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ABSTRACT 
Continuum-scale models have long been used to study subsurface 
flow, transport, and reactions but lack the ability to resolve 
processes that are governed by pore-scale mixing. Recently, pore-
scale models, which explicitly resolve individual pores and soil 
grains, have been developed to more accurately model pore-scale 
phenomena, particularly reaction processes that are controlled by 
local mixing. However, pore-scale models are prohibitively 
expensive for modeling application-scale domains. This motivates 
the use of a hybrid multiscale approach in which continuum- and 
pore-scale codes are coupled either hierarchically or concurrently 
within an overall simulation domain (time and space). This 
approach is naturally suited to an adaptive, loosely-coupled many-
task methodology with three potential levels of concurrency. Each 
individual code (pore- and continuum-scale) can be implemented 
in parallel; multiple semi-independent instances of the pore-scale 
code are required at each time step providing a second level of 
concurrency; and Monte Carlo simulations of the overall system 
to represent uncertainty in material property distributions provide 
a third level of concurrency. We have developed a hybrid 
multiscale model of a mixing-controlled reaction in a porous 
medium wherein the reaction occurs only over a limited portion of 
the domain. Loose, minimally-invasive coupling of pre-existing 
parallel continuum- and pore-scale codes has been accomplished 
by an adaptive script-based workflow implemented in the Swift 
workflow system. We describe here the methods used to create the 
model system, adaptively control multiple coupled instances of 
pore- and continuum-scale simulations, and maximize the 
scalability of the overall system. We present results of numerical 
experiments conducted on NERSC supercomputing systems; our 
results demonstrate that loose many-task coupling provides a 
scalable solution for multiscale subsurface simulations with 
minimal overhead. 
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1. INTRODUCTION 
Contemporary subsurface environmental and energy applications 
involve coupling of hydrologic and biogeochemical processes in 
the context of a highly heterogeneous environment. The immense 
disparity in spatial scales between fundamental process scales and 
application scales poses a severe challenge to predictive modeling 
and has motivated the study of novel hybrid multiscale modeling 
approaches.  [1]. Continuum-scale models have been used to 
study subsurface fluid flow, transport, and reactions for many 
years. These models treat complex porous systems as an effective 
continuum, with macroscopic properties such as porosity and 
permeability. They simulate reactions based on concentrations of 
reactants and products defined over volumes corresponding to 
elements of the model discretization, and thus assume complete 
mixing below the resolution of the grid (an assumption that is 
usually invalid). In contrast, pore-scale models explicitly 
represent individual soil grains and pore spaces, and are 
discretized at scales at which diffusion is relatively fast, thus 
rendering sub-grid mixing a much better assumption. As a result, 
pore-scale models can more accurately model mixing-controlled 
processes such as mineral precipitation [2]. Kinetic models and 
genome-scale microbial models are being developed to improve 
our understanding of surface reactions that cannot be fully 
captured by pore-scale models. Since even a small domain may 
contain on the order of billions of particles, or trillions of 
microbes or molecules, it is prohibitively expensive to model 
entire domains using the fine grained methods. Thus, hybrid 
multiscale models [1] are being developed to incorporate pore-
scale models within limited sub-domains of traditional models.  
Hybrid multiscale models are good candidates for a many-task 
parallel workflow, because within a single simulation domain 
there may be many sub-domains (adaptively defined) within 
which pore-scale simulations are desired.  Each of these 
simulations can be executed using a parallel code (e.g., using 
domain decomposition methods), and many such simulations can 
be performed in parallel (often in a fully decoupled mode to 
eliminate communications). A third level of concurrency can be 
obtained in the case where multiple realizations of the same model 
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are needed, for example in Monte Carlo simulations for 
uncertainty quantification. We describe an example of such a 
model in this paper.  
At each scale in a hybrid multiscale simulation, there is a choice 
of alternative simulators that can be applied with the selection of a 
particular code dictated by the unique features of both the 
problem definition and the simulators. In the prototype model 
proposed by Scheibe et al. [3] and described in this paper, a Swift 
workflow couples the STOMP [4] continuum code (macroscale) 
with the SPH [5] pore-scale code (microscale).  Swift [6, 7] 
provides a data flow framework for controlling execution and 
exchanging data across workflow steps via files.  The other major 
function of a coupling framework, namely data transformation, is 
accomplished via custom scripts integrated into the workflow.  
Other components of the workflow perform the following 
functions: dynamically determine the number and locations of 
pore-scale domains; transform continuum data to pore scale and 
vice versa, intelligently schedule the pore scale simulations.  
The numerical experiment setup and a high level view of the 
workflow are shown in Figure 1.  In this iterative process, the 
macro-scale model (STOMP) first executes a single time step over 
the entire domain.  The output is processed to evaluate adaptivity 
criteria that determine the location and number of micro-scale 
models and to produce the required input files for the micro-scale 
simulations (performed by a pore generator script - PG). The 
MPI-based SPH simulations are scheduled concurrently 
depending on the number of processors available and the 
performance profile of the code.  The workflow hence follows the 
many task computing paradigm [8, 9], executing multiple parallel 
tasks concurrently.  In our test problem, all micro-scale 
simulations occur in a single vertical column of macro-scale grid 
cells, and up to 60 such simulations can be performed within a 
single time step (one loop of the workflow). Results of micro-
scale simulation are collected and processed to provide effective 
reaction rates and concentrations as feedback to the macro-scale 
model through a grid parameter generator script (GPG) and 
starting the next iteration of the loop. All process communications 
are performed via files already used and produced by the codes.  

 
Figure 1. The coupled workflow and iterative process 

While a tightly-coupled model may offer performance benefits, 
we chose to follow a loose coupling approach for some important 
reasons. “First, the two models have very different data structures; 
tight integration of shared structure is not required. Second, each 
of these codes is being developed independently by separate 

groups and undergoing large-scale development. In addition, the 
code which determines pore regions, their locations and 
characteristics would also have to be integrated. Tight integration 
will require significant effort to manage and be disruptive to 
ongoing efforts [10].” Third, we wanted to employ a framework 
that could be readily adapted to plug in alternative micro-scale 
and macro-scale simulators as needed.  Finally, adding analysis 
and visualization methods to the coupled process further 
complicates the model. This loose coupling approach was largely 
non-invasive to the two simulators (SPH and STOMP), with 
minimal changes required to the SPH code to implement model 
boundary conditions that allowed the individual micro-scale 
simulations to be fully decoupled from each other. 

2. BACKGROUND 

2.1 STOMP and SPH 
The continuum-scale simulation is performed using the 
Subsurface Transport Over Multiple Phases (STOMP) simulator 
[4].  Here we are considering only saturated flow and solute 
transport with aqueous-phase reactions in 2D on a modest number 
of grid nodes, and therefore we use the serial water-only mode 
with reactions (ECKEChem module).  

The Smoothed Particle Hydrodynamics (SPH) method is a fully 
lagrangian mesh-free particle-based method, which is particularly 
well suited to simulate problems that involve moving interfaces 
and dynamic pore geometry.  We use an in-house scalable parallel 
implementation of SPH [5] as the pore-scale simulator. 

2.2 Swift 
A Swift script describes data, application components, and 
invocations of applications. A Swift workflow generally involves 
executing a large number of independent tasks in an HPC or 
distributed environment. The advantages to using Swift include an 
elegance of remote execution that is inherent to the language. 
Swift also provides file and data management capabilities.   
Swift has an inherent parallel nature; when iterating over arrays, 
each task is performed in parallel. This makes the execution of 
parameter studies much more efficient. Also, the complexities of 
parallelization are encapsulated. This makes the launching of 
multiple remote jobs in parallel and monitoring their status simple 
to implement. Swift will launch every job in parallel and wait for 
them to finish. Once each job is completed, Swift will check for 
the expected output files. 

3. RELATED WORK 
There are many approaches that can be considered for coupling 
multiscale components into a single hybrid model.   One approach 
that has been quite successful and provides for good performance 
is the use of an application-specific, MPI-based coupler 
component.  This method has been applied in climate simulation 
[11], gas turbine applications [12] and other domains [13-15].  
This approach works best when the set of components are fairly 
static and data transformations are well defined.  The main 
drawback is that the coupler may be intrusive to each component 
and costly to implement. Frameworks that generalize the coupling 
concept while still providing for a single MPI-based code have 
also been developed such as [16] for numerical relativity 
applications and the Common Component Architecture (CCA) 
[17] as a general framework.  This approach also requires 



significant design change to existing codes and in practice has not 
been readily adapted to other hybrid modeling efforts.  
Workflow based approaches using scripting languages have been 
popular due to the ease of implementation, maintenance and 
portability. A coupled model using python as a scripting language 
was developed for multi-physics simulations [12]. The ESSE used 
shell scripting to develop a workflow for running an ensemble of 
climate model simulations [15]. A number of formal workflow 
frameworks [eg.,. 18, 19] have been implemented over last few 
years that provide an abstraction from the details of workflow 
execution, job scheduling, resource management and error 
handling etc. The Swift workflow language, used to develop the 
hybrid subsurface model, offers an implicitly parallel and 
deterministic programming model [7], which is central to our 
multi-parallel task based workflow design. It also provides 
functional mappers, which allows external applications to be 
applied to file collections.  Moreover, a C-like syntax and 
abstraction from complex details of parallel execution greatly 
simplifies the implementation process.  The IPS (Integrated 
Plasma Simulator) framework [13] used Swift for coupled multi-
physics simulation of fusion plasmas. For loosely-coupled 
approaches, communication is performed via files, potentially 
introducing a significant bottleneck.  However, the use of files fits 
naturally into the components and can be optimized, to some 
extent, using ram-disk [22], where available, or approaches such 
as HDF5 virtual file drivers [23] that employ the underlying 
mechanism of the HDF5 API to use memory rather than files for 
storage. 

4. DESIGN AND IMPLEMENTATION 

4.1 Bimolecular Reaction Experiment 
Our initial numerical experiment (Figure 1) simulates the parallel 
transport of two solutes with an irreversible mixing-controlled 
kinetic reaction occurring at the interface between the two solutes, 
generating a third solute. The system is filled with a homogeneous 
porous medium (sand).  The sand is saturated with water, and two 
solutes (denoted as A and B) are injected at the bottom and flow 
to the top at a specified rate. As the solutions flow upward 
through the flow cell, they mix along the centerline, leading to 
reaction and formation of the third solute (C). The rate of reaction 
at the interface is strongly controlled by the rate of lateral 
diffusion of the two reactants. The mathematical approach for 
coupling the pore- and continuum-scale simulations is described 
in [20].     
Our numerical experiment is performed on a 2D system (30.5 cm 
x 30 cm, Figure 2).  The macroscale (STOMP) simulations use a 
regular mesh of size 61 x 60 cells. Each SPH geometry is 
homogenous with a size of 0.5 x 0.5 cm (corresponding to a single 
STOMP cell) and containing 40,000 particles. STOMP executes 
on a single processor while the SPH code executes on the “best” 
number of available processors.  The mechanism for this is 
described in the Adaptive Scheduling section below.  The system 
is modeled after the mixing-controlled reaction experiment 
reported in [21], with the primary difference being that we 
consider for simplicity a homogeneous (aqueous-phase only) 
reaction rather than a mineral precipitation reaction.  A specified 
flux boundary condition is applied at the bottom of the domain, 
with a Darcy velocity of 1 cm/min, and a specified pressure is 
imposed at the top of the domain simulating the free outflow 
boundary of the experiment.  No-flow conditions are specified at 
right and left boundaries. 

 
Figure 2. Computational domain. 

4.2 Swift Workflow 
Our hybrid subsurface model workflow is implemented using the 
Swift workflow language [6, 7]. Swift’s ability to maintain 
relationships over multiple iterations between different 
components of the workflow provides a powerful interface to 
track and maintain each piece of data as it is generated during the 
course of the simulation. Also, the generation of a virtual 
environment for executing subtasks and ensuing garbage 
collection ensures that the temporary data generated over the 
course of the run is safely discarded, with only the necessary data 
being preserved for post-processing.  
As codes execute in temporary virtual environments, ensuring all 
input files generated from multiple sources be present in the 
virtual directory is cumbersome and prone to errors. Also, as with 
most of the scientific codes, STOMP and SPH generate multiple 
output files, each marked with unique time step. Specifying an 
arbitrary number of files as an output of a code is not fully 
supported in Swift. This forces us to do a ‘tar’ on all output files 
to create single file,  which ensures that all files are preserved. 
The files marked with the last time step also end up serving as 
input to other components of the workflow. Since, the name of the 
output file with last time step is unknown until runtime, Swift 
cannot be expected to bring back that file. To overcome this 
limitation, a simple bash code, identifies the file with latest time 
step and moves it to a pre-specified name, which is provided to 
Swift. Another requirement of our Swift workflow is a process to 
specify the number of SPH runs. The PG component calculates 
the number of SPH runs in a particular iteration and creates input 
files for each SPH simulation. Candidate SPH domains become 
activated when the initial concentrations of reactants reach a user-
specified minimum threshold. Swift, however, needs to know the 
number of files that will be produced as output of PG, so it can 
wait for all of them to get produced. To address this issue, we split 
our PG algorithm into two sub-steps. The first step calculates 
number of pore-regions ‘n’ required in a particular iteration and 
hands this information back to Swift workflow.  Swift’s 
fixed_array_mapper is then used to specify files for each of the ‘n’ 
SPH simulations, produced by PG.  
Our Swift workflow consists of an app each for STOMP, 
PG_calc_num, PG_createfiles, SPH and GPG. Limited 
modifications were made to the pre-existing STOMP and SPH 
simulators to facilitate file-based exchange of boundary 
conditions and eliminate need for direct communications, but 
these modifications were minimal in nature. A foreach construct is 
used to run all SPH simulations in parallel, as per our adaptive 



scheduling policy, described in the next section.  A hybrid_model 
function consists of all these app components, and defines a single 
iteration of the workflow. An iterative loop over the hybrid_model 
function is used, enforcing serial execution between iterations, 
where outputs from one iteration serve as input to the next 
iteration. A maximum number of iterations is specified at the 
command line by the user.  Swift is configured to run locally on 
the system and definitions are provided (path to code executables) 
for each of the “apps” in the workflow.   

 

4.3 Adaptive Scheduling 
The pore-scale simulations in the hybrid subsurface model are the 
most expensive part of the workflow. The number of these 
simulations changes at each iteration as solute concentrations 
move throughout the system. The pore-scale simulations are 
launched using the Swift’s “foreach” construct which executes the 
tasks in parallel. Each of these SPH runs is launched as parallel 
job. Our adaptive scheduling algorithm focuses on minimizing the 
run time for running these multiple SPH simulations, based on the 
number of processes available. Some of the key features are:  
1) Define an optimal range for number of processes to be used 

for each SPH run: We observed that the scalablity of the 
SPH simulations was limited due to the relatively small 
number of particles used in each simulation. To determine 
the optimal number of processes required for SPH runs, we 
performed multiple scaling tests,  varying the number of 
processes for three candidate particle discretizations 
(Np=40,000, 80,000 and 160,000).  SPH run time decreases 
with increasing number of processors initially, but eventually 
the run time flattens and then increases as additional 
processors are added, because communication becomes the 
predominant factor in runtime as opposed to computation. 
We also observed that a minimum number of processors is 
required by SPH to provide sufficient memory. Hence we 
define a range for number of processes (minprocs, maxprocs) 
suitable for executing a single SPH run.  For Np=40,000, 
which was deemed sufficient to obtain an accurate solution, 
minprocs=1152 (48 nodes * 24 cores/node) and 
maxprocs=2304 (96 nodes * 24 cores/node) (Figure 3).  

2) Schedule multiple batches of simultaneous SPH simulations: 
The scheduling algorithm determines if there are enough 
nodes in the runtime allocation to run all SPH tasks together. 
If there are enough nodes, then all SPH tasks can be 
scheduled together. In this case, the algorithm divides the 
resources equally amongst all SPH tasks, ensuring that each 
does not use more than “maxprocs”. If the number of nodes 
is not sufficient to run all SPH tasks together, the runs are 
done in multiple batches in an iterative manner using 
“minprocs” for each SPH. In the worst case scenario, all SPH 
simulations can be launched as serial jobs in an iterative 
manner.  

3) Map from processes to nodes based on system configuration: 
To avoid wasting node computation power and avoid 
scheduling issues across node boundaries, all data regarding 
available number of processes, minprocs and maxprocs is 
converted to number of nodes (by dividing 24 procs/node) in 
the input and configuration files and the scheduling 
algorithm is applied accordingly. 

 

 
Figure 3. Scaling tests for SPH run times, Np=40000 

4.4 Eliminating SPH Runs  
During the course of our hybrid model runs, it was observed that 
the SPH simulations tend toward a quasi-steady condition over 
time.  Initially the boundary conditions lead to rapid influx of 
reactants and an increase in the reaction rate as mixing proceeds, 
but after some relatively small number of iterations the influx of 
the reactants is balanced by the efflux plus consumption by the 
reaction, and the system becomes stable.  Since the effective 
reaction rate (passed to the macro-scale model) is no longer 
changing, it is not necessary to perform pore-scale simulations in 
future iterations.   
To save critical time and resources, we incorporate methods in 
workflow to adaptively turn off execution for those SPH cells that 
have reached steady state. This greatly reduces the run time of the 
hybrid system, from running potentially running average of ~30 
SPH each iteration to just running a few. In our example case it 
was observed that running only about 15-25 SPH’s every iteration 
was sufficient to model active parts of the complete hybrid model 
domain.  

4.5 Visualization 
STOMP results are visualized as 2D spatial plots of 
concentrations of reactants A, B, and product C (a single time 
snapshot is shown in Figure 6).  When the workflow begins, 
concentrations of A and B—enter the system at the bottom of the 
cell and react to form C, shown in the third plot.  Values for 
concentration are indicated using a spectrum of color values.  As 
the workflow continues execution, the concentrations of the three 
constituents rise into the upper regions of the cell.  

 
Figure 6. STOMP visualization 

Each SPH task is configured to run for 1330 steps (time step = 
0.00075), simulating 1 second of time for each iteration of the 
workflow.  Every 100 steps the concentrations are exported to an 
h5part file (13 files per workflow iteration).  Unfortunately, it 
takes two to three times as long to plot the results from SPH than 
it takes to execute the simulation.  For this reason we removed the 
automated generation of these plots from the workflow.  Instead, 
we wrote a postprocessing script to generate plots for runs of 
interest instead of generating all plots during workflow execution. 



Three pseudo color plots are produced visualizing concentrations 
of reactants A, B, and product C (Figure 7, analogous to the 
STOMP plots in Figure 6 but within a limited pore-scale domain).  
The circular blue regions indicate areas occupied by solid grains.  
Only liquid regions are used to plot the concentrations for each 
constituent.  In Figure 7, A and B (left two images, respectively) 
have mostly reacted at the particle level to form C (right image). 

 
Figure 7. SPH visualization 

5.  EXPERIMENTAL RESULTS 
The entire simulation consists of ~800 iterations, involving less 
than 60 pore-scale simulations within each iteration, and is run on 
1536 nodes (24 processors each) on a Cray XE6 system (Hopper, 
NERSC).  It takes ~96 hr as wall clock time to finish the 
simulation. 85% of run time is used for SPH runs and less than 
10% is used for PG. Currently I/O is not a problem for this 2D 
experiment. The visualization process is not included in the 
workflow to save computational time. 

6. DISCUSSION 

6.1 Overall Summary 
We have demonstrated a many-task approach to hybrid multiscale 
coupling of pore- and continuum-scale porous media flow and 
reactive transport simulators. The hybrid multiscale approach is 
relatively new in subsurface hydrology [1], and is well-suited to 
the use of high-performance computing and a task parallel script-
based simulation environment. Loose coupling of many micro-
scale tasks within a macro-scale domain was supported by use of 
the Swift workflow environment, and provided a feasible solution 
approach to a complex simulation problem. In the case 
considered, in which pore-scale mixing is a dominant process that 
cannot be adequately represented in a continuum-only model, the 
hybrid method provides a new alternative to increase solution 
accuracy while maintaining computational feasibility (relative to 
simulating pore scale processes over the entire spatial and 
temporal domain). The model uses Swift’s data mapping and 
management, error handling and inherent parallel model 
execution capabilities and also includes post-processing and 
visualization. The 2D mixing-controlled example problem serves 
as a test case to demonstrate the capability and accuracy of the 
current hybrid multiscale model, which can be extended to more 
realistic problems. 

6.2 Swift Related Issues and Appropriateness 
When using Swift we have encountered a few challenges that we 
have had to work around.  First is a documented issue of how 

Swift handles file collections when the number of files is 
unknown.  Swift’s execution approach is to run all things in 
parallel.  Execution is blocked if the input from one process 
depends on the output from another process.  Swift needs to know 
how many files to wait for until it can stop blocking.  Our output 
files have a known naming scheme but the number of output files 
can vary.  There doesn’t seem to be an easy way for Swift to 
handle a variable number of these files.  To get around this, we 
archive all the output files (into one single “tar” file) after the 
simulation is complete.  This way, Swift blocks execution until 
the single archive file is produced.  Downstream processes that 
need these files are then responsible for unpacking the files before 
using them.  
Another issue encountered with Swift involves input file staging.  
Before running a simulation, Swift creates a new job directory 
where it generates symbolic links to each of the input files.  If the 
input file is located inside a subdirectory created by a previous 
job, a new directory is created to mirror its relative location inside 
the job directory.  When the simulation is invoked, the input files 
are all located inside subdirectories instead of inside the base run 
directory.  To work around this we moved the files using a shell 
script into the base run directory before invoking the simulation.  
A third issue when working with Swift was dynamic assignment 
of variables.  In Swift, when a variable is assigned a value, the 
value is final.  This reduces the language flexibility when creating 
logic to swap I/O files during workflow execution based on 
outside information.  Arrays in Swift can have multiple values 
assigned, so this approach was used to develop the desired logic. 
Swift also simplifies data management by implicitly removing 
files that are not specified as part of the workflow. However all 
files that might be needed for provenance/visualization or other 
data analysis capabilities are identified in the workflow in order to 
be preserved. We also would like to mention that our Swift 
workflow is portable but does not use the recently developed 
JETS [7] in which the tasks are managed by an MPICH based task 
manager. 
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