
BoscoR: Extending R from the desktop to the Grid

Derek Weitzel∗, Jaime Frey†, Marco Mambelli‡, Dan Fraser§, Miha Ahronovitz¶, David Swanson∗

∗Computer Science & Engineering
University of Nebraska – Lincoln

Email: [dweitzel, dswanson]@cse.unl.edu

†Department of Computer Science
University of Wisconsin

Email: jfrey@cs.wisc.edu

‡Fermi National Accelerator Laboratory
Email: marcom@fnal.gov

§Argonne National Laboratory
Email: fraser@anl.gov

¶Ahrono Associates
Email: miha.ahronovitz@ahrono.com

Abstract—In this paper, we describe a framework to execute
R functions on remote resources from the desktop using Bosco.
The R language is attractive to researchers because of its high
level programming constructs which lower the barrier of entry
for use. As the use of the R programming language in HPC and
High Throughput Computing (HTC) has grown, so too has the
need for parallel libraries in order to utilize computing resources.

Bosco is middleware that uses common protocols to manage
job submissions to a variety of remote computational platforms
and resources. The researcher is able to control and monitor
remote submission from their interactive R IDE, such as RStudio.
Bosco is capable of managing many concurrent tasks submitted
to remote resources while providing feedback to the interactive
R environment. We will also show how this framework can be
used to access national infrastructure such as the Open Science
Grid.

Through interviews with R users, and their feedback after
using BoscoR, we learned how R users work and designed BoscoR
to fit their needs. We incorporated their feedback to improve
BoscoR by adding much needed features, such as remote package
management. A key design goal was to have a flat learning curve
in using BoscoR for any R user.

I. INTRODUCTION

Usage of the R language [1] by data miners has grown
much faster than any other programming language [2], [3].
Data mining requires computational resources, sometimes
more computational resources than can be provided by their
desktop. In a recent study [2], “Available computing power”
was the second most common problem for big data analysis.
In addition, the respondents stated that distributed or parallel
processing was the least common solution to their big data
needs. This could be attributed to the difficulty of processing
data with the R language on distributed resources, a challenge
we set out to solve with BoscoR.

A reason that distributed computing is not seen as a
popular solution to big data processing is that scientists are
more familiar processing on their desktop than in a cluster
environment. R is typically used by people that have not used
distributed computing before and do most of their analysis on
their local systems with IDEs such as RStudio [4]. Users are
unaccustomed to the traditional distributed computing model
of batch processing in which there is no interactive access to
the running processes.

Though researchers may not have experience with dis-
tributed computing, most have computational resources avail-
able to them, either locally provided by their institution or
university, or through national cyberinfrastructure such as the
OSG [5] or XSEDE [6].

In this paper, we will describe the background of the two
primary components combined to create BoscoR, Bosco [7]
and GridR [8]. In section III, we describe how we combined
these two components to create a fault tolerant framework that
provides a positive user experience. Next, in Section IV, we
discuss preferred submission methods based on the length of
the R function, and show some results from numerous test runs
against a production cluster. Finally, we offer some conclusions
and future work.

II. BACKGROUND

BoscoR is primarily made up of two components, Bosco
and GridR. Bosco provides an simple to setup interface to
the remote batch system, and provides fault tolerance for job
submission and file transfers. GridR provides a user interface
to create and initiate remote processing.

A. Bosco

A number of different methods have been used to distribute
jobs across multiple resources. Inside a cluster, schedulers
such as HTCondor [9] and PBS [10] have been used. Neither
of these schedulers have been used to submit jobs from
user’s desktops, a key requirement in improving the user
experience of R users. Remote submission is heavily used in
computational Grids, and uses technology such as Globus [11]
and UNICORE [12]. This remote submission requires software
installation on a server that is inside the cluster which required
an administrator.

Bosco [7] is used to effortlessly create a remote submission
endpoint on a cluster without requiring the administrator to
install any software. The architecture of Bosco is shown in
Figure 1. Bosco is a remote submission framework based
upon HTCondor. It uses the SSH [13] protocol to submit and
monitor remotely submitted jobs. Additionally, it performs file
transfers using the same SSH connection.

Bosco is designed to be run without administrator inter-
vention. It automatically installs the Bosco client on a remote
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Fig. 1: Architecture of Bosco

cluster. SSH was chosen as the protocol since it is used nearly
universally for cluster access. Jobs are submitted to Bosco,
which then submits over ssh to the remote cluster. Input files
are transferred over the SSH connection as well. Bosco then
monitors and reports the status of the job on the remote cluster
as idle, running, or completed. Once the job is completed,
Bosco will transfer output files back to the submit host.

Bosco has two modes of job submission:

1) Direct – A single job on the Bosco submit host cor-
responds to a single job on the remote cluster. Each
job is submitted individually to the remote cluster’s
scheduling system. This method is the simplest to run,
and imposes no special requirements on the submit
machine.

2) Glidein – Bosco submits many pilot jobs to the
remote cluster using the Direct method. But, each
of the pilots can service multiple user submitted jobs
from the Bosco submit host. This method minimizes
the overhead on the remote cluster since Bosco is not
submitting many jobs through the cluster scheduler.
The Glidein method requires that the Bosco submit
host can be contacted from the remote cluster worker
nodes. The Glidein submission method is based off
of previously written software such as the Campus
Factory [14].

The two modes of job submission allow users to optimize
for their environment. If they are running many short identical
jobs (which is frequent in High Throughput Computing), then
the Glidein method is ideal for them. If they are running fewer,
longer, and possibly unique requirement jobs, then the direct
submission method would work best. Most users start with
the direct method then graduate to glidein once they become
accustomed to submitting batch jobs.

Bosco’s fault tolerance is in it’s handling of the remote
cluster. For example, if the user’s computer loses connection
with the remote cluster due to network issues, or even if the
user suspends their laptop, Bosco will place the jobs on hold.
Although no new jobs will be submitted to the remote cluster,
jobs that were already submitted will continue to run. Further,
when Bosco re-establishes a connection to the remote cluster,
Bosco will check the status of already submitted, bring back

any output data from any that have completed, and continue
to submit jobs to the remote scheduler.

B. GridR

Many parallel libraries are available for R. Most focus on
managing the R processing on a single server such as the
parallel package [15]. The parallel package comes
bundled with R and provides for single machine parallelism.
Parallelism is done by using variations of the R function
lapply. A simplified definition of lapply is shown in
Figure 2. lapply is the basis for nearly all parallel libraries
in R.

lapply(X, FUN, . . . ):
X a vector (atomic or list) or an expression

object.
FUN the function to be applied to each element of

X
. . . optional arguments to FUN.
Returns list of the same length as X, each element of

which is the result of applying FUN to the
corresponding element of X.

Fig. 2: Funciton definition of lapply

The lapply function is ideally suited for high throughput
computing. There is no communication between executions
of the function on the array. The input vector can be easily
partitioned in order to split the execution across multiple
resources. It is because of these reasons that most parallel
applications use the lapply model to provide parallelism.
Examples are the parallel package which defines the functions
mcapply (multi-core apply) and parapply (parallel apply).
In the parallel package, calling mcapply causes R to fork
a process that will execute the function FUN on each element
in the input vector. A similar process happens when calling
parapply.

Another built-in parallelization package is Simple Network
of Workstations (snow) [16]. Snow allows for multiple com-
puters to organize and execute parallel processing of data. The



computers communicate over regular network sockets or using
MPI [17]. This allows for multiple computers inside the same
cluster to process data. Snow also has built-in lapply style
functionality.

GridR also follows this lapply model for parallelization.
It uses a function called grid.apply, which will apply
a function to every element of an input vector, similar to
lapply. Instead of forking a process like mcapply, it
compiles the input data and function, and submits the execution
to a grid endpoint.

GridR was originally written for use with data analysis
in ACGT clinico-genomics trials [8]. It was written with the
capability to submit with a limited set of grid protocols,
some of which are no longer supported. Further, GridR made
assumptions of the remote resources. These assumptions were:

• R is installed on all of the worker nodes.

• The R binaries are in the same location on all of the
remote resources.

• The GridR package is installed on all of the remote
resources.

All of these assumptions cannot be met on modern grid
resources. Applications cannot assume that a (non-standard)
processing tool, such as R, is installed on every computer or
that it is installed at exactly the same location on all clusters
in the grid. Modifications were made to GridR to erase these
assumptions, as well as to adapt it to submit to Bosco.

III. IMPLEMENTATION

Bosco is designed to run on resources that are not con-
trolled by the submitting user. Further, it is designed to run
on resources without any conditions as to what is installed.
In order to operate under these assumptions, Bosco must
bootstrap itself by bringing in all the libraries and dependencies
required to operate. Therefore, BoscoR must run under these
same assumptions.

GridR was modified to submit to Bosco. The input genera-
tion of GridR is shown in Figure 3. When a user or script calls
grid.apply, GridR compiles the input function and input
data into a R data file, which can be read later by another
R process. GridR handles function dependencies by using R’s
dependency detection and compiles any functions that may be
required into the input.

GridR was modified to first create a submit file which will
be submitted to the local system where Bosco is installed.
The submit file explicitly lists the input files and the expected
output file, all of which will be transferred by Bosco. The input
files, as shown in Figure 3, are the compiled function and input
data and a bootstrap executable. The output file contains the
return value from the executed function.

The submit and polling script is executed by GridR after
forking a new R process. This is a light weight process that
submits the Bosco submission script and watches for any
errors. If the input function is executed many times by many
separate jobs, the polling script will aggregate the results as
they are returned to the submit node into a vector that will be
returned to the user.

Transferred to Cluster

fun <- function(…) {
   …
}

grid.apply(“x”, fun, 10)
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Fig. 3: GridR Input Generation

A. Bootstrap

Since Bosco cannot make assumptions as to what is in-
stalled on the remote cluster, neither can BoscoR. Therefore,
GridR was modified to detect, and if necessary install, R on
the remote system. This was performed by a bootstrap process.

In the GridR generated submit file, the listed executable
to run on the remote system is not R, but the bootstrap
executable. The bootstrap executable detects if R is installed on
the remote system. If it is installed, it simply executes the user
defined function against the input data. If R is not installed,
the bootstrap downloads the appropriate version of R for the
remote operating system. The supported platforms are identical
to Bosco’s, CentOS 5/6 and Debian 6/7. R is downloaded from
a central server operated by the OSG’s Grid Operations Center
[18].

The bootstrap executable installs R in a shared directory.
By utilizing a shared directory, subsequent GridR jobs may use
the same R installation. Several bootstrap jobs could start at
once on a remote cluster, so a simple transactional file locking
mechanism was devised so only a single bootstrap executable
on a cluster will download and install for the entire cluster if
a shared file system is available. If a shared filesystem is not
available for installation, R is installed in a temporary directory
that is removed upon job completion.

B. Running on the Open Science Grid

Submitting to the Open Science Grid (OSG) is done by
direct submission. The OSG hosts access nodes which can be
used to submit to resources on the grid.

Most OSG sites do not have shared directories for grid
users. Therefore, the bootstrap script must install R on every
node in a temporary directory. In order to optimize the R
installation, the bootstrap script utilizes the HTTP forward
proxy infrastructure [19] available on the OSG to minimize
requests to the central hosting server.

IV. RESULTS

The results section is broken into two categories, results
from user feedback and results from experimental runs on a
production cluster as well as the OSG.



A. Results from feedback

A primary goal with BoscoR was to improve the user
experience of using R on distributed resources. After acquiring
a few users, we received feedback on how BoscoR could be
improved. The improvements to GridR and the integration with
Bosco made working with campus or institutional resources
much better. In this section we will describe the improvements.

1) User Provided Packages: Many users require additional
packages to be installed before their function can execute. It
was assumed that most of these packages would be in the
major R package repositories, such as the Comprehensive R
Archive Network (CRAN) [20]. If the package is in CRAN, the
user provided function can install the package. After receiving
user feedback, it was found that not all desired packages are
available in CRAN. A modification to both the submit file and
the bootstrap executable was designed to install such packages.

In order to install a user provided package, it first needs to
be transferred to the remote cluster. This is done by including
the package in the list of input files to be transferred by Bosco
for each job. Additionally, the packages should be installed
before the user function is executed on the remote resources.
This required modification to the bootstrap executable in order
to install the packages after installing R, but before executing
the user’s function on the input data.

2) Quick Jobs: Since the GridR interface only provides
for a single function to execute against the input data, it was
assumed that the function would be a time consuming data pro-
cessing function that may call many other functions. Therefore,
the overhead Bosco introduces would not significantly effect
the performance of the executions. After receiving feedback
from users, it was determined that the more common use case
is to use smaller functions that could execute in seconds or
minutes. In order to accommodate shorter jobs, a modification
to the GridR generated submit script was required.

In this case, we modified the submit file so that Bosco
would use the Glidein method of job submission. Using
the Glidein job submission method, the shorter jobs can be
executed much more quickly, one after another, reusing the
same resources. Additionally, this saves the remote cluster
scheduler from scheduling many small jobs which can cause
issues in many HPC schedulers.

B. Performance Results

1) Experimental setup: In order to test BoscoR, we have to
simulate a R workload. We simulate a workload with varying
lengths of the executed functions. This simulates a variety of
workloads that we have seen from users. As noted before,
we assumed that the functions would be long running data
processing. But, we learned that users were instead submitting
short functions to be executed quickly. We varied the length of
function from 1 second to 30 minutes. To verify our solution
to quick jobs, we tested different job lengths using both the
Direct and Glidein submission method.

To execute the test jobs, we used the production cluster
Tusker at the University of Nebraska – Lincoln Holland
Computing Center. This cluster is composed of 106 nodes,
each with 64 cores, for a total of 6784 cores. The cluster has
numerous users that are submitting to the central SLURM [21]

scheduler. The cluster traditionally runs at >90% utilization,
with dozens of users jobs fair sharing the resources. The
SLURM scheduler is a HPC orientated scheduler that matches
submitted jobs to resources. Fair share scheduling is used
on Tusker. Each group has equal priority with all others,
therefore allowing the maximum number of users to run on
the resources.

The Tusker cluster was chosen since access was easy for
the authors of this paper. Further, it is utilized enough that the
jobs would be competing against other user’s jobs for available
resources, and therefore not all submitted GridR functions
would be able to execute simultaneously. We believe this best
represents most clusters, which are typically highly utilized
by many researchers. It is plausible that a cluster could be
so utilized that no user jobs could be executed, while the
other extreme could also be true, that enough resources are
available for all submitted jobs to be executed immediately.
We found that Tusker utilization is somewhere between these
two extremes. It is capable of running many, but not all, jobs
submitted to it immediately. The rest will execute as resources
become available.

For our testing, we submitted 1000 GridR jobs per test
run. 1000 jobs was chosen as a reasonable representation
of workflows we have seen when helping users of GridR.
They typically submit many jobs, sometimes reaching into the
thousands. Our goal was to submit more jobs than could be run
instantly by the remote cluster, but no so many that gathering
repeated testing data would be impossibly time consuming.

2) Direct submission: Direct submission is defined
as submission using Bosco’s direct submission method.
In GridR, the library is initialized with the argument
service="bosco.direct". When this setting is used,
GridR generates submission scripts that use Bosco’s default
routing mechanism to submit to a single cluster. The GridR
functions are submitted as jobs directly to Tusker’s SLURM
scheduler.
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A timeline of the GridR submissions to Bosco is shown
in Figure 4. The submitted jobs are jobs which are submitted



locally, but not yet submitted to the remote scheduler. Remote
represents the jobs which are submitted to the remote SLURM
scheduler. The submission to the remote scheduler is very
rapid. Bosco is able to submit 700 jobs, the limit in this
implementation to submit at a single time, within a minute.
SLURM is able to rapidly begin executing many, but not all,
of the submitted jobs. Bosco maintains constant pressure in
the form of idle jobs in case resources become available on
the cluster. You will notice the straight line in the number of
submitted jobs which dips after 30 minutes. At 30 minutes the
first jobs begin to complete and Bosco begins to submit more
jobs to the cluster, attempting to always keep the maximum
of 700 jobs either idle or running on the remote cluster. In
this workflow, all 1000 30 minute jobs finish in just over 100
minutes.

The Open Science Grid runs use the direct submission
method as well. But, since the OSG access nodes run HT-
Condor, the jobs are capable of starting much quicker after
being submitted to the remote resource. In this way, the OSG
provides the best of both the direct and glidein approaches. It
is simple to setup like any direct submission method. And as
with the glidein submission method, the jobs start quickly on
the remote resource.

The OSG direct submission presents different failure modes
than a traditional HPC cluster. For example, in one of our
experimental runs with 1 second jobs, a single job took over 30
minutes to complete. The issue with this particular job was that
the job was matched to a single node that was misconfigured.
In this case, the job eventually finished after being matched to
a different node. The OSG may not be an ideal solution for
short executions of GridR functions.

3) Glidein: Glidein submissions use a pilot that is submit-
ted directly to the SLURM scheduler. Once the pilot starts,
it calls back to the submission node to request work. This
method allows multiple jobs to run within the same SLURM
job, independent of the cluster’s scheduler.
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Comparing the Direct submission to the glidein submission
is shown in Figure 5 As you can see, for longer jobs, direct

and glidein submission methods have approximately similar
workflow runtimes. But, for short jobs, glidein has significantly
shorter workflow runtimes. This can be attributed to the
advantages of using a high throughput scheduler over a high
performance scheduler.

Bosco is built on top of HTCondor. HTCondor is a very
efficient high throughput scheduler that can quickly start the
execution of jobs upon available resources. Since many R
workflows are designed to run a short function upon a large
amount of data, HTCondor is a good fit. By submitting HT-
Condor pilots to the remote scheduler, Bosco is able to utilize
its strength of running many small jobs quickly, resulting in a
shorter workflow completion time for shorter jobs.
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Figure 6 illustrates how the glidein submission method is
superior to the direct submission method for short jobs, and
why both methods are roughly equivalent for longer jobs. For
longer jobs, you can see that both glidein and direct submission
methods start jobs at nearly equal rates. The variation is
relatively small, and could be explained by variations in the
available resources at the time of running the experiments.

For the shorter 100 second jobs the start rate begins
nearly the same, but then Bosco and SLURM are unable to
sustain the job start rate. Since the jobs only run for 100
seconds the overhead from Bosco submission and SLURM
starting the jobs becomes a bottleneck. Bosco is only able to
sustain roughly 50 jobs running on the cluster. On the other
hand, the Glidein submission method continues to grow in
the number of jobs running. This is due to eliminating the
Bosco submission overhead, as well as the SLURM scheduling
overhead. Instead, the Glidein method is utilizing the much
more efficient HTCondor scheduler, which is able to start jobs
much faster than the SLURM scheduler. We can conclude
that the glidein submission method results in a shorter total
workflow execution time for shorter R functions.

V. CONCLUSION

BoscoR is a framework to execute R functions on dis-
tributed resources. It is a simple method for users to distribute



processing to remote resources. BoscoR incorporated user
feedback in order to improve the framework.

As with any complicated system, many parameters can be
varied in order to obtain different results. For example:

• Resource contention may be high which could cause
the cluster not to start any GridR jobs.

• Resource contention may be low, which would cause
SLURM to start all submitted jobs immediately.

• The number of glideins submitted in a batch could
be varied in order to optimize the start rate for a
particular cluster. Any lower and it would slow job
starts, increasing the workflow run time for both short
and long jobs. Any higher, and it could overwhelm
the remote scheduler.

We chose reasonable values for these parameters that an
end user may use. In the future we will tune these parameters
automatically using the feedback provided by Bosco. Although
Bosco and the bootstrap process significantly improved the
fault tolerance of GridR, further fault tolerance testing and
development is needed to provide a positive user experience
when running on national infrastructure such as the OSG.

During follow up interviews with users after using BoscoR,
we received many positive reviews of the framework. Improv-
ing the user experience of using R on distributed resources was
a primary goal of BoscoR. One example of a positive review
was from a Micro-Biology researcher from the University of
Wisconsin:

I have a huge set of data, which I have to split
into pieces to be handled by each node. This is
something I can do with the ”grid.apply” function.
This reduces the submit time from several hours, to
several seconds... it is a phenomenal improvement.
This will greatly increase my use of grid computing,
as right now, I only use grid computing when I have
no other choice.

The experimental testing we ran showed that glidein sub-
mission method is significantly better at running short R
functions than the direct submission method. At longer job
runtimes, the difference between direct and glidein submission
to remote resources is negligible.
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