
	 1	

 Provenance Databases
 for Workflow Systems

 Jennifer A. Steffens Justin M. Wozniak [Advisor]
Drake University Argonne National Laboratory

 jennifer.steffens@drake.edu wozniak@mcs.anl.gov

Abstract--In scientific computing, under-

standing the origins and derivation of data is
crucial. Provenance models aim to provide a
means of capturing this in an efficient and
effective manner. For the Swift/T language, the
current provenance handling system requires
improvement. In this paper, we discuss the
development of a new Swift/T provenance
model based on the Swift/K provenance model,
which would parallelize the real-time storage of
provenance logs in a user-accessible database
system. Utilizing multiple databases in high
performance, parallel workflows can increase
the practicality of lightweight, relational
databases engines such as SQLite, and we show
it to be more efficient than a single database.

I. THE SWIFT SYSTEM

The Swift scripting language is designed for
optimizing the execution of scientific com-
putational experiments by performing independent
tasks implicitly in parallel. The system operates on
a given number of nodes, with one server node and
many script-executing worker nodes. Swift/T, the
current implementation of the language, utilizes
MPI and ADLB libraries in its runtime, Turbine,
letting it perform up to 1.5 billion tasks per second
[1].

The provenance model for the previous
generation of the Swift language, Swift/K, is based
on the Open Provenance Model. After the
execution of parallel scripts that specify many-task
computations, this model extracts provenance
information from the logs that Swift/K generates
and stores it in a relational database, using SQLite,
a lightweight and easy-to-use database engine, to
process the information [2].

II. OUR APPROACH

Instead of collecting provenance information
after a program finishes its execution, we collect it
during runtime, providing the benefit of access
before a large workflow finishes executing. This
makes our model useful in tracking progress. To
achieve this, we integrated a SQLite-utilizing C
program into the Swift/T source code that inserts
information into the relational databases as it is
processed. In this system, the two largest and data-
intensive tables are ApplicationExecution, which
details external application calls (leaf tasks) in a
Swift script, and ScriptRun, which details
important general information [Figure 1]. These
are both modified versions of the tables found in
the Swift/K provenance system [3].

ApplicationExecution

tries int

startTime datetime

try_duration int

total_duration int

command char (128)

stdios char (128)

arguments char (128)

notes text

tries int

	 2	

Figure 1: Schema of ApplicationExecution and ScriptRun

Because Swift/T parallelizes its programs
through the use of workers who execute
asynchronous tasks in parallel, we assigned each
worker its own database, which is schematically
identical to the master database. By doing this, we
can make sure each database is not being written to
by multiple processes simultaneously. To query
the data, we use attach statements to join all of the
separate database files, eliminating the need to
combine them into a single file. We perform this
query upon the master database, which houses the
general data for the script run (this is only inserted
by the server node, and so does not need to be
parallelized). By attaching the other database files
to the master database, we can count this
transaction as well as the view statements as one
transaction, and therefore there will be no
simultaneous writes to worker databases.

III. EVALUATION

 To test the efficiency of our system, we ran a
simple Swift script on a variable amount of nodes
hosted by the Cooley computing system, a
collection of 126 compute nodes housed at
Argonne National Laboratory. Our script generated
a hundred tasks per worker, and assigned them
each their own database. The script was simply to
echo integers from one to the number of workers
executing the task multiplied by one hundred. We
compared this to the same script ran with a single
database, regardless of how many worker nodes
participated in the execution. We also evaluated
the script on multiple databases when they were
pre-populated, i.e. they did not require the

Figure 2: A comparison of a single populated database,
multiple populated databases, multiple unpopulated databases, and

multiple populated databases with twelve processes per node.

Figure 3: A visualization of the speed comparisons

execution of a schema creation prior and instead
relied on a copy-paste to move them into each output
file, and when they were prepopulated and had
twelve processes per node, e.g. the eight-worker
test was performed on a single node and the thirty-
two-worker test was performed on three nodes
[Figure 2].

ScriptRun

scriptRunId int

scriptFileName datetime

logFileName int

swiftVersion int

turbineVersion char (128)

finalState char (128)

startTime char (128)

duration char (128)

scriptHash text

scriptRunId int

Worker	
Nodes	

M	+	1	
PPN	+	
POP	

M	+	12	
PPN	+	
POP	

M	+	1	
PPN	+	
NO	
POP	

S	+	
POP	

2 80.667	 111.669	 16.785	 2.2172	

4 111.592	 228.506	 106.8	 2.594	

8 128.673	 432.654	 109.27	 4.056	

16	 138.925	 173.461	 122.822	 4.506	

32	 133.662	 163.913	 105.351	 1.085	

64	 123.193	 126.203	 97.207	 0.5926	

100	 128.084	 131.73	 88.235	 	

0	

50	

100	

150	

200	

250	

0	 20	 40	 60	 80	 100	 120	

Ta
sk
s	
pe
r	
se
co
nd
	

Total	tasks	in	hundreds	

Execution	Speed	

M	+	1	PPN	+	POP	

M	+	12	PPN	+	POP	

M	+	1	PPN	+	NO	POP	

S	+	POP	

	 3	

We found a significant increase in performance
for multiple databases, and immediate scaling. At a
large scale, the increase in speed slows, however
still out- performs the single database system. It
was seen that prepopulated databases have an
advantage as the create schema statements cause
the non-populated database speed to slow as it
approaches more than one hundred nodes. In
contrast, the prepopulated databases have end
behavior that implies a trend of increase. In
addition, giving the program more than one
process per node is beneficial until the number of
processes exceeds six thousand; after, the speed is
very close to the single-process-per-node test
[Figure 3].

IV. CONCLUSION

We believe parallelizing databases in this
fashion will make simple database engines
practical for high performance computing. By
making sure each file is only written to by one
process, we can decrease the time needed for data
storage and therefore increase the efficiency of the
system. For the Swift/T language, this provenance
storage model offers easy storage and access to
valuable data collected, available as soon as it is
processed.

ACKNOWLEDGMENTS

 This work was supported in part by the National
Science Foundation under awards NSF-1461260
(REU) and used resources of the Argonne
Leadership Computing Facility at Argonne
National Laboratory, which is supported by the
Office of Science of the U.S. Department of
Energy under contract DE- AC02-06CH11357.

REFERENCES

[1] Wozniak, Justin M., Timothy G. Armstrong,

Michael Wilde, Daniel S. Katz, Ewing Lusk, and
Ian T. Foster. "Swift/T: large-scale application
composition via distributed-memory dataflow
processing." In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on, pp. 95-102. IEEE,
2013.

[2] Gadelha, L. M., B. Clifford, M. Mattoso, M.

Wilde, and I. Foster. Provenance management in
Swift with implementation details. No.
ANL/MCS-TM-311. Argonne National
Laboratory (ANL), 2011.

[3] Gadelha Jr, Luiz MR, Michael Wilde, Marta

Mattoso, and Ian Foster. "MTCProv: a practical
provenance query framework for many-task
scientific computing." Distributed and Parallel
Databases 30, no. 5-6 (2012): 351-370.

