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Abstract--In scientific computing, under-

standing the origins and derivation of data is 
crucial. Provenance models aim to provide a 
means of capturing this in an efficient and 
effective manner. For the Swift/T language, the 
current provenance handling system requires 
improvement. In this paper, we discuss the 
development of a new Swift/T provenance 
model based on the Swift/K provenance model, 
which would parallelize the real-time storage of 
provenance logs in a user-accessible database 
system. Utilizing multiple databases in high 
performance, parallel workflows can increase 
the practicality of lightweight, relational 
databases engines such as SQLite, and we show 
it to be more efficient than a single database. 

 

I. THE SWIFT SYSTEM 

The Swift scripting language is designed for 
optimizing the execution of scientific com-
putational experiments by performing independent 
tasks implicitly in parallel. The system operates on 
a given number of nodes, with one server node and 
many script-executing worker nodes. Swift/T, the 
current implementation of the language, utilizes 
MPI and ADLB libraries in its runtime, Turbine, 
letting it perform up to 1.5 billion tasks per second 
[1]. 

The provenance model for the previous 
generation of the Swift language, Swift/K, is based 
on the Open Provenance Model. After the 
execution of parallel scripts that specify many-task 
computations, this model extracts provenance 
information from the logs that Swift/K generates 
and stores it in a relational database, using SQLite, 
a lightweight and easy-to-use database engine, to 
process the information [2]. 

 

II. OUR APPROACH 

Instead of collecting provenance information 
after a program finishes its execution, we collect it 
during runtime, providing the benefit of access 
before a large workflow finishes executing. This 
makes our model useful in tracking progress. To 
achieve this, we integrated a SQLite-utilizing C 
program into the Swift/T source code that inserts 
information into the relational databases as it is 
processed. In this system, the two largest and data-
intensive tables are ApplicationExecution, which 
details external application calls (leaf tasks) in a 
Swift script, and ScriptRun, which details 
important general information [Figure 1]. These 
are both modified versions of the tables found in 
the Swift/K provenance system [3].  

 

ApplicationExecution 

tries int 

startTime datetime 

try_duration int 

total_duration int 

command char (128) 

stdios char (128) 

arguments char (128) 

notes text 

tries int 

 

 

 

 

 

 



	 2	

 
Figure 1: Schema of ApplicationExecution and ScriptRun 

 

Because Swift/T parallelizes its programs 
through the use of workers who execute 
asynchronous tasks in parallel, we assigned each 
worker its own database, which is schematically 
identical to the master database. By doing this, we 
can make sure each database is not being written to 
by multiple processes simultaneously. To query 
the data, we use attach statements to join all of the 
separate database files, eliminating the need to 
combine them into a single file. We perform this 
query upon the master database, which houses the 
general data for the script run (this is only inserted 
by the server node, and so does not need to be 
parallelized). By attaching the other database files 
to the master database, we can count this 
transaction as well as the view statements as one 
transaction, and therefore there will be no 
simultaneous writes to worker databases.  

 
III. EVALUATION 

 To test the efficiency of our system, we ran a 
simple Swift script on a variable amount of nodes 
hosted by the Cooley computing system, a 
collection of 126 compute nodes housed at 
Argonne National Laboratory. Our script generated 
a hundred tasks per worker, and assigned them 
each their own database. The script was simply to 
echo integers from one to the number of workers 
executing the task multiplied by one hundred. We 
compared this to the same script ran with a single 
database, regardless of how many worker nodes 
participated in the execution. We also evaluated 
the script on multiple databases when they were 
pre-populated, i.e. they did not require the  

 

 

Figure 2: A comparison of a single populated database, 
multiple populated databases, multiple unpopulated databases, and 

multiple populated databases with twelve processes per node. 

 
Figure 3: A visualization of the speed comparisons 

execution of a schema creation prior and instead 
relied on a copy-paste to move them into each output 
file, and when they were prepopulated and had 
twelve processes per node, e.g. the eight-worker 
test was performed on a single node and the thirty-
two-worker test was performed on three nodes 
[Figure 2].  

 

ScriptRun 

scriptRunId int 

scriptFileName datetime 

logFileName int 

swiftVersion int 

turbineVersion char (128) 

finalState char (128) 

startTime char (128) 

duration char (128) 

scriptHash text 

scriptRunId int 

Worker	
Nodes	

M	+	1	
PPN	+	
POP	

M	+	12	
PPN	+	
POP	

M	+	1	
PPN	+	
NO	
POP	

S	+	
POP	

2 80.667	 111.669	 16.785	 2.2172	

4 111.592	 228.506	 106.8	 2.594	

8 128.673	 432.654	 109.27	 4.056	

16	 138.925	 173.461	 122.822	 4.506	

32	 133.662	 163.913	 105.351	 1.085	

64	 123.193	 126.203	 97.207	 0.5926	

100	 128.084	 131.73	 88.235	 	
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We found a significant increase in performance 
for multiple databases, and immediate scaling. At a 
large scale, the increase in speed slows, however 
still out- performs the single database system. It 
was seen that prepopulated databases have an 
advantage as the create schema statements cause 
the non-populated database speed to slow as it 
approaches more than one hundred nodes. In 
contrast, the prepopulated databases have end 
behavior that implies a trend of increase. In 
addition, giving the program more than one 
process per node is beneficial until the number of 
processes exceeds six thousand; after, the speed is 
very close to the single-process-per-node test 
[Figure 3]. 

IV. CONCLUSION  

We believe parallelizing databases in this 
fashion will make simple database engines 
practical for high performance computing.  By 
making sure each file is only written to by one 
process, we can decrease the time needed for data 
storage and therefore increase the efficiency of the 
system. For the Swift/T language, this provenance 
storage model offers easy storage and access to 
valuable data collected, available as soon as it is 
processed. 
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