
NautDB: Towards a Hybrid Runtime for Processing
Compiled Queries

Samuel Grayson
Department of Computer Science

University of Texas at Dallas
samuel.grayson@utdallas.edu

Abstract—General purpose operating and database system
suffer from their generality which makes achieving optimal
performance extremely hard, especially on modern hardware.
The goal of this research is to integrate specialization techniques
from the OS community (hybrid runtimes) and DB community
(compiled queries) for high-performance query processing on
modern hardware. We envision a system called NautDB, a
hybrid dataflow runtime for executing compiled queries. As
a first step towards our goal we use a simple prototype to
evaluate the performance of compiled queries on Linux and
run as a Nautilus hybrid runtime. Our results demonstrate
that combining these specialization techniques has transformative
potential for building the next generation (distributed) high-
performance query processing systems and big data platforms.

Index Terms—hybrid runtimes, light-weight kernels, compiled
query processing, high-performance query processing

I. INTRODUCTION

Both the operating system (OS) and database (DB) commu-
nities have strived to build general purpose systems which ex-
hibit reasonable performance for a wide variety of applications
and are user-friendly. However, the performance of general
purpose operating and database systems suffers from being
overly generic and from hiding implementation details behind
multiple layers of abstraction [1]. Both communities have
worked on achieving better performance on modern hardware
without sacrificing ease of use. Specifically, OS researchers
have introduced hybrid runtimes [2]–[5] as a means to give
an application more immediate access to hardware and control
over OS behavior while database researchers have studied
query compilation to specialize a database execution engine
to a particular query [6], [7].

The ultimate goal of this research is to integrate, for
the first time, these specialization techniques from the OS
community (hybrid runtimes) and DB community (compiled
queries) for high-performance query processing. As a first
step towards this goal, we build a testing prototype that uses
hand-optimized query operator implementations and use this
prototype to evaluate the potential performance benefit of
running compiled queries as a hybrid runtime. Our preliminary
results demonstrate that, even though this first version of our

This work was supported by NSF Award #1640864. Opinions, findings and
conclusions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

prototype is still quite naive, we can achieve better and more
predictable performance through specialization.

II. PRELIMINARY EVALUATION

As a preliminary assessment of the potential of our idea,
we have built an initial prototype consisting of manually
optimized implementations of common database query op-
erators. We then evaluate the performance of this prototype
on a standard Linux distribution and embedded into the
Nautilus aerokernel [2]. The purpose of this experiment is to
evaluate how specialized implementations of OS functionality
(e.g., memory management) and the immediate control over
hardware might benefit evaluation of compiled query plans
(like the ones already produced by modern query compilers
used in main memory database systems [6]).

A. Testing Prototype

Our prototype supports several important database operators
including selection, projection, and sort. Our implementation
stores data in columnar chunks: the table is split into chunks of
rows, which are stored column-at-a-time. Here we focus on the
implementation of the sort operator, because this operator is
used to implement other operators like aggregation and joins
(merge-join). Our sort implementation uses counting sort to
sort the data within a chunk and merged sort to sort across
chunks. We have implemented a row-oriented and a column-
oriented variant of this sort algorithm.

B. Experimental Setup

We ran our prototype on Linux (linux kernel 4.17.6) and as
a hybrid runtime using Nautilus1 [2], [3]. All experiments were
run on a 16-core x86 64 AMD EPYC machine with 4 NUMA
nodes. We sort a table consisting of 256 chunks varying the
number of elements2 per chunk and the number of columns
in the table.

C. Experimental Results

The results of these experiments are shown in Figure 1.
For larger number of columns and larger chunks, Nautilus
(with relatively low developer-effort) outperforms Linux. This
is because Nautilus has larger page size and incurs less TLB
misses (see Table 1c). Furthermore, note (Figure 1b) that

1https://github.com/HExSA-Lab/nautilus - git commit 2fb4e52816
2elements are stored as uint32_t values

https://github.com/HExSA-Lab/nautilus


(a) Row-oriented sorting for a table with
256 chunks and up to 128 columns

(b) Column-oriented sort measuring run-
time and uncertainty for a fixed chunk
size (213 = 8192), varying the number of
columns

Kernel TLB misses Instruction
cache
misses

Linux 135,000,000 3,030,000

Nautilus 1 480,000

(c) TLB and cache misses for row-oriented
sorting of a 128 column table with 8192
elements per chunk

Fig. 1: Evaluating the performance of sort on Nautilus and Linux.

performance in Nautilus is much more predictable than in
Linux. This effect is observed even in configurations where
Linux outperforms Nautilus. This is because Nautilus does not
have scheduling interrupts, so it avoids unpredictable detours
which also leads to better cache performance.

D. Discussion

These preliminary result demonstrate that specialization
allows us to tune both the OS and DB engine to a query
workload and that compiled queries that consist of highly-
specialized code benefit from a hybrid runtime environment.
Furthermore, hybrid runtimes have much more predictable
performance than general purpose OSes which will improve
performance of bulk-synchronous parallel algorithms. Our
prototype based on the Nautilus aerokernel does outperforms
Linux in some parameter settings, despite our comparatively
low developer-effort (Linux has been maturing for decades).

III. OUR VISION FOR NAUTDB

As a long term goal, we envision to build NautDB, a hybrid
dataflow runtime which executes tasks that are represented as
compiled (machine) code. The frontend of NautDB will be
a query compiler that translates high-level queries (SQL or
another high-level and data-centric language) into compiled
low-level tasks to be executed by the runtime. The present
paper represents the first important step towards this goal.

IV. CONCLUSIONS AND FUTURE WORK

This work demonstrated the potential of combining hybrid
runtimes with compiled query processing. In future work,
we plan to evaluate additional database operators, parallel
execution of such operators, and evaluate how performance
is affected by environmental noise from other applications
running at the same time.

REFERENCES

[1] J. Giceva, G. Zellweger, G. Alonso, and T. Rosco. Customized OS support
for data-processing. In Proceedings of the 12th International Workshop
on Data Management on New Hardware (DaMoN 2016), June 2016.

[2] K. C. Hale and P. A. Dinda. A case for transforming parallel runtimes into
operating system kernels. In Proceedings of the 24th ACM Symposium
on High-performance Parallel and Distributed Computing (HPDC 2015),
June 2015.

[3] K. C. Hale and P. A. Dinda. Enabling hybrid parallel runtimes through
kernel and virtualization support. In Proceedings of the 12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2016), pages 161–175, Apr. 2016.

[4] K. C. Hale, C. Hetland, and P. A. Dinda. Automatic hybridization
of runtime systems. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing,
pages 137–140, June 2016.

[5] K. C. Hale, C. Hetland, and P. A. Dinda. Multiverse: Easy conversion
of runtime systems into os kernels via automatic hybridization. In
Proceedings of the 14th IEEE International Conference on Autonomic
Computing (ICAC 2017), July 2017.

[6] T. Neumann. Efficiently compiling efficient query plans for modern
hardware. PVLDB, 4(9):539–550, 2011.

[7] A. Shaikhha, I. Klonatos, L. E. V. Parreaux, L. Brown, M. Dashti
Rahmat Abadi, and C. Koch. How to architect a query compiler. In
SIGMOD, number EPFL-CONF-218087, 2016.


	Introduction
	Preliminary Evaluation
	Testing Prototype
	Experimental Setup
	Experimental Results
	Discussion

	Our Vision for NautDB
	Conclusions and Future Work
	References

