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Abstract—Modern  scientific  computing  applications
require  not  only  highly  parallel  high-performance
computing workloads but also the expressiveness and
simplicity  of  scripting  languages.  In  this  work  we
present an interface that allows external C and C++
programs  to  control  a  parallel  workflow  using
Swift/T.  This  interface  facilitates  the use of  existing
C/C++ algorithm implementations to run distributed
programming  models  in  an  inversion-of-control
fashion without the requisite knowledge of scheduling
and  message  passing.  The  implemented  framework
uses  a  messaging  queue  interface  that  requires
minimal  modification  to  existing  libraries  and
applications. We evaluate this solution using a genetic
algorithm in C++ to perform an adaptive parameter
search  on  an  agent-based  model.  We  perform  this
evaluation  on  large-scale  distributed  computing
machines  and  compare  system  utilization  and
computational runtime with existing frameworks.

I. Introduction

Scientific  computing  applications  are  becoming
increasingly focused on scripting languages. As seen in
the growing popularity of libraries such as NumPy and
SciPy, as well as computational scripting languages like
R  and  Julia,  the  scientific  community  is  favoring
scripting languages for their expressiveness and relative
ease  of  use.  At  the  same  time,  advances  in  high-
performance  and  distributed  computing  have  allowed
scientific  computing  applications  to  take  advantage  of
parallel workloads through the use of distributed message
passing  protocols  like  MPI.  The  development  of  a
programming  model  that  fully  appreciates  these  two
trends, however, is not feasible for a scientist who lacks a
background  in  parallel  programming.  Such  a  model
would require a core library of C, C++, or Fortran code
for  the  bulk  of  data  processing,  additional  modules
utilizing OpenMP or MPI for distributing the workload
over  multiple  threads  and/or  processors,  and  wrapper
scripts in a scripting language like Python to handle the
application logic and abstract the lower-level code base.

To  streamline  this  development  process,  the  Swift
programming language [1] provides an implicitly parallel
framework  for  controlling  native  code  tools  and
applications  using  wrapper  scripts.  The  latest
implementation of Swift, called Swift/T [2], can generate
an MPI program from a given Swift script and supports
direct calls to C, C++, and Fortran code, as well as calls
to scripts written in Python, R, and Tcl [3]. 

In  this  work,  we  present  an  extension  of  Swift/T’s
external language interface to allow C and C++ programs
to govern the workflow of a Swift programming model.
The target use case is a programming model whereby a
model-exploration algorithm controls  simulations of  an
agent-based  model  through  Swift/T.  With  the  current
framework,  the  user  can  leverage  existing  third-party
model-exploration libraries such as Evolving Objects and
GAlib.

The remainder of this paper is organized as follows. In
§II,  we  provide  background  on  Swift/T,  agent-based
modeling  and  simulation,  and  recent  work  in  ABMS
using  Swift.  In  §III,  we  describe  the  design  of  our
framework  and  its  current  implementation.  In  §IV,  we
evaluate  the  framework  and  report  results.  In  §V,  we
conclude and present future work.

II. Background

A. Swift/T Parallel Scripting Language

Swift/T  [2]  is  a  programming  language  and  runtime
environment  designed  to  facilitate  the  development  of
highly concurrent, task-parallel applications. The Swift/T
compiler  is  able to  convert  a  user’s  script  into a  fully
scalable  MPI program,  and its  runtime library  Turbine
handles  the  distribution  of  processes.  The  Turbine
runtime,  aided  by  the  Asynchronous  Dynamic  Load
Balancer  (ADLB)  library,   has  demonstrated  scaling
capabilities  up  to  128K  processing  cores  while
maintaining over 80% system utilization for independent
tasks.

Recent modifications to ADLB [4] have allowed Swift/T
to leverage MPI 3.0 group-collective communicators in
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order to distribute multiple parallel tasks (i.e. tasks that
each  utilize  multiple  processes).  Traditionally,  MPI
creates  a  sub-communicator  for  each  task  which
functions  as  a  group  within  the  program’s  world
communicator, resulting in a tree-like structure of groups
that  is  collective on the parent communicator.  MPI 3’s
group-collective  communicator  functionality  [5]  allows
for a more asynchronous approach to group formation,
whereby the creation of groups is collective only over the
processes  contained  in  the  new  communicator.  As  a
result, groups can be allocated dynamically. This opens
up  new  capabilities  for  Swift  of  running  parallel
instances of external parallel applications. We utilize this
functionality in our evaluation of the queue interface.

B. Agent-Based Modeling and Simulation

Agent-based modeling and simulation (ABMS) [6] is a
method  of  predicting  the  interactions  and  behavioral
consequences  of  individuals  in  a  system  of  many
decision-makers.  Each  agent  has  the  ability  to  make
decisions that impact their own behavior as well as the
behaviors of surrounding agents. This type of model is
useful  in  simulating  epidemic  spread,  population
dynamics,  social  networking,  business  relations,  and
other complex systems.

AMBS  can  be  used  to  analyze  the  sensitivity  of  a
population of individuals to certain stimuli and can help
lead  to  wiser  decision-making  strategies  in  the  real
world.  A common application of ABMS is an adaptive
parameter  search,  whereby  a  model-exploration
algorithm  (e.g.  evolutionary  algorithm,  active  learning
algorithm,  neural  network)  runs  many  simulations  in
order to determine optimal parameter sets for reaching a
targeted  outcome.  In  our  evaluation,  we  use  a  genetic
algorithm to perform an adaptive parameter search on an
ABM, as this demonstrates the ability of the  messaging
queue  framework  to  govern  an  inversion-of-control
model  between  a  C/C++  algorithm  and  a  Swift/T
program.

C. Related Work

Recent  work  in  agent-based  modeling  and  simulation
(ABMS)  has  shown  Swift’s  capability  to  perform  a
parallel  workload  utilizing  external  code  libraries.  As
shown  in  [7],  Swift  has  been  used  to  run  simulated
annealing  processes  to  optimize  the  model  parameter
space  of  an  ABM  created  in  Repast  Simphony,  an
external  Java  toolkit.  This  model  produced  a  96.3%
reduction  in  the  total  number  of  simulations  required,
compared to a total enumeration of the parameter space.
Achieving  these  results,  however,  required  the
implementation  of  a  custom  simulated  annealing
algorithm design specifically for this task.

Another  work  from  the  MCS  Division  at  Argonne
National  Laboratory  (under  review  at  the  time  of
writing), uses a queuing interface with Swift/T to allow

the  Distributed  Evolutionary  Algorithms  in  Python
(DEAP) library to perform an adaptive parameter search
on a  Repast  Simphony ABM. This  model  was  able  to
maintain an 88.95% system utilization on a 510-worker
test.  In  this  work  we  present  a  similar  framework  for
C/C++ algorithms that leverages Swift/T’s external task
launching  capabilities  to  run  simulations  that  span
multiple processes.

III. Design and Implementation

The  interface  uses  messaging  queues  to  facilitate
communication  between  a  standalone  C/C++  program
and the Swift/T framework, as shown in Figure 1. These
queues   govern  the  transfer  of  simulation  parameters
from  the  model-exploration  algorithm  to  Swift  for
distribution  among  workers  and  results  of  completed
simulations from Swift to the algorithm. 

The  current  implementation  utilizes  Swift/T’s  Tcl
extension  function  syntax  and  a  SWIG wrapper  script
that allows the Tcl function to control both the messaging
queue implementation (C++) and the user’s algorithm, as
shown in Figure 2. With this framework in place, the user
need only produce three script files to run a distributed
workflow: a C++ function that uses existing libraries to
generate  parameters  and  sends  these  to  Swift;  a  Swift
function that reads in parameters, launches simulations,
and sends the results to the algorithm; and a Tcl package
that  provides  the  Swift  extension  function  which
launches the external  simulation. None of  these scripts
requires  knowledge  of  MPI  from  the  user;  only
rudimentary  C++  experience  and  the  basics  of  Swift
syntax are required.

Figure 1: High-level design of queue
interface



IV. Evaluation

A. Preliminary Tests

As  a  proof-of-concept,  we  use  the  following  test  to
evaluate the feasibility of the interface. 

This test uses a simple genetic algorithm written in C++
to maximize a function of two variables over a specified
domain. The algorithm initializes a random selection of
(x,y) coordinates, sends these to Swift for evaluation of
the  function,  receives  the  fitnesses  f(x,y) of  these
parameters, and creates a new generation of coordinates
from the two  with highest fitness. Each new generation
is  the  result  of  a  random  selection  from  Gaussian
distributions centered at the mean x and y of the two most
fit  parameters (i.e.  the parents) with standard deviation
equal to the Euclidean distance between the two parents.

The fitness of each parameter set is evaluated using a Tcl
leaf function in Swift/T. Swift handles the distribution of
these tasks to worker processes, collects the fitnesses of
each  generation,  and  returns  the  results  to  the  genetic
algorithm.

For this test,  we use the following function for  fitness
evaluation.

f (x , y )=(9−x2
− y2

)⋅(sin(x)+cos ( y ))

Each generation of parameters consists of 10 coordinates
in the following domain. 

D={(x , y)  ∣ −3≤x≤3,−3≤ y≤3}

The  algorithm  iterates  until  the  sum of  the  Euclidean
distances between the most fit coordinate and all others is
below  a  given  threshold.  In  this  test,  we  used  the
threshold 0.00001.

The  results  of  this  test  are  shown  in  Figure  3.  Over
generations,  the  population  of  coordinates,  shown  as
black  dots,  converge  to  a  local  maximum.  After  28
generations, the population converged to the approximate
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Figure 3: Maximization of a function of two variables over 9
generations.

Figure 2: Implementation of queue interface



maximum 14.748 at the coordinate (1.05062 , 2.40316 ·
10-7). 

This test demonstrates the ability of the queue interface
to govern the transport of parameters and results between
a C/C++ program and a Swift/T parallel workload. At the
time of  writing,  this  test  runs  successfully  on  the  x86
cluster Cooley and the IBM Blue Gene/Q machine Cetus,
both housed at Argonne National Lab. Cooley consists of
126 compute  nodes,  each  equipped with  two 2.4  GHz
Intel Haswell E5-2620 v3 processors (12 cores total) and
384 GB of memory. Cetus contains 4096 compute nodes,
each comprised of sixteen 1600 MHz PowerPC A2 cores
and  16  GB  of  memory.  This  test  has  been  scaled
successfully  up  to  510  worker  processes  on  each
machine. 

B. Repast HPC Zombies Test

The following test case is presented as an evaluation of
the current implementation that utilizes Swift/T’s parallel
task capabilities. 

A genetic algorithm developed using GAlib performs an
optimization search on the parameter space of an ABM
implemented with Repast HPC, a platform for distributed
simulations of agent-based models. 

The  genetic  algorithm  used  in  this  test  is  a  modified
version  of  the  one  used  in  the  preliminary  test,
implemented  using  GAlib.  It  performs  the  same
parameter search on a 3-variable parameter space.

The ABM used in this test is a modified version of the
“zombies” example model included in the Repast HPC
suite.  The  ABM  consists  of  two  agents,  humans  and
zombies.  Each  can  move  at  a  speed  specified  by  the
simulation parameters human_step and zombie_step on a
grid of specified size. A zombie infect humans in close
proximity to it. After a given number of time units, the
human  will  either  die  and  become  a  zombie  with
probability specified by the parameter lethality or recover
from  infection  and  remain  alive.  The  fitness  of  each
simulation is the number of humans left alive at the end
of a specified time units, and the genetic algorithm seeks
to maximize this value.

This evaluation used the following parameters. The grid
of  the  simulation  is  200x200,  the  initial  number  of
humans is 500, and the initial number of zombies is 50.
The simulation runs for 100 time units, and an infected
human will either recover or die after 14 time units.

The  parameter  space  consists  of  three  variables:
human_step,  zombie_step, and  lethality. In this test, the
two step variables are varied from 0 to 3, and lethality is
varied from 0 to 1.

Due to time constraints and limited MPI 3 support, we
are  unable  to  run  this  test  on  the  machines  hosted  at
Argonne National Lab at this time.

A run of this test on a local machine yields this following
results  for  20  generations  of  parameters  of  population
size 5. While this is not the fullest extent of testing we
plan to do, this test provides evidence that the framework
is capable of an adaptive parameter search of an ABM.

In Figure 4, we see that the average zombie step size and
lethality for a population of 5 parameter sets decreases
over 20 generations. Both of these are natural results of

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16 18 20

S
te

p
 S

iz
e

Generation

Human step

Zombie step

450

460

470

480

490

500

2 4 6 8 10 12 14 16 18 20

Li
v
in

g
 H

u
m

a
n

s

Generation

Figure 4: Adaptive parameter search of the Repast HPC
Zombies agent-based model 

(Average values for population size 5)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Le
th

a
lit

y

Generation



the algorithm’s goal to maximize the number of humans
alive at the end of 100 time units.

V. Conclusion

In  this  work,  we  have  presented  a  framework  for
inversion-of-control  programming  models,  allowing  a
C/C++ program to govern a Swift/T parallel workflow.
We  demonstrate  the  utility  of  this  framework  by
performing an  adaptive  parameter  search  on  an  agent-
based model using a genetic algorithm implemented in
C++. Using this framework, users can utilize existing C
and  C++  libraries  to  control  large-scale  parallel
ensembles of external third-party simulations.

Testing  of  this  framework  is  ongoing  at  the  time  of
writing. We aim to perform the Repast HPC Zombies test
on  larger  numbers  of  processes,  and  compare  this
framework’s system utilization and runtime with existing
solutions.
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