
A Many-Task Parallel Approach for Multiscale Simulations
of Subsurface Flow and Reactive Transport

Timothy D. Scheibe, Xiaofan Yang, Karen Schuchardt, Khushbu Agarwal, Jared Chase, Bruce

Palmer, and Alexandre Tartakovsky
Pacific Northwest National Laboratory

902 Battelle Blvd
Richland, WA 99354

+1(509)371-7633
tim.scheibe@pnnl.gov

ABSTRACT
Continuum-scale models have long been used to study subsurface
flow, transport, and reactions but lack the ability to resolve
processes that are governed by pore-scale mixing. Recently, pore-
scale models, which explicitly resolve individual pores and soil
grains, have been developed to more accurately model pore-scale
phenomena, particularly reaction processes that are controlled by
local mixing. However, pore-scale models are prohibitively
expensive for modeling application-scale domains. This motivates
the use of a hybrid multiscale approach in which continuum- and
pore-scale codes are coupled either hierarchically or concurrently
within an overall simulation domain (time and space). This
approach is naturally suited to an adaptive, loosely-coupled many-
task methodology with three potential levels of concurrency. Each
individual code (pore- and continuum-scale) can be implemented
in parallel; multiple semi-independent instances of the pore-scale
code are required at each time step providing a second level of
concurrency; and Monte Carlo simulations of the overall system
to represent uncertainty in material property distributions provide
a third level of concurrency. We have developed a hybrid
multiscale model of a mixing-controlled reaction in a porous
medium wherein the reaction occurs only over a limited portion of
the domain. Loose, minimally-invasive coupling of pre-existing
parallel continuum- and pore-scale codes has been accomplished
by an adaptive script-based workflow implemented in the Swift
workflow system. We describe here the methods used to create the
model system, adaptively control multiple coupled instances of
pore- and continuum-scale simulations, and maximize the
scalability of the overall system. We present results of numerical
experiments conducted on NERSC supercomputing systems; our
results demonstrate that loose many-task coupling provides a
scalable solution for multiscale subsurface simulations with
minimal overhead.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and Engineering;
D.4 [Operating Systems]: D.4.1 [Process Management]:

Multiprocessing/multiprogramming/multitasking

General Terms
Algorithms, Management, Performance, Verification.

Keywords
Workflow, scalability, coupling, multiscale simulations

1. INTRODUCTION
Contemporary subsurface environmental and energy applications
involve coupling of hydrologic and biogeochemical processes in
the context of a highly heterogeneous environment. The immense
disparity in spatial scales between fundamental process scales and
application scales poses a severe challenge to predictive modeling
and has motivated the study of novel hybrid multiscale modeling
approaches. [1]. Continuum-scale models have been used to
study subsurface fluid flow, transport, and reactions for many
years. These models treat complex porous systems as an effective
continuum, with macroscopic properties such as porosity and
permeability. They simulate reactions based on concentrations of
reactants and products defined over volumes corresponding to
elements of the model discretization, and thus assume complete
mixing below the resolution of the grid (an assumption that is
usually invalid). In contrast, pore-scale models explicitly
represent individual soil grains and pore spaces, and are
discretized at scales at which diffusion is relatively fast, thus
rendering sub-grid mixing a much better assumption. As a result,
pore-scale models can more accurately model mixing-controlled
processes such as mineral precipitation [2]. Kinetic models and
genome-scale microbial models are being developed to improve
our understanding of surface reactions that cannot be fully
captured by pore-scale models. Since even a small domain may
contain on the order of billions of particles, or trillions of
microbes or molecules, it is prohibitively expensive to model
entire domains using the fine grained methods. Thus, hybrid
multiscale models [1] are being developed to incorporate pore-
scale models within limited sub-domains of traditional models.
Hybrid multiscale models are good candidates for a many-task
parallel workflow, because within a single simulation domain
there may be many sub-domains (adaptively defined) within
which pore-scale simulations are desired. Each of these
simulations can be executed using a parallel code (e.g., using
domain decomposition methods), and many such simulations can
be performed in parallel (often in a fully decoupled mode to
eliminate communications). A third level of concurrency can be
obtained in the case where multiple realizations of the same model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
7th Workshop on MTAGS, November 16, 2014, New Orleans, LA, USA.
Copyright 2014 ACM 1-0000-000-0/00/0010 …$15.00.

mailto:tim.scheibe@pnnl.gov

are needed, for example in Monte Carlo simulations for
uncertainty quantification. We describe an example of such a
model in this paper.
At each scale in a hybrid multiscale simulation, there is a choice
of alternative simulators that can be applied with the selection of a
particular code dictated by the unique features of both the
problem definition and the simulators. In the prototype model
proposed by Scheibe et al. [3] and described in this paper, a Swift
workflow couples the STOMP [4] continuum code (macroscale)
with the SPH [5] pore-scale code (microscale). Swift [6, 7]
provides a data flow framework for controlling execution and
exchanging data across workflow steps via files. The other major
function of a coupling framework, namely data transformation, is
accomplished via custom scripts integrated into the workflow.
Other components of the workflow perform the following
functions: dynamically determine the number and locations of
pore-scale domains; transform continuum data to pore scale and
vice versa, intelligently schedule the pore scale simulations.
The numerical experiment setup and a high level view of the
workflow are shown in Figure 1. In this iterative process, the
macro-scale model (STOMP) first executes a single time step over
the entire domain. The output is processed to evaluate adaptivity
criteria that determine the location and number of micro-scale
models and to produce the required input files for the micro-scale
simulations (performed by a pore generator script - PG). The
MPI-based SPH simulations are scheduled concurrently
depending on the number of processors available and the
performance profile of the code. The workflow hence follows the
many task computing paradigm [8, 9], executing multiple parallel
tasks concurrently. In our test problem, all micro-scale
simulations occur in a single vertical column of macro-scale grid
cells, and up to 60 such simulations can be performed within a
single time step (one loop of the workflow). Results of micro-
scale simulation are collected and processed to provide effective
reaction rates and concentrations as feedback to the macro-scale
model through a grid parameter generator script (GPG) and
starting the next iteration of the loop. All process communications
are performed via files already used and produced by the codes.

Figure 1. The coupled workflow and iterative process

While a tightly-coupled model may offer performance benefits,
we chose to follow a loose coupling approach for some important
reasons. “First, the two models have very different data structures;
tight integration of shared structure is not required. Second, each
of these codes is being developed independently by separate

groups and undergoing large-scale development. In addition, the
code which determines pore regions, their locations and
characteristics would also have to be integrated. Tight integration
will require significant effort to manage and be disruptive to
ongoing efforts [10].” Third, we wanted to employ a framework
that could be readily adapted to plug in alternative micro-scale
and macro-scale simulators as needed. Finally, adding analysis
and visualization methods to the coupled process further
complicates the model. This loose coupling approach was largely
non-invasive to the two simulators (SPH and STOMP), with
minimal changes required to the SPH code to implement model
boundary conditions that allowed the individual micro-scale
simulations to be fully decoupled from each other.

2. BACKGROUND

2.1 STOMP and SPH
The continuum-scale simulation is performed using the
Subsurface Transport Over Multiple Phases (STOMP) simulator
[4]. Here we are considering only saturated flow and solute
transport with aqueous-phase reactions in 2D on a modest number
of grid nodes, and therefore we use the serial water-only mode
with reactions (ECKEChem module).

The Smoothed Particle Hydrodynamics (SPH) method is a fully
lagrangian mesh-free particle-based method, which is particularly
well suited to simulate problems that involve moving interfaces
and dynamic pore geometry. We use an in-house scalable parallel
implementation of SPH [5] as the pore-scale simulator.

2.2 Swift
A Swift script describes data, application components, and
invocations of applications. A Swift workflow generally involves
executing a large number of independent tasks in an HPC or
distributed environment. The advantages to using Swift include an
elegance of remote execution that is inherent to the language.
Swift also provides file and data management capabilities.
Swift has an inherent parallel nature; when iterating over arrays,
each task is performed in parallel. This makes the execution of
parameter studies much more efficient. Also, the complexities of
parallelization are encapsulated. This makes the launching of
multiple remote jobs in parallel and monitoring their status simple
to implement. Swift will launch every job in parallel and wait for
them to finish. Once each job is completed, Swift will check for
the expected output files.

3. RELATED WORK
There are many approaches that can be considered for coupling
multiscale components into a single hybrid model. One approach
that has been quite successful and provides for good performance
is the use of an application-specific, MPI-based coupler
component. This method has been applied in climate simulation
[11], gas turbine applications [12] and other domains [13-15].
This approach works best when the set of components are fairly
static and data transformations are well defined. The main
drawback is that the coupler may be intrusive to each component
and costly to implement. Frameworks that generalize the coupling
concept while still providing for a single MPI-based code have
also been developed such as [16] for numerical relativity
applications and the Common Component Architecture (CCA)
[17] as a general framework. This approach also requires

significant design change to existing codes and in practice has not
been readily adapted to other hybrid modeling efforts.
Workflow based approaches using scripting languages have been
popular due to the ease of implementation, maintenance and
portability. A coupled model using python as a scripting language
was developed for multi-physics simulations [12]. The ESSE used
shell scripting to develop a workflow for running an ensemble of
climate model simulations [15]. A number of formal workflow
frameworks [eg.,. 18, 19] have been implemented over last few
years that provide an abstraction from the details of workflow
execution, job scheduling, resource management and error
handling etc. The Swift workflow language, used to develop the
hybrid subsurface model, offers an implicitly parallel and
deterministic programming model [7], which is central to our
multi-parallel task based workflow design. It also provides
functional mappers, which allows external applications to be
applied to file collections. Moreover, a C-like syntax and
abstraction from complex details of parallel execution greatly
simplifies the implementation process. The IPS (Integrated
Plasma Simulator) framework [13] used Swift for coupled multi-
physics simulation of fusion plasmas. For loosely-coupled
approaches, communication is performed via files, potentially
introducing a significant bottleneck. However, the use of files fits
naturally into the components and can be optimized, to some
extent, using ram-disk [22], where available, or approaches such
as HDF5 virtual file drivers [23] that employ the underlying
mechanism of the HDF5 API to use memory rather than files for
storage.

4. DESIGN AND IMPLEMENTATION

4.1 Bimolecular Reaction Experiment
Our initial numerical experiment (Figure 1) simulates the parallel
transport of two solutes with an irreversible mixing-controlled
kinetic reaction occurring at the interface between the two solutes,
generating a third solute. The system is filled with a homogeneous
porous medium (sand). The sand is saturated with water, and two
solutes (denoted as A and B) are injected at the bottom and flow
to the top at a specified rate. As the solutions flow upward
through the flow cell, they mix along the centerline, leading to
reaction and formation of the third solute (C). The rate of reaction
at the interface is strongly controlled by the rate of lateral
diffusion of the two reactants. The mathematical approach for
coupling the pore- and continuum-scale simulations is described
in [20].
Our numerical experiment is performed on a 2D system (30.5 cm
x 30 cm, Figure 2). The macroscale (STOMP) simulations use a
regular mesh of size 61 x 60 cells. Each SPH geometry is
homogenous with a size of 0.5 x 0.5 cm (corresponding to a single
STOMP cell) and containing 40,000 particles. STOMP executes
on a single processor while the SPH code executes on the “best”
number of available processors. The mechanism for this is
described in the Adaptive Scheduling section below. The system
is modeled after the mixing-controlled reaction experiment
reported in [21], with the primary difference being that we
consider for simplicity a homogeneous (aqueous-phase only)
reaction rather than a mineral precipitation reaction. A specified
flux boundary condition is applied at the bottom of the domain,
with a Darcy velocity of 1 cm/min, and a specified pressure is
imposed at the top of the domain simulating the free outflow
boundary of the experiment. No-flow conditions are specified at
right and left boundaries.

Figure 2. Computational domain.

4.2 Swift Workflow
Our hybrid subsurface model workflow is implemented using the
Swift workflow language [6, 7]. Swift’s ability to maintain
relationships over multiple iterations between different
components of the workflow provides a powerful interface to
track and maintain each piece of data as it is generated during the
course of the simulation. Also, the generation of a virtual
environment for executing subtasks and ensuing garbage
collection ensures that the temporary data generated over the
course of the run is safely discarded, with only the necessary data
being preserved for post-processing.
As codes execute in temporary virtual environments, ensuring all
input files generated from multiple sources be present in the
virtual directory is cumbersome and prone to errors. Also, as with
most of the scientific codes, STOMP and SPH generate multiple
output files, each marked with unique time step. Specifying an
arbitrary number of files as an output of a code is not fully
supported in Swift. This forces us to do a ‘tar’ on all output files
to create single file, which ensures that all files are preserved.
The files marked with the last time step also end up serving as
input to other components of the workflow. Since, the name of the
output file with last time step is unknown until runtime, Swift
cannot be expected to bring back that file. To overcome this
limitation, a simple bash code, identifies the file with latest time
step and moves it to a pre-specified name, which is provided to
Swift. Another requirement of our Swift workflow is a process to
specify the number of SPH runs. The PG component calculates
the number of SPH runs in a particular iteration and creates input
files for each SPH simulation. Candidate SPH domains become
activated when the initial concentrations of reactants reach a user-
specified minimum threshold. Swift, however, needs to know the
number of files that will be produced as output of PG, so it can
wait for all of them to get produced. To address this issue, we split
our PG algorithm into two sub-steps. The first step calculates
number of pore-regions ‘n’ required in a particular iteration and
hands this information back to Swift workflow. Swift’s
fixed_array_mapper is then used to specify files for each of the ‘n’
SPH simulations, produced by PG.
Our Swift workflow consists of an app each for STOMP,
PG_calc_num, PG_createfiles, SPH and GPG. Limited
modifications were made to the pre-existing STOMP and SPH
simulators to facilitate file-based exchange of boundary
conditions and eliminate need for direct communications, but
these modifications were minimal in nature. A foreach construct is
used to run all SPH simulations in parallel, as per our adaptive

scheduling policy, described in the next section. A hybrid_model
function consists of all these app components, and defines a single
iteration of the workflow. An iterative loop over the hybrid_model
function is used, enforcing serial execution between iterations,
where outputs from one iteration serve as input to the next
iteration. A maximum number of iterations is specified at the
command line by the user. Swift is configured to run locally on
the system and definitions are provided (path to code executables)
for each of the “apps” in the workflow.

4.3 Adaptive Scheduling
The pore-scale simulations in the hybrid subsurface model are the
most expensive part of the workflow. The number of these
simulations changes at each iteration as solute concentrations
move throughout the system. The pore-scale simulations are
launched using the Swift’s “foreach” construct which executes the
tasks in parallel. Each of these SPH runs is launched as parallel
job. Our adaptive scheduling algorithm focuses on minimizing the
run time for running these multiple SPH simulations, based on the
number of processes available. Some of the key features are:
1) Define an optimal range for number of processes to be used

for each SPH run: We observed that the scalablity of the
SPH simulations was limited due to the relatively small
number of particles used in each simulation. To determine
the optimal number of processes required for SPH runs, we
performed multiple scaling tests, varying the number of
processes for three candidate particle discretizations
(Np=40,000, 80,000 and 160,000). SPH run time decreases
with increasing number of processors initially, but eventually
the run time flattens and then increases as additional
processors are added, because communication becomes the
predominant factor in runtime as opposed to computation.
We also observed that a minimum number of processors is
required by SPH to provide sufficient memory. Hence we
define a range for number of processes (minprocs, maxprocs)
suitable for executing a single SPH run. For Np=40,000,
which was deemed sufficient to obtain an accurate solution,
minprocs=1152 (48 nodes * 24 cores/node) and
maxprocs=2304 (96 nodes * 24 cores/node) (Figure 3).

2) Schedule multiple batches of simultaneous SPH simulations:
The scheduling algorithm determines if there are enough
nodes in the runtime allocation to run all SPH tasks together.
If there are enough nodes, then all SPH tasks can be
scheduled together. In this case, the algorithm divides the
resources equally amongst all SPH tasks, ensuring that each
does not use more than “maxprocs”. If the number of nodes
is not sufficient to run all SPH tasks together, the runs are
done in multiple batches in an iterative manner using
“minprocs” for each SPH. In the worst case scenario, all SPH
simulations can be launched as serial jobs in an iterative
manner.

3) Map from processes to nodes based on system configuration:
To avoid wasting node computation power and avoid
scheduling issues across node boundaries, all data regarding
available number of processes, minprocs and maxprocs is
converted to number of nodes (by dividing 24 procs/node) in
the input and configuration files and the scheduling
algorithm is applied accordingly.

Figure 3. Scaling tests for SPH run times, Np=40000

4.4 Eliminating SPH Runs
During the course of our hybrid model runs, it was observed that
the SPH simulations tend toward a quasi-steady condition over
time. Initially the boundary conditions lead to rapid influx of
reactants and an increase in the reaction rate as mixing proceeds,
but after some relatively small number of iterations the influx of
the reactants is balanced by the efflux plus consumption by the
reaction, and the system becomes stable. Since the effective
reaction rate (passed to the macro-scale model) is no longer
changing, it is not necessary to perform pore-scale simulations in
future iterations.
To save critical time and resources, we incorporate methods in
workflow to adaptively turn off execution for those SPH cells that
have reached steady state. This greatly reduces the run time of the
hybrid system, from running potentially running average of ~30
SPH each iteration to just running a few. In our example case it
was observed that running only about 15-25 SPH’s every iteration
was sufficient to model active parts of the complete hybrid model
domain.

4.5 Visualization
STOMP results are visualized as 2D spatial plots of
concentrations of reactants A, B, and product C (a single time
snapshot is shown in Figure 6). When the workflow begins,
concentrations of A and B—enter the system at the bottom of the
cell and react to form C, shown in the third plot. Values for
concentration are indicated using a spectrum of color values. As
the workflow continues execution, the concentrations of the three
constituents rise into the upper regions of the cell.

Figure 6. STOMP visualization

Each SPH task is configured to run for 1330 steps (time step =
0.00075), simulating 1 second of time for each iteration of the
workflow. Every 100 steps the concentrations are exported to an
h5part file (13 files per workflow iteration). Unfortunately, it
takes two to three times as long to plot the results from SPH than
it takes to execute the simulation. For this reason we removed the
automated generation of these plots from the workflow. Instead,
we wrote a postprocessing script to generate plots for runs of
interest instead of generating all plots during workflow execution.

Three pseudo color plots are produced visualizing concentrations
of reactants A, B, and product C (Figure 7, analogous to the
STOMP plots in Figure 6 but within a limited pore-scale domain).
The circular blue regions indicate areas occupied by solid grains.
Only liquid regions are used to plot the concentrations for each
constituent. In Figure 7, A and B (left two images, respectively)
have mostly reacted at the particle level to form C (right image).

Figure 7. SPH visualization

5. EXPERIMENTAL RESULTS
The entire simulation consists of ~800 iterations, involving less
than 60 pore-scale simulations within each iteration, and is run on
1536 nodes (24 processors each) on a Cray XE6 system (Hopper,
NERSC). It takes ~96 hr as wall clock time to finish the
simulation. 85% of run time is used for SPH runs and less than
10% is used for PG. Currently I/O is not a problem for this 2D
experiment. The visualization process is not included in the
workflow to save computational time.

6. DISCUSSION

6.1 Overall Summary
We have demonstrated a many-task approach to hybrid multiscale
coupling of pore- and continuum-scale porous media flow and
reactive transport simulators. The hybrid multiscale approach is
relatively new in subsurface hydrology [1], and is well-suited to
the use of high-performance computing and a task parallel script-
based simulation environment. Loose coupling of many micro-
scale tasks within a macro-scale domain was supported by use of
the Swift workflow environment, and provided a feasible solution
approach to a complex simulation problem. In the case
considered, in which pore-scale mixing is a dominant process that
cannot be adequately represented in a continuum-only model, the
hybrid method provides a new alternative to increase solution
accuracy while maintaining computational feasibility (relative to
simulating pore scale processes over the entire spatial and
temporal domain). The model uses Swift’s data mapping and
management, error handling and inherent parallel model
execution capabilities and also includes post-processing and
visualization. The 2D mixing-controlled example problem serves
as a test case to demonstrate the capability and accuracy of the
current hybrid multiscale model, which can be extended to more
realistic problems.

6.2 Swift Related Issues and Appropriateness
When using Swift we have encountered a few challenges that we
have had to work around. First is a documented issue of how

Swift handles file collections when the number of files is
unknown. Swift’s execution approach is to run all things in
parallel. Execution is blocked if the input from one process
depends on the output from another process. Swift needs to know
how many files to wait for until it can stop blocking. Our output
files have a known naming scheme but the number of output files
can vary. There doesn’t seem to be an easy way for Swift to
handle a variable number of these files. To get around this, we
archive all the output files (into one single “tar” file) after the
simulation is complete. This way, Swift blocks execution until
the single archive file is produced. Downstream processes that
need these files are then responsible for unpacking the files before
using them.
Another issue encountered with Swift involves input file staging.
Before running a simulation, Swift creates a new job directory
where it generates symbolic links to each of the input files. If the
input file is located inside a subdirectory created by a previous
job, a new directory is created to mirror its relative location inside
the job directory. When the simulation is invoked, the input files
are all located inside subdirectories instead of inside the base run
directory. To work around this we moved the files using a shell
script into the base run directory before invoking the simulation.
A third issue when working with Swift was dynamic assignment
of variables. In Swift, when a variable is assigned a value, the
value is final. This reduces the language flexibility when creating
logic to swap I/O files during workflow execution based on
outside information. Arrays in Swift can have multiple values
assigned, so this approach was used to develop the desired logic.
Swift also simplifies data management by implicitly removing
files that are not specified as part of the workflow. However all
files that might be needed for provenance/visualization or other
data analysis capabilities are identified in the workflow in order to
be preserved. We also would like to mention that our Swift
workflow is portable but does not use the recently developed
JETS [7] in which the tasks are managed by an MPICH based task
manager.

7. ACKNOWLEDGMENTS
This research was supported by the U. S. Department of Energy
(DOE) offices of Biological and Environmental Research (BER)
and Advanced Scientific Computing Research (ASCR) under the
Scientific Discovery through Advanced Computing (SciDAC)
program and the PNNL Subsurface Biogeochemical Research
Scientific Focus Area (SFA) project. Computations described
here were performed using computational facilities of the National
Energy Research Scientific Computing Center (NERSC), a
national scientific user facility sponsored by DOE Office of
Science. PNNL is operated for the DOE by Battelle Memorial
Institute under Contract No. DE-AC06-76RLO 1830.

8. REFERENCES
[1] Scheibe, T. D., Murphy, E. M., Chen, X., Carroll, K. C.,

Rice, A. K., Palmer, B. J., Tartakovsky, A. M., Battiato, I.,
and Wood, B. D. 2014. An analysis platform for multiscale
hydrogeologic modeling with emphasis on hybrid multiscale
methods. Ground Water, published online March 13.
DOI=http://dx.doi.org/10.1111/gwat.12179.

[2] Tartakovsky, A. M., Meakin, P., Scheibe, T. D., and Wood,
B. D. 2007. A smoothed particle hydrodynamics model for
reactive transport and mineral precipitation in porous and

http://dx.doi.org/10.1111/gwat.12179

fractured porous media. Water Resour. Res. 43(5): No.
W05437. DOI=http://dx.doi.org/10.1029/2005wr004770.

[3] Scheibe, T. D., Tartakovsky, A. M., Tartakovsky, D. M.,
Redden, G. D., and Meakin, P. 2007. Hybrid numerical
methods for multiscale simulations of subsurface
biogeochemical processes. In SciDac 2007: Scientific
Discovery Through Advanced Computing, U487-U491. J.
Phys.: Conference Series 78: 012063.
DOI=http://dx.doi.org/10.1088/1742-6596/78/1/012063.

[4] Nichols, W. E., Aimo, N. J., Oostrom, M., and White, M. D.
1997. STOMP Subsurface Transport Over Multiple Phases:
Application Guide PNNL-11216 (UC-2010), Pacific
Northwest National Laboratory.

[5] Palmer, B., Gurumoorthi, V., Tartakovsky, A. M., and
Scheibe, T. D. 2010. A component-based framework for
smoothed particle hydrodynamics simulations of reactive
fluid flow in porous media. Int. J. High Perform. C. 24, 228-
239. DOI=http://dx.doi.org/10.1177/1094342009358415.

[6] Wilde, M., Foster, I., Iskra, K., Beckman, P., Zhang, Z.,
Espinosa, A., Hategan, M., Clifford, B., and Raicu, I. 2009.
Parallel scripting for applications at the petascale and
beyond. Computer 42, 50-60.
DOI=http://dx.doi.org/10.1109/MC.2009.365.

[7] Wilde, M., Hategan M., Wozniak J. M., Z., Clifford B., Katz
D. S., Foster I. 2011. Swift: A language for distributed
parallel scripting. Parallel Comput. 27(9), 633-652.
DOI=http://dx.doi.org/10.1016/j.parco.2011.05.005.

[8] Raicu, I., Foster, I., and Zhao, Y. 2008. Many-task
computing for grids and supercomputer. IEEE Workshop on
Many-Task Computing on Grids and Supercomputers
(MTAGS), November, 2008.

[9] Ogasawara, E., de Oliveira, D., Chirigati, F., Barbosa, C. E.,
Elias, R., Braganholo, V., Coutinho, A., and Mattoso, M.
2009. Exploring many task computing in scientific
workflows. IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS), November, 2009.

[10] Schuchardt, K. L., Palmer, B., Agarwal, K., and Scheibe, T.
D. 2011. Many Parallel Task Computing for a Hybrid
Subsurface Model. SciDAC 2011.

[11] Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B.,
Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C.,
Hack, J. J., Henderson, T. B., Kiehl, J. T., Large, W. G.,
Mckenna, W. G., Santer, B. D., and Smith, R. D. 2006. The
Community Climate System Model version 3 (CCSM3). J.
Climate 19, 2122-2143.
DOI=http://dx.doi.org/10.1175/jcli3761.1.

[12] Schlüter, J. U., Wu, X., Kim, S., Shankaran, S., Alonso, J. J.,
and Pitsch, H. 2005. A framework for coupling Reynolds-
Averaged with Large Eddy Simulations for gas turbine
applications. J. Fluid Eng.-T. ASME 127(4):608-615.
DOI=http://dx.doi.org/10.1115/1.1994877.

[13] Foley, S. S., Elwasif, W. R., Bernholdt, D. E., Shet, A. G.,
and Bramley, R. 2010. Many task applications in the
integrated plasma simulator. IEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS),
November, 2010.

[14] Marshall, P., Woitaszek, M., Tufo, H. M., Knight, R.,
McDonald, D., and Goodrich, J. 2009. Ensemble dispatching

on an IBM Blue Gene/L for a bioinformatics knowledge
environment. IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS), November, 2009.

[15] Evangelinos, C., Lermusiaux, P. F., Xu, J., Haley, P. J., and
Hill, C. N. 2010. Many task computing for multidisciplinary
ocean sciences: real-time uncertainty prediction and data
assimilation. IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS), November, 2010.

[16] Allen, G., Dramlitsch, T., Foster, I., Karonis, N. T., Ripeanu,
M., Seidel, E., and Toonen, B. 2001. Supporting efficient
execution in heterogeneous distributed computing
environments with cactus and globus. ACM Supercomputing
Conference, November 2011, Denver, CO.
DOI=http://dx.doi.org/10.1109/SC.2001.10007.

[17] Allan, B. A., Armstrong, R., Bernholdt, D. E., Bertrand, F.,
Chiu, K., Dahlgren, T. L., Damevski, K., Elwasif, W. R.,
Epperly, T. G. W., Govindaraju, M., Katz, D. S., Kohl, J. A.,
Krishnan, M., Kumfert, G., Larson, J. W., Lefantzi, S.,
Lewis, M. J., Malony, A. D., McInnes, L. C., Neiplocha, J.,
Norris, B., Parker, S. G., Ray, J., Shende, S., Windus, T. L.,
and Zhou, S. J. 2006. A component architecture for high-
performance scientific computing. Int. J. High Perform. C.
20 (2), 163-202.
DOI=http://dx.doi.org/10.1177/1094342006064488.

[18] Costa, R., Brasileiro, F., Filho, G. L., and Sousa, D. M.
2009. OddCI: Ondemand distributed computing
infrastructure. IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS), November, 2009.

[19] Raicu, I., Foster, I., Wilde, M., Zhang, Z., Iskra, K.,
Beckman, P., Zhao, Y., Szalay, A., Choudhary, A., Little, P.,
Moretti, C., Chaudhary, A., and Thain, D. 2010.
Middleware support for many-task computing. Cluster
Comput. 13, 291-314.
DOI=http://dx.doi.org/10.1007/s10586-010-0132-9.

[20] Tartakovsky, A. M. and Scheibe, T. D. 2011. Dimension
reduction method for advection-diffusion-reaction systems.
Adv. Water Resour. 34(12), 1616-1626.
DOI=http://dx.doi.org/10.1016/j.advwatres.2011.07.011.

[21] Tartakovsky, A. M., Redden, G., Lichtner, P. C., Scheibe, T.
D., and Meakin, P. 2008. Mixing-induced precipitation:
Experimental study and multiscale numerical analysis. Water
Resour. Res. 44(6): No. W06s04.
DOI=http://dx.doi.org/10.1029/2006wr005725.

[22] Wickberg, T. and Carothers, C. 2012. The RAMDISK
storage accelerator: a method of accelerating I/O
performance on HPC systems using RAMDISKs. In
proceedings of the 2nd International Workshop on Runtime
and Operating Systems for Supercomputers (ROSS '12).
ACM, New York, NY, USA, Article 5.
DOI=http://dx.doi.org/10.1145/2318916.2318922.

[23] Biddiscombe, J., Soumagne, J., Oger, G., Guibert, D., and
Piccinali, J. G. 2011. Parallel computational steering and
analysis for HPC applications using a paraview interface and
the HDF5 DSM virtual file driver. In Proceedings of the 11th
Eurographics conference on Parallel Graphics and
Visualization, Aire-la-ville, Switzerland, 2386244, 91-100.
DOI=http://dx.doi.org/10.2312/egpgv/egpgv11/091-100

http://dx.doi.org/10.1029/2005wr004770
http://dx.doi.org/10.1088/1742-6596/78/1/012063
http://dx.doi.org/10.1177/1094342009358415
http://dx.doi.org/10.1109/MC.2009.365
http://dx.doi.org/10.1016/j.parco.2011.05.005
http://dx.doi.org/10.1175/jcli3761.1
http://dx.doi.org/10.1115/1.1994877
http://dx.doi.org/10.1109/SC.2001.10007
http://dx.doi.org/10.1177/1094342006064488
http://dx.doi.org/10.1007/s10586-010-0132-9
http://dx.doi.org/10.1016/j.advwatres.2011.07.011
http://dx.doi.org/10.1029/2006wr005725
http://dx.doi.org/10.1145/2318916.2318922
http://dx.doi.org/10.2312/egpgv/egpgv11/091-100

	1. INTRODUCTION
	2. BACKGROUND
	2.1 STOMP and SPH
	2.2 Swift

	3. RELATED WORK
	4. DESIGN AND IMPLEMENTATION
	4.1 Bimolecular Reaction Experiment
	4.2 Swift Workflow
	4.3 Adaptive Scheduling
	4.4 Eliminating SPH Runs
	4.5 Visualization

	5. EXPERIMENTAL RESULTS
	6. DISCUSSION
	6.1 Overall Summary
	6.2 Swift Related Issues and Appropriateness

	7. ACKNOWLEDGMENTS
	8. REFERENCES

