Flexible Resource Allocation and Data Management for
High-Performance Distributed Workflows

Jacob M Taylor
Wayne State University
42 W. Warren
Detroit, Ml 48202
ez5504@wayne.edu

Yadu N Babuji
Computation Institute

5735 S Ellis Ave
Chicago, IL 60637

yadunand@uchicago.edu

Justin M Wozniak
Mathematics and Computer
Science Division
Argonne National Laboratory
Argonne, IL 60439
wozniak@mcs.anl.gov

*
Michael Wilde
Mathematics and Computer
Science Division
Argonne National Laboratory
Argonne, IL 60439

wilde@anl.gov

ABSTRACT

Over the past decade, high-performance computing has be-
come an important tool in a variety of areas, stretching from
cosmological to subatomic simulations. With supercomput-
ers, clusters, grids and clouds, the landscape of target com-
puting environments is highly diverse. Often, it can be chal-
lenging to utilize all the available resources efficiently. Re-
mote execution paired with a highly-scalable, implicitly par-
allel programming language can help to solve this problem
of efficiency by not only making the resources more avail-
able, but by also helping to manage their use. We illustrate
here how a workflow-level HPC programming model that
was recently scaled up to extreme-scale systems can also
target more dynamic multiple-job, multiple-system deploy-
ments by integrating it with more flexible resource allocation
and data management strategies.

Categories and Subject Descriptors
D.3.2 [Programming Languages|: Language Classifica-
tions—-concurrent, distributed, and parallel languages

Keywords

parallel computing, remote execution

1. INTRODUCTION

High-performance computing has become an invaluable tool
for many areas of science over the past decade. With the
ability to compute in minutes or hours what would take

*Computation Institute, University of Chicago

humans years to compute by hand, the various systems that
compose the field are both incredibly powerful and diverse.
The diversity often adds more complexity than the average
user can handle. The majority of programming languages
tend to complicate parallelism for the average user. Swift/T,
however, is designed as an implicitly parallel language that
is highly scalable for large systems and is primarily aimed
at scientific users and their applications [3].

Swift/T improves on its predecessor, Swift/K, by providing
an extremely scalable workflow engine. It is built around
three main components: the Turbine runtime, the STC com-
piler, and ADLB (load balancer) libraries. The compiler
converts native Swift/T code into Tcl, which is then ex-
ecuted by Turbine[3]. ADLB distribute tasks to Turbine
workers [3, 7] and enables rapid task distribution, and trans-
forms the single-node JVM engine of Swift /K into a scalable,
multi-node VM that reduces latency and increases scalabil-
ity.

2. MOTIVATION

While Swift/T is vastly more scalable than Swift/K, the
older language is still powerful, especially with highly dy-
namic workflows. Swift/K distributed execution support al-
lows tasks to be submitted and managed on multiple remote
sites from a single client or head node. This is accomplished
with a distributed Swift service [6]capable of sending tasks
to multiple clusters with different scheduling systems and
data architectures, and of dynamically allocating and freeing
varying sized blocks of nodes based on workflow demand[6].
The Swift service can also execute workflows whose tasks
require diverse data management policies[8]. It can manage
shared and node-local file-systems, and can transfer data di-
rectly from the workflow client to any compute node. Files
can be staged in by the client, sent through the diverse trans-
fer services, and staged out upon completion [6].

In many scientific workflows, the demand for resources fluc-
tuates drastically over time, with some time periods being
highly compute intensive, while other periods may only re-

quire a very small number of nodes. The files needed to
execute certain sections of the workflow may be large and
impractical to move , forcing computation to take place on
that site. Swift/K provides both flexible data management
and multiple-site execution, but when the sites are super-
computers, Swift/K is limited in its scalability as described
above. Swift/T is capable of managing supercomputers, but
is not capable of handling the multi-site execution or the
data management. With computation time being expen-
sive and very limited, Swift/T will waste valuable resources
when workflow task parallelism fluctuates widely over time.
Hence the motivation of the work described here is to aug-
ment Swift/T’s scalability with Swift/K’s flexible resource
and data management scheme. This integration has been
performed, and its results and benefits are reported here.

3. ARCHITECTURE

Our architectural goal is a single, unified Swift language
that combines the scalability and efficiency of Swift/T with
the execution and data management models of Swift/K. By
optionally enabling these execution model in Swift/T, the
Swift execution model becomes even more flexible and pow-
erful. Workflows that do not have fluctuating demands can
remain the same, but may also be performed on multiple
sites if desired. Workflows requiring varying amounts of re-
sources can effectively be managed both locally and on re-
mote sites. Data management can be handled either through
the Swift service or through providers such as GridFTP or
Globus. The figures below illustrate the diversity of the new
workflow execution model.

3.1 Dynamic Execution

Currently, the client through which Swift/T communicates
with the Swift Service is limited to a single-site. This is
one of the most important features for remote execution.
This will aid in adding the dynamic execution capabilities
of Swift/K to the functionality of Swift/T. This feature will
also allow for multi-queue support within the same system.
An example of this is show in Fig. 1. One portion of the
workflow may require a great deal of memory or it may per-
form better on GPUs, while the other is indifferent and can
run in a general queue. One queue may also have less of a
load and may be preferable as it would allow for a job to
start sooner and perhaps perform better due to lower strain
on the system. Fig. 2 also demonstrates another situation
where dynamic execution can be incredibly useful. An sim-
ulation may require data located on a read-only file system.
Sometimes that data is read-only and cannot be moved or
changed and so the simulation must be run on that spe-
cific site. That site, however, could be busy otherwise and
the analysis phase of the simulation may be better run on
a different system that may have a lower system load or it
may have nodes better suited to the task, such as in the
multi-queue example mentioned above.

3.2 Data Management

The Swift Service is currently capable of handling http://,
cs:// (a prefix for files local to the Swift Service), and several
others. Globus Online [2] support is one of the most impor-
tant features to be added as this will allow for the transfer
of large data sets between systems if necessary. It also al-
lows for scientists to be able to track the progress of their

Swift T T
(stc STC Turblne SWIf[i —— "X"W
Compller Run time|C Cllent G
SW|ft Job J ‘

Serwce Queue: “fast” '

Node Granularity: 4

SWlft Job
Servnce Queue: “bigmem”
Node Granularity: 12

Figure 1: Swift/T multi-queue workflow with static
resource demands

Swift-
| sTC Turblne Swift
Complle Run-time|C Client
Site: Wayne State University HPC Grid
[i | Job <
SWI_f[Queue: “asxq” /!
Service Node Granularity: 4 X

Site: Uchicago - Midway

Site: Localhost
Ex: Your Laptop

Job \, i
Swift Queue: “westmere” |~
Service Node Granularity: 12—/ “Z

Figure 2: Swift/T multi-site workflow with static
resource demands

experiments (via the Globus Online web interface) if Globus
Online is used to transfer the resulting data into a remote
file system for analysis purposes. This would also allow for
real-time data transfer to a separate system for near-real-
time analysis of their data. Near-real-time, or in-situ, anal-
ysis reduces resource waste not only for HPC systems but
also for scientific resources. If preliminary analysis happen-
ing during experiment time can illuminate problems in the
data, the necessary changes can be made to the experiment
and valuable time can be saved. Another important aspect
of data management is local staging which allows for the
client to get and send files from a local system to the remote
Swift service. While not ideal for staging in very large files
or datasets, it can be used to stage-out any files resulting
from computation, such as the results of the final analysis
stages.

3.3 Performance

Perhaps the most important feature of the system is the per-
formance allowed. Swift/T can dispatch tasks much more
quickly to the Swift service than can Swift/K. Swift/T can
very rapidly generate all of the required jobs for the Swift
service. The Swift service then requests the desired blocks of
nodes that, upon receipt, can be used to rapidly distribute
the Swift tasks among the nodes received. Figs. 4 and 5
demonstrate some of this happening, although they both de-
pict total time, which is composed of initial allocation, task
completion, and queue waiting time which tends to domi-
nate the total time for job completion.

Fig. 3 shows a Swift/T workflow that has multiple jobs
each with a different amount of required resources. The
distribution is handled via the Swift service. In Figs. 1

Swift-T
STC g Turbine | switt | —
Compiler 'Run-ime|C Client| {
Job 1 | \V
P O S P O B 1
@ N L S— -
Swift ; Job 2 S ”
Service WorkerWorkero orker—" - <Y
L) 13

[Job 3 | |
PN | — | Il
(—Data | ffeneenejfioneltonet [rorkeoneplokeponetorce)

ﬁcuntrol

Figure 3: Swift/T single-site workflow with fluctu-
ating resource demands

slots 2 e slots 4 == slots 8 -~ slots 16 e slots_32

Time to completion

10°
of Tasks

Figure 4: Task throughput via Swift/T and the Swift
service with different slot sizes

and 3, "X” indicates a shared filesystem. In Fig. 2, ”X” is
local to the client, while ”Y” and ”Z” are shared filesystems
within the site. Fig. 4 demonstrates the initial throughput
testing of Swift/T with the Swift service running small, 0-
second sleep tasks through a Slurm scheduling system on the
University of Chicago’s Midway system. Fig. 5 is a variation
on Fig. 4, using a fixed slot size for larger numbers of tasks
instead of multiple slot sizes.

4. RELATED WORK

Scientific workflow management systems such as Makeflow
[1], DAGMan [4], and Pegasus [5] also aim to automate
remote execution and data management for data-intensive
workflows. None of these span the breadth of runtime envi-
ronment achieved by the work reported here.

5. CONCLUSION

With such diverse target system architectures for high per-
formance workflow, it is challenging to achieve an ideal par-
allel distribution of both data and computation without wast-
ing resources, whether it be computation time, storage, or
network bandwidth. By combining the execution and data
management models of Swift/K with the scalability task
model of Swift/T into a unified implementation, a more
efficient workflow model has been achieved. This unified
workflow scripting language with multiple run-time topolo-
gies reduces wasted resources while providing an execution
model capable of extreme-scale performance.

I
3

Time to completion
5 g 8 g g

20000 40000 60000 80000

of Tasks

Figure 5: Task throughput via Swift/T and the Swift
/ service with a fixed slot size

6. FUTURE WORK

A variation on Fig. 2 can be extrapolated when the Swift
service is instead Swift itself that launches multiple MPI
jobs. These MPI jobs work similarly to the Swift service by
allowing for diverse resource allocation that can be config-
ured during execution. This would also allow for the schedul-

| ing of jobs with varying lifetimes. Changes must be made

to the core Swift/T engine and runtime in order to allow
for this run-time topology to exist in future versions of the
language. Other future tasks include the addition of the
multi-site functionality mentioned in the Architecture sec-
tion. Data management mechanisms also need to be final-
ized. The Globus Online feature is still not fully supported,
although it is in development. Currently, the file stage-in
is successful, but any operations that attempt to use the
file fail for unknown reasons. Beyond the features directly
affected by this work, many other aspects still need to be
examined to unify the two languages. Further support for
proper file management within Swift/T is one such thing.
With this addition, any sort of file staging involved with
data transfers would be greatly assisted once the language
has more than a basic concept of a file. The majority of
other features are outside the scope of this paper.

7. REFERENCES

[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain.
Makeflow: A portable abstraction for data intensive
computing on clusters, clouds, and grids. In Proceedings
of the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies, SWEET
’12, pages 1:1-1:13, New York, NY, USA, 2012. ACM.

[2] B. Allen, J. Bresnahan, L. Childers, I. Foster,

G. Kandaswamy, R. Kettimuthu, J. Kordas, M. Link,
S. Martin, K. Pickett, and S. Tuecke. Globus online:
Radical simplification of data movement via saas.
06/2011 2011.

[3] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T.
Foster. Compiler techniques for massively scalable
implicit task parallelism. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
299-310. IEEE Press, 2014.

100

[4] P. Couvares, T. Kosar, A. Roy, J. Weber, and

[5

8

]

K. Wenger. Workflow management in condor. In
Workflows for e-Science, pages 357-375. Springer, 2007.
E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan,
P. J. Maechling, R. Mayani, W. Chen, R. Ferreira da
Silva, M. Livny, and K. Wenger. Pegasus, a workflow
management system for science automation. Future
Generation Computer Systems, 46:17-35, 2015.

M. Hategan, J. Wozniak, and K. Maheshwari. Coasters:
uniform resource provisioning and access for clouds and
grids. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages
114-121. IEEE, 2011.

E. L. Lusk, S. C. Pieper, R. M. Butler, et al. More
scalability, less pain: A simple programming model and
its implementation for extreme computing. SciDAC
Review, 17(1):30-37, 2010.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,

D. S. Katz, and I. Foster. Swift: A language for
distributed parallel scripting. Parallel Computing,
37(9):633-652, 2011.

