reduces the energy costs as
well. Due to non-energy proportionality of the state-of-the-art
platforms, idle power remains a large portion of the total power
consumption. Increasing the allocation size of a workload could
improve performance at the cost of spending more energy. The
experiments (§4.3) demonstrate that for a subclass of applica-
tions, it is additionally possible to optimize for energy only by
using power-tuning techniques like CPU throttling. However,
these techniques need to be carefully considered, as they can
bring energy savings or lead to additional costs depending on the
specific application patterns. The proposed energy prediction
tool is useful to support this type of decisions.
Summary This work augments a performance predictor

to obtain energy consumption estimates for workflow-based
applications. We evaluate the accuracy of the predictor us-
ing synthetic benchmarks that represent common data access
patterns and two real world workflow applications. Addition-
ally, we demonstrate the ability of the predictor to support
choosing between different storage configurations, to support
configuration decisions for processor frequency scaling, and for
resource provisioning. Overall, our experiments demonstrate
that the predictor is a low cost, time-efficient tool for evaluating
power-tuning techniques that target a multitude of scenarios
and success metrics (e.g., energy, energy-delay product).

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their in-

sightful comments and suggestions. This project was supported
in part by the DoE ASCR XStack program (ER26013) and
by the Natural Sciences and Engineering Research Council of
Canada.

8. REFERENCES
[1] Stress. http://people.seas.harvard.edu/~apw/stress.

[2] DiskSim. http://www.pdl.cmu.edu/DiskSim/.
[3] S. Al-Kiswany et

al. The case for cross-layer optimizations in storage: A
workflow-optimized storage system. CoRR, abs/1301.6195.

[4] S. Al-Kiswany et al. The Case for a Versatile Storage
System. SIGOPS Oper. Syst. Rev., 44, March 2010.

[5] S. F. Altschul et al. Basic local alignment
search tool. Journal of molecular biology, Oct. 1990.

[6] C. L. Belady. In the Data Center, Power and
Cooling Costs more than the IT Equipment it Supports.

[7] F. Cappello et
al. Grid’5000: a large scale and highly reconfigurable grid
experimental testbed. In Grid Computing Workshop, 2005.

[8] L. Costa et al. The case for workflow-aware storage:
An opportunity study. In Journal of Grid Computing.

http://people.seas.harvard.edu/~apw/stress
http://www.pdl.cmu.edu/DiskSim/

[9] L. B. Costa et al. Supporting Storage
Configuration for I/O Intensive Workflows. In ICS2014.

[10] D. Economou et al. Full-system power analysis
and modeling for server environments. In MOBS’06.

[11] X. Feng, R. Ge, and
K. W. Cameron. Power and Energy Profiling of Scientific
Applications on Distributed Systems. In IPDPS ’05.

[12] R. Ge et al. Modeling and evaluating
energy-performance efficiency of parallel processing
on multicore based power aware systems. In IPDPS’09.

[13] S. Gurumurthi et al. Using complete
machine simulation for software power estimation:
the softwatt approach. In HPCA’02, Feb. 2002.

[14] J. C. Jacob et al. Montage: a grid
portal and software toolkit for science-grade astronomical

image mosaicking. Int. J. Comput. Sci. Eng., 2009.
[15] I. Raicu et al. Many-Task

Computing for Grids and Supercomputers. In MTAGS08.
[16] T. Shibata et al. File-Access Patterns

of Data-Intensive Workflow Applications and their
Implications to Distributed Filesystems. In HPDC ’10.

[17] A. Varga.
Using the OMNeT++ Discrete Event Simulation System
in Education. Education, IEEE Trans. on, 42(4), 1999.

[18] M. Wilde et al. Swift: A language for distributed
parallel scripting. Parallel Computing, 37(9), 2011.

[19] J. M. Wozniak et
al. Case Studies in Storage Access by Loosely Coupled
Petascale Applications. In Proc. of PDSW ’09, 2009.

	Introduction
	Background
	Intermediate Storage System
	The Discrete-event Performance Predictor

	Design of the Energy Predictor
	Requirements
	Energy Model Description
	Energy Model Seeding
	Implementation

	Evaluation
	Synthetic Benchmarks: Workflow Patterns
	Evaluating Energy Prediction Accuracy on DSS
	Evaluating Energy Prediction Accuracy on WOSS
	Summary

	Energy Predictions for Real Applications
	The Impact of Power-centric Tuning
	Predicting Energy-performance Tradeoffs

	Related work
	Discussion and Summary
	Acknowledgments
	References

