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ABSTRACT

Big data scientists routinely transfer massive amounts of
data. By understanding and modelling different aspects of
these data transfers, we can make using big data more effi-
cient and user-friendly. In this paper, we first develop a set
of data storage location prediction heuristics. These heuris-
tics help big data scientists manage and discover locations
to transfer their data from and to. We show, via analy-
sis of historical Globus operations, that our approaches can
predict the storage locations accessed by users with 78.2%
and 95.5% accuracy for top-1 and top-3 recommendations,
respectively. Predicting transfer bandwidth allows for more
optimal selections of data replicas to download from and for
more optimal scheduling and routing of data transfers. We
show that existing bandwidth prediction techniques perform
poorly on real-world data and develop heuristics that (per-
formance statistics).

1. INTRODUCTION

Big data is vital to the advancement of many areas of sci-
ence, from high energy physics to materials science to molec-
ular biology and will only continue to grow in importance.
In this era of big data science, scientists are face with the
challenge of managing and analysing huge amounts of data
distributed over various storage repositories, compute re-
sources, and personal computers. Therefore, we study how
scientists use big data to make its use more efficient and
user-friendly. By understanding and modelling aspects of
big data use, we can target the development of new big data
tools and allow existing systems to adapt to users’ needs.
[15], [14], [1] and others model and recommend scientific
workflow components.

Transfers are a vital but often complex and time consum-
ing aspect of big data. Scientists need to move vast quanti-
ties of data between collections sites, computing, visualiza-
tion, and storage resources, and personal devices. This task
is greatly complicated by the tens of thousands of available
transfer locations. Commercial services, such as travel web-
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sites, provide valuable user-specific recommendations derived
from analysing huge amounts of usage data. These recom-
mendations reduce the complexities associated with trawl-
ing through vast amounts of data and improve user experi-
ences [2]. We explore here how recommendation approaches
can be adapted and used to recommend storage locations to
users, as shown in Figure 1.

Our approach builds upon a collection of specialized heuris-
tics that consider unique features of scientific big data. We
evaluate our approach using Globus [3], a hosted service
that provides research data management capabilities across
a vast network of distributed storage locations (called “end-
points”).

Efficiently transferring data is also non-trivial. In scien-
tific grids, it is common for copies of data to be stored in
several locations [5], [6]. The location that data is trans-
ferred from may have a large impact on transfer time since
thse grid’s networks are generally complex, highly heteroge-
neous, and volatile. In addition, optimally scheduling and
routing transfers poses a challenges. Static models of trans-
fer throughput between endpoints fail to capture the highly
dynamic nature of throughput; by developing a more accu-
rate dynamic model of transfer throughput, one may route
transfers more efficiently (cite predictive routing paper). In
this paper, we develop such a dynamic model of transfer
throughput between endpoints. While this problem has been
studied before [11], [10], [9], [7], our work distinguishes it-
self in that we validate it on real transfer data from Globus,
which, as we will later discuss, poses a much greater chal-
lenge to model than the synthetic datasets used in previous
works.

We explore here how recommendation approaches can be
adapted and used to recommend storage locations to users.
Our approach builds upon a collection of specialized heuris-
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Figure 1: Mockup of recommendation interface.



Figure 2: Globus Network. Endpoints are repre-
sented as vertices. Edges represent transfers be-
tween endpoints. Larger endpoints have trans-
ferred more frequently with more distinct end-
points. Shorter distances between endpoints rep-
resents more frequent transfers.

tics that consider unique features of scientific big data.

2. GLOBUS TRANSFERS

In this section we describe of the characteristics of Globus
transfers to demonstrate the challenges of predicting trans-
fer characteristics and motivate our solutions. Every Globus
transfer is between a source and a destination endpoint, has
a start and an end time, and transfers a certain number of
bytes. Over 3.5 million Globus transfers have been con-
ducted by over 16,000 users with over 23,000 endpoints.
Below is a graph of considering endpoints as vertices and
transfers as edges in Figure 2.

From this graph, we notice that there are a small num-
ber of endpoints that have been involved in many transfers
with many endpoints, and a large number of endpoints that
have only conducted a few transfers with a few endpoints.
We examine this endpoint activity distribution in 3. These
long-tailed distributions are a defining feature of Globus,
and present a challenge for transfer characteristic predic-
tion. The endpoints with low usage provide little histori-
cal information to base predictions off of, and the endpoints
with high activity are often being used by different scientists
with different usage patterns.

In addition, in 2 we see clusters of endpoints, often around
a single high active endpoint. These clustered endpoints are
likely related in some way, and we will try to characterize
and use these clusters to make better predictions for end-
points with little historical activity.

Finally, although millions of transfer have been conducted,
the data is very sparse. Only approximately 0.01% of poten-
tial user/endpoint pairs pairs are present, and only 0.006%
of potential ordered endpoint pairs are present. This spar-
sity makes predicting transfer characteristic for pairs of end-
points, like throughput, challenging, as most potential pairs
have never been seen before.

3. TRANSFER ENDPOINT RECOMMENDA -
TION

In this part of the paper, we describe our methods for
predicting the endpoints used in transfers. First we detail
five endpoint recommendation heuristics. Then we combine
these heuristics into a single superior heuristic using a neural
network. Finally, we evaluate the accuracy of these heuris-
tics and analyse some of their strengths and weaknesses.
As we are interesting in improving user experience, we only
consider endpoint recommendation for the approximately 1
million transfers initiated through the web GUI, and not
through initiated programmatically through various APIs.

4. ENDPOINT PREDICTION HEURISTICS

Globus stores detailed records regarding users and their
usage, including user institution and email. We use this
information to develop a collection of endpoint recommen-
dation heuristics. When queried with user ID, date, and
n, each heuristic returns what it believes is the nth best
endpoint recommendation for that user ID on that date.

History: The history heuristic does exactly what one
would expect: it predicts that the nth best recommendation
is the nth most recently used source (S) / destination (D)
endpoint.

Markov Chain: The history heuristic matches users
with endpoints, so we created a heuristic that correlates end-
points with endpoints, which we will call the Markov chain
heuristic. The Markov chain heuristic recommends by main-
taining a transition matrix of the probabilities of using each
endpoint as a source/destination conditioned on a particu-
lar endpoint being previously used as a source/destination.
These probabilities are estimated online by the Markov chain
heuristic from the transitions is observes. According to this
heuristic, the nth most likely endpoint for a user to use as
a S/D endpoint is the nth most likely endpoint transition
given that user’s previous S/D endpoint choice.

Most Unique Users: The most unique users (MUU)
heuristic, takes advantage of the long tailed distributions: a
small number of endpoints are used by a larger number of
different users. The nth best source/destination endpoint
according to this heuristic the the endpoint with the nth

most unique users who used that endpoint as a source/destination.

Thus far, all of our heuristics predict by using past trans-
fers. This approach is known as collaborative filtering [cite].
Another major technique used in recommender system such
as these are content based methods [cite], or heuristics that
use information about the users and endpoints themselves,
not just what they have transferred with. These methods
have the advantage of not relying on the user or endpoint
to have a transaction history, instead using other informa-
tion like user email or institution to predict which endpoints
the user will transfer with. Omn this section, we describe
and benchmark two content based endpoint recommenda-
tion heuristics.

Institution: The institution heuristic maps users to the
institution they belong to based on that user’s provided
email suffix. For example, wagnew3@gatech.edu would be

mapped to the institution "gatech.edu”. The n best source/destination

endpoint for a user is the endpoint owned by a user belonging
to the same institution that has been used a source/destination
by the most unique users.

Endpoint Ownership: The endpoint ownership recom-
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Figure 3: Long-tailed distributions of Globus usage

mends the nth most recent endpoint the user owns. The idea
behind this heuristic is that if a user creates a new endpoint,
that user is very likely to use it in a transfer soon.

5. COMBINING HEURISTICS

These heuristics model different aspects of the Globus
ecosystem and therefore perform well for different classes of
users. To combine the strengths of each heuristic we trained
a deep recurrent neural network [4] on the series of endpoints
chosen. Each heuristic, starting with the most accurate over-
all, outputs the top 3 recommendations that have not al-
ready been recommended and the weights it gives to those
recommendations. The neural network is then given the
heuristics’ recommendation weightings and some additional
user and endpoint information, and it re-weights heuristic
recommendations and chooses the most highly re-weighted
recommendation, as outlined in Figure 4. We give the neu-
ral network values representing the following information:
date, user institution type (.edu, .gov, .com, or other), num-
ber of other Globus users in the same institution, relative
user total number of transfers and total transfer volume,
each heuristic opinion of how good its recommendations are
overall (for example, the history heuristic reports how much
transaction history that user has), each recommended end-
points’s relative total number of transfers and total transfer
volume, each heuristic’s past accuracy for the user, and the
which heuristic recommendations were correct and incorrect
for the last recommendation made to that user. In short,
we give the neural network a lot of potentially useful infor-
mation about the recommendation problem and allow the
network to determine which information is actually useful
and how to integrate that information into its recommenda-
tions.

6. ENDPOINT PREDICTION RESULTS

We will measure our heuristic’s accuracies with two met-
rics: transfer accuracy and user accuracy. Transfer accuracy

is simply the fraction of all endpoint selections the heuristics

R number endpoints predicted correctl
correctly predicted, or P P Y

Each Heuristic: Top N Recommendation Weights

Each Heuristic: Weighting of Other Heuristics’ Recommendations

New Memory of
Endpoint Selec- |
tions

Memory of
—{ Past Endpoint
Selections

New Memory of
Endpoint Selec- |
tions

Memory of
—| Past Endpoint
Selections

Weights for Each of the Five Heuristic’'s N Recommended
Endpoints
IR R

Figure 4: Neural Network Block. Takes as in-
put heuristic recommendation weights and memory
from past recommendations to the user, and outputs
reweighed endpoint recommendations and updated
recommendation memory.

form for each user, we introduce user accuracy, which is the

average accuracy per user. The accuracy for a single user is
number endpoints predicted correctly for user’s transfers

simpl,
Py total number endpoints used in user’s transfers

User accuracy weights frequent Globus users equally with in-
frequent or new Globus users, giving us a better idea of how
our heuristics will perform with new users. We give each
heuristics user accuracy in 6.
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We give each heuristic’s transfer accuracy in Figure 5. As we
saw in the long-tailed distributions of the previous section, a
few users have transferred a lot, and most users have trans-
ferred relatively little. While predicting the endpoints for
these very active users is important, we cannot ignore these
users with only few transfers, as they are likely least familiar
with Globus and so would most benefit from good endpoint
prediction. Therefore, to gauge how well our heuristics per-
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heuristics perform significantly worse than the other heuris-
tics. However, when we compare heuristic accuracy against
user history size (Figure 7), we see the history and Markov
heuristics perform poorly when users have few previous trans-
fers. By combining heuristics, the neural network is able
to outperform all individual heuristics. For example, when
there is little user history, the neural network increases the
weighting of the unique users, institution, and owned end-
points heuristics.
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Figure 7: Top-1 transfer accuracy vs. history size

7. PREDICTING THROUGHPUT

In this part of the paper, we study predicting the through-
put (transfer rate) between a source and a destination end-
point. Predicting this value accurately would allow for im-
proved replica selection and transfer routing algorithms, in-
creasing cloud transfer speed and reducing load on overuti-
lized network links. Small transfers to probe throughput
may seem like a simple solution, but as shown in [11] and [13],
transfer probes must actually be quite large to be very ac-
curate. This renders the approach impractical for our appli-
cations of interest, where we want to quickly estimate the
throughput between many pairs of endpoints. To give an in-
tuition for the structure of Globus throughput rates between
different endpoints, we include a heatmap of top endpoints
in Figure 8.

Figure 8: Heatmap of average throughput speed be-
tween top 1000 endpoints by total bytes transferred.
Purple represents 0 bytes/sec (or no transfers be-
tween endpoint pair).

Our methodology is the same as endpoint prediction: we
develop a set of heuristics, some utilizing content specific to
scientific grids to produce accurate predictions for new end-
points pairs, and then combine these heuristics into a sin-
gle superior heuristic using a neural network. Unlike end-
point prediction, we will predict throughput for all trans-
fers. Much work has been done on throughput prediction
already, and we include the best previous throughput pre-
diction heuristics for comparison.

8. THROUGHPUT PREDICTION HEURIS-
TICS

When given the source endpoint, destination endpoint,
transferring user, date, and amount to be transferred, each
throughput heuristic outputs its prediction of the through-
put for that transfer and a rating of how confident it is in
that transfer.

The first three heuristics, mean, median, and ARIMA, are
taken from [11].

Mean: The mean heuristic predicts that the transfer rate
between two endpoints is the mean of their past transfer
rates. In addition to considering all past transfers, we use
a version of the mean heuristic that only considers transfer
that occurred in the last day, which may better adapt to
changing network conditions.

Median: The median heuristic predicts that the through-
put between two endpoints is the median rate of their past
transfers. Like with the mean heuristic, we also use a ver-
sion of the median heruistic that only considers transfers
that occurred in the past day.

ARIMA: We use the version of ARIMA, or Auto-Regressive
Integrated Moving Average, that is presented in [11]. This
heuristic is in the same spirit as the endpoint prediction
Markov heuristic: given the previous throughput between
a pair of endpoints, it predicts the next throughput. More
specifically, the ARIMA heuristic fits a line to the set of
(previous throughput, next throughput) points for each pair
of endpoints, and predicts throughput using this line model.



Polynomial Regression: As originally described in [8],
the polynomial regression heuristic correlates the through-
put of one endpoint pair with that of another, and fits a
polynomial model to relate the two throughput variables.
However, [8] only considers a grid with two endpoint pairs;
Globus has nearly 40,000, so we must modify this algorithm
to ensure that correlated endpoint pairs are used to model
each other and that we do not have to re-fit 40,000 polyno-
mials every time we update this heuristic. We do this by cal-
culating the Pearson correlation between every pair of end-
points and only including the 10 most correlated endpoint
pairs in each model. The throughput estimation of each
model is scaled by the corresponding endpoint pair’s relative
correlation, and all throughput estimations are summed to
obtain the heuristic’s throughput estimation. In addition,
after the first 5 transfers between a pair of endpoints, we
only re-fit the models for that pair of endpoints every 20
transactions.

Recursive Least Squares and Kalman Filtering: As
presented in [10], the recursive least squares and Kalman fil-
tering heuristics build models that predict future through-
put between a pair of endpoints from the past throughputs.
Both models have a similar structure; we refer the reader to
section 3.2 of [10] for more detail.

CDF Matching: [9] describes a throughput predic-
tion heuristic that works by correlating one endpoint pair’s

throughputs with another’s. More specifically, CDF's of through-

put are created for both endpoint pairs by observing trans-
fers. To predict the throughput of a new transfer for one
endpoint pair, the position in the CDF of the last transfer
throughput for the other endpoint is calculated. The heuris-
tic then estimates the throughput as the throughput value
in that position of the CDF of the first endpoint pair. This
heuristic is also specialized to a two endpoint pair cloud,
which is unrealistic. We extend it to an arbitrary number
of endpoint pairs in a similar way as we did the polyno-
mial regression heuristic: we only use the 10 most correlated
endpoint pairs in each model, and we weight each endpoint
pair’s contribution towards the final throughput estimation
by that endpoint pair’s relative correlation.

NWS Ensemble [12] describes a set of heuristics-exponential

smoothing and median with a variety of parameters- that
are then combined into a single heuristic by choosing the
historically most accurate heuristic to use.

We next present three heuristics which, unlike all other
we have discussed, do not rely on an endpoint’s history to
make predictions, and instead exploit other correlations.

Institution Median The institutional median heuristic
recommends the median throughput of all transactions from
endpoints at the same institution as the source endpoint to
endpoints at the same institution as the destination end-
point. As with the median heuristic, we also use a version
of the institution median heuristic that only considers trans-
actions from the past day.

User Median The user median heuristic recommends the
median throughput of all transactions from endpoints owned
by the same user as the source endpoint to endpoints owned
by the same user as the destination endpoint. We also use
a version of the user median heuristic that only considers
transactions from the past day.

Global Median The global median heuristic recommends
the median throughput of all transactions. This heuristic is
targeted at endpoints from new users with no discernible in-

stitution. Again, we also use a version of the global median
heuristic that only considers transactions from the past day.

9. COMBINING HEURISTICS

As we did with endpoint prediction, we combine our col-
lection of heuristics using a recurrent neural network on the
series of throughputs of each endpoint pair.

10. RESULTS

Throughput prediction is significantly more difficult than
endpoint prediction. The described heuristics are compu-
tationally intensive, and even the best do only about 10%
better than just guessing the global median throughput ev-
ery time.

11. CONCLUSION

In our work on endpoint prediction, developed and evalu-
ated a collection of heuristics for recommending data loca-
tions. By combining these heuristics using a neural network,
we correctly predict endpoints with 78.2% and 95.5% accu-
racy for top-1 and top-3, respectively. In future work we will
integrate our recommendation system into Globus. We are
also interested in characterizing, modelling, and improving
the usage of scientific big data by analysing the performance
of heuristics for different user profiles.

In our work on throughput prediction, we implemented
and tested leading throughput prediction heuristics on real
world data. We found that these heuristics’ performances
were much worse on this real data than on the contrived
data they were originally tested on. In addition, we de-
scribed weaknesses in the metric previously used to evalu-
ate these heuristics, relative error, and, based off of network
flow algorithms, proposed a new evaluation metric, absolute
error, that more accurately describes how well a particular
heuristic will perform in an application.
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