
A Scripting Interface for Swift/T Parallel Workloads Using
Messaging Queues

 1Michael Collins, 2,3Justin M. Wozniak

1 Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, NJ, USA
2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

3 Computation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

michael.collins@rutgers.edu, wozniak@mcs.anl.gov

Abstract—Modern scientific computing applications
require not only highly parallel high-performance
computing workloads but also the expressiveness and
simplicity of scripting languages. In this work we
present an interface that allows external C and C++
programs to control a parallel workflow using
Swift/T. This interface facilitates the use of existing
C/C++ algorithm implementations to run distributed
programming models in an inversion-of-control
fashion without the requisite knowledge of scheduling
and message passing. The implemented framework
uses a messaging queue interface that requires
minimal modification to existing libraries and
applications. We evaluate this solution using a genetic
algorithm in C++ to perform an adaptive parameter
search on an agent-based model. We perform this
evaluation on large-scale distributed computing
machines and compare system utilization and
computational runtime with existing frameworks.

I. Introduction

Scientific computing applications are becoming
increasingly focused on scripting languages. As seen in
the growing popularity of libraries such as NumPy and
SciPy, as well as computational scripting languages like
R and Julia, the scientific community is favoring
scripting languages for their expressiveness and relative
ease of use. At the same time, advances in high-
performance and distributed computing have allowed
scientific computing applications to take advantage of
parallel workloads through the use of distributed message
passing protocols like MPI. The development of a
programming model that fully appreciates these two
trends, however, is not feasible for a scientist who lacks a
background in parallel programming. Such a model
would require a core library of C, C++, or Fortran code
for the bulk of data processing, additional modules
utilizing OpenMP or MPI for distributing the workload
over multiple threads and/or processors, and wrapper
scripts in a scripting language like Python to handle the
application logic and abstract the lower-level code base.

To streamline this development process, the Swift
programming language [1] provides an implicitly parallel
framework for controlling native code tools and
applications using wrapper scripts. The latest
implementation of Swift, called Swift/T [2], can generate
an MPI program from a given Swift script and supports
direct calls to C, C++, and Fortran code, as well as calls
to scripts written in Python, R, and Tcl [3].

In this work, we present an extension of Swift/T’s
external language interface to allow C and C++ programs
to govern the workflow of a Swift programming model.
The target use case is a programming model whereby a
model-exploration algorithm controls simulations of an
agent-based model through Swift/T. With the current
framework, the user can leverage existing third-party
model-exploration libraries such as Evolving Objects and
GAlib.

The remainder of this paper is organized as follows. In
§II, we provide background on Swift/T, agent-based
modeling and simulation, and recent work in ABMS
using Swift. In §III, we describe the design of our
framework and its current implementation. In §IV, we
evaluate the framework and report results. In §V, we
conclude and present future work.

II. Background

A. Swift/T Parallel Scripting Language

Swift/T [2] is a programming language and runtime
environment designed to facilitate the development of
highly concurrent, task-parallel applications. The Swift/T
compiler is able to convert a user’s script into a fully
scalable MPI program, and its runtime library Turbine
handles the distribution of processes. The Turbine
runtime, aided by the Asynchronous Dynamic Load
Balancer (ADLB) library, has demonstrated scaling
capabilities up to 128K processing cores while
maintaining over 80% system utilization for independent
tasks.

Recent modifications to ADLB [4] have allowed Swift/T
to leverage MPI 3.0 group-collective communicators in

mailto:wozniak@mcs.anl.gov

order to distribute multiple parallel tasks (i.e. tasks that
each utilize multiple processes). Traditionally, MPI
creates a sub-communicator for each task which
functions as a group within the program’s world
communicator, resulting in a tree-like structure of groups
that is collective on the parent communicator. MPI 3’s
group-collective communicator functionality [5] allows
for a more asynchronous approach to group formation,
whereby the creation of groups is collective only over the
processes contained in the new communicator. As a
result, groups can be allocated dynamically. This opens
up new capabilities for Swift of running parallel
instances of external parallel applications. We utilize this
functionality in our evaluation of the queue interface.

B. Agent-Based Modeling and Simulation

Agent-based modeling and simulation (ABMS) [6] is a
method of predicting the interactions and behavioral
consequences of individuals in a system of many
decision-makers. Each agent has the ability to make
decisions that impact their own behavior as well as the
behaviors of surrounding agents. This type of model is
useful in simulating epidemic spread, population
dynamics, social networking, business relations, and
other complex systems.

AMBS can be used to analyze the sensitivity of a
population of individuals to certain stimuli and can help
lead to wiser decision-making strategies in the real
world. A common application of ABMS is an adaptive
parameter search, whereby a model-exploration
algorithm (e.g. evolutionary algorithm, active learning
algorithm, neural network) runs many simulations in
order to determine optimal parameter sets for reaching a
targeted outcome. In our evaluation, we use a genetic
algorithm to perform an adaptive parameter search on an
ABM, as this demonstrates the ability of the messaging
queue framework to govern an inversion-of-control
model between a C/C++ algorithm and a Swift/T
program.

C. Related Work

Recent work in agent-based modeling and simulation
(ABMS) has shown Swift’s capability to perform a
parallel workload utilizing external code libraries. As
shown in [7], Swift has been used to run simulated
annealing processes to optimize the model parameter
space of an ABM created in Repast Simphony, an
external Java toolkit. This model produced a 96.3%
reduction in the total number of simulations required,
compared to a total enumeration of the parameter space.
Achieving these results, however, required the
implementation of a custom simulated annealing
algorithm design specifically for this task.

Another work from the MCS Division at Argonne
National Laboratory (under review at the time of
writing), uses a queuing interface with Swift/T to allow

the Distributed Evolutionary Algorithms in Python
(DEAP) library to perform an adaptive parameter search
on a Repast Simphony ABM. This model was able to
maintain an 88.95% system utilization on a 510-worker
test. In this work we present a similar framework for
C/C++ algorithms that leverages Swift/T’s external task
launching capabilities to run simulations that span
multiple processes.

III. Design and Implementation

The interface uses messaging queues to facilitate
communication between a standalone C/C++ program
and the Swift/T framework, as shown in Figure 1. These
queues govern the transfer of simulation parameters
from the model-exploration algorithm to Swift for
distribution among workers and results of completed
simulations from Swift to the algorithm.

The current implementation utilizes Swift/T’s Tcl
extension function syntax and a SWIG wrapper script
that allows the Tcl function to control both the messaging
queue implementation (C++) and the user’s algorithm, as
shown in Figure 2. With this framework in place, the user
need only produce three script files to run a distributed
workflow: a C++ function that uses existing libraries to
generate parameters and sends these to Swift; a Swift
function that reads in parameters, launches simulations,
and sends the results to the algorithm; and a Tcl package
that provides the Swift extension function which
launches the external simulation. None of these scripts
requires knowledge of MPI from the user; only
rudimentary C++ experience and the basics of Swift
syntax are required.

Figure 1: High-level design of queue
interface

IV. Evaluation

A. Preliminary Tests

As a proof-of-concept, we use the following test to
evaluate the feasibility of the interface.

This test uses a simple genetic algorithm written in C++
to maximize a function of two variables over a specified
domain. The algorithm initializes a random selection of
(x,y) coordinates, sends these to Swift for evaluation of
the function, receives the fitnesses f(x,y) of these
parameters, and creates a new generation of coordinates
from the two with highest fitness. Each new generation
is the result of a random selection from Gaussian
distributions centered at the mean x and y of the two most
fit parameters (i.e. the parents) with standard deviation
equal to the Euclidean distance between the two parents.

The fitness of each parameter set is evaluated using a Tcl
leaf function in Swift/T. Swift handles the distribution of
these tasks to worker processes, collects the fitnesses of
each generation, and returns the results to the genetic
algorithm.

For this test, we use the following function for fitness
evaluation.

f (x , y)=(9−x2
− y2

)⋅(sin(x)+cos (y))

Each generation of parameters consists of 10 coordinates
in the following domain.

D={(x , y) ∣ −3≤x≤3,−3≤ y≤3}

The algorithm iterates until the sum of the Euclidean
distances between the most fit coordinate and all others is
below a given threshold. In this test, we used the
threshold 0.00001.

The results of this test are shown in Figure 3. Over
generations, the population of coordinates, shown as
black dots, converge to a local maximum. After 28
generations, the population converged to the approximate

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3-10

-5

0

5

10

15

f(
x
,y

)

Generation: 1

x
y

f(
x
,y

)

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3-10

-5

0

5

10

15

f(
x
,y

)
Generation: 5

x
y

f(
x
,y

)

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3-10

-5

0

5

10

15

f(
x
,y

)

Generation: 9

x
y

f(
x
,y

)

Figure 3: Maximization of a function of two variables over 9
generations.

Figure 2: Implementation of queue interface

maximum 14.748 at the coordinate (1.05062 , 2.40316 ·
10-7).

This test demonstrates the ability of the queue interface
to govern the transport of parameters and results between
a C/C++ program and a Swift/T parallel workload. At the
time of writing, this test runs successfully on the x86
cluster Cooley and the IBM Blue Gene/Q machine Cetus,
both housed at Argonne National Lab. Cooley consists of
126 compute nodes, each equipped with two 2.4 GHz
Intel Haswell E5-2620 v3 processors (12 cores total) and
384 GB of memory. Cetus contains 4096 compute nodes,
each comprised of sixteen 1600 MHz PowerPC A2 cores
and 16 GB of memory. This test has been scaled
successfully up to 510 worker processes on each
machine.

B. Repast HPC Zombies Test

The following test case is presented as an evaluation of
the current implementation that utilizes Swift/T’s parallel
task capabilities.

A genetic algorithm developed using GAlib performs an
optimization search on the parameter space of an ABM
implemented with Repast HPC, a platform for distributed
simulations of agent-based models.

The genetic algorithm used in this test is a modified
version of the one used in the preliminary test,
implemented using GAlib. It performs the same
parameter search on a 3-variable parameter space.

The ABM used in this test is a modified version of the
“zombies” example model included in the Repast HPC
suite. The ABM consists of two agents, humans and
zombies. Each can move at a speed specified by the
simulation parameters human_step and zombie_step on a
grid of specified size. A zombie infect humans in close
proximity to it. After a given number of time units, the
human will either die and become a zombie with
probability specified by the parameter lethality or recover
from infection and remain alive. The fitness of each
simulation is the number of humans left alive at the end
of a specified time units, and the genetic algorithm seeks
to maximize this value.

This evaluation used the following parameters. The grid
of the simulation is 200x200, the initial number of
humans is 500, and the initial number of zombies is 50.
The simulation runs for 100 time units, and an infected
human will either recover or die after 14 time units.

The parameter space consists of three variables:
human_step, zombie_step, and lethality. In this test, the
two step variables are varied from 0 to 3, and lethality is
varied from 0 to 1.

Due to time constraints and limited MPI 3 support, we
are unable to run this test on the machines hosted at
Argonne National Lab at this time.

A run of this test on a local machine yields this following
results for 20 generations of parameters of population
size 5. While this is not the fullest extent of testing we
plan to do, this test provides evidence that the framework
is capable of an adaptive parameter search of an ABM.

In Figure 4, we see that the average zombie step size and
lethality for a population of 5 parameter sets decreases
over 20 generations. Both of these are natural results of

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20

S
te

p
 S

iz
e

Generation

Human step

Zombie step

450

460

470

480

490

500

2 4 6 8 10 12 14 16 18 20

Li
v
in

g
 H

u
m

a
n

s

Generation

Figure 4: Adaptive parameter search of the Repast HPC
Zombies agent-based model

(Average values for population size 5)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Le
th

a
lit

y

Generation

the algorithm’s goal to maximize the number of humans
alive at the end of 100 time units.

V. Conclusion

In this work, we have presented a framework for
inversion-of-control programming models, allowing a
C/C++ program to govern a Swift/T parallel workflow.
We demonstrate the utility of this framework by
performing an adaptive parameter search on an agent-
based model using a genetic algorithm implemented in
C++. Using this framework, users can utilize existing C
and C++ libraries to control large-scale parallel
ensembles of external third-party simulations.

Testing of this framework is ongoing at the time of
writing. We aim to perform the Repast HPC Zombies test
on larger numbers of processes, and compare this
framework’s system utilization and runtime with existing
solutions.

VI. Acknowledgments

This work was supported in part by the National Science
Foundation under awards NSF-1461260 (REU).

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-
06CH11357.

VII. References

[1] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford,
D. S. Katz, and I. Foster. Swift: A language for

distributed parallel scripting. Parallel Computing,
37:633–652, 2011.

[2] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S.
Katz, E. Lusk, and I. T. Foster. Swift/T: Scalable data
flow programming for many-task applications. Proc.
CCGrid, 2013.

[3] J. M. Wozniak, T. G. Armstrong, K. C. Maheshwari,
D. S. Katz, M. Wilde, and I. T. Foster. Toward
interlanguage parallel scripting for distributed-
memory scientific computing. Proc. - IEEE Int.
Conf. Clust. Comput. ICCC, vol. 2015-Octob, pp.
482–485, 2015.

[4] Wozniak, Justin M., Tom Peterka, Timothy G.
Armstrong, James Dinan, Ewing Lusk, Michael
Wilde, and Ian Foster. "Dataflow coordination of
data-parallel tasks via MPI 3.0." Proceedings of the
20th European MPI Users' Group Meeting, pp. 1-6.
ACM, 2013.

[5] J. Dinan, S. Krishnamoorthy, P. Balaji, J. R.
Hammond, M. Krishnan, V. Tipparaju, and A.
Vishnu. Noncollective communicator creation in
MPI. In Recent Advances in the Message Passing
Interface - 18th European MPI Users’ Group
Meeting, EuroMPI ’11, 2011.

[6] M. J. North and C. M. Macal, Managing Business
Complexity: Discovering Strategic Solutions with
Agent- Based Modeling and Simulation. Oxford
University Press, 1 ed., March 2007.

[7] J. Ozik, M. Wilde, N. Collier, and C. M. C. Macal.
Adaptive Simulation with Repast Simphony and
Swift. Euro-Par 2014 Parallel Process. …, pp. 418–
429, 2014.

