
BigDataX 2019: Operating Systems and
Architecture Projects

Kyle C. Hale, Illinois Institute of Technology

Operating Systems and Architecture (Hale)

High-performance parallel applications and the runtimes that support them often require very fine-grained
control over the execution environment of the system. When raw performance is the goal, even small
overheads that arise from the operating system or other system software (over which the runtime/app has no
control) can have considerable effects on performance. For example, general-purpose OS kernels must be all
things to all apps, and so must necessarily trade off performance for flexibility.

These projects will involve the exploration of specialization both at the OS level and at the level of
computer architecture to support high-performance computing environments. This work will extend
existing work on hybrid runtimes [2, 4, 3] and other specialized OS concepts.

Hybrid Runtimes Hybrid runtimes (HRTs) are mashups of an extremely light-weight OS kernel (called an
Aerokernel) and a runtime system [2]. The idea here is to eschew overheads imposed at the system call layer by
general-purpose kernels, and to prevent the kernel from imposing abstractions on the runtime system. Here,
the runtime operates at the same privilege as a typical kernel, and therefore has access to privileged
hardware and ultimate control of the abstractions built on top of the hardware. Projects involving HRTs will
primarily target bringing other parallel runtimes to the HRT model, such as UPC, Charm++, or the Julia
language runtime.

Specialized OS-based Microservices Currently, specialized OSes [1, 8] are deployed in a very
inflexible manner. For example, with HRTs, the application and/or runtime is compiled together with the
Aerokernel to create an HRT. Other techniques like Unikernels [7, 6, 5] also rely on similar compile-time
techniques. This project will involve making these specialized OS and runtime (OS/R) environments more easily
deployable, for example using existing tools like Docker.

Debugging Hybrid Runtimes HRTs currently involve great difficulty when debugging. This is partly due to
the kernel mode nature of the HRT’s operation. While there are existing tools like kGDB that allow
programmers to remotely debug a kernel on a separate system, they do not account for the involvement of the
runtime system, and they do not present a generic interface that can be adopted by several runtimes. The goal
of this project would be to develop such a debugging tool for HRTs.

Compiler-generated OS Code Current parallel programs and runtimes are compiled assuming that they
will be running at Linux user-level. When this assumption is broken (e.g. when they are running as a kernel),
there is a lost opportunity for performance and functionality. This project would involve adapting a code
generator that assumes low-level, privileged access and thus leverages kernel functionality and the available,
privileged devices.

Programmable NoC Architectures Networks-on-Chip (NoCs) are the substrate upon which chips in a
multicore system communicate. Current NoC designs are static in that their properties cannot be changed by
software at runtime. This project would involve working in simulation to show how programmable NoCs
(where the NoC’s design parameters could be changed at runtime) could benefit the system software (primarily
the OS).

Programmable Cache Coherence Engines FPGAs (Field Programmable Gate Arrays) are chips that
can be reprogrammed to implement different logic functions. In the limit, these FPGAs can instantiate different
CPU designs. They are currently enjoying a surge in popularity due to the gradual improvement in their
programming interface. A multicore chip instantiated on an FPGA has much more flexibility in terms of
experimentation than one that is “set in stone” on an application specific integrated circuit (ASIC). One thing that
we can change at this level is a multicore chip’s cache coherence protocol, which is used to transparently

synchronize state between CPU cores. Current protocols are not “programmable” in the sense that they cannot
be modified by software. However, some applications with well-known memory access patterns might
benefit from augmented cache coherence protocols. This project would involve studying the access patterns
of applications to identify cases in which the existing protocols are suboptimal.

While these projects are ambitious ones, we expect that with the assistance of Dr. Hale and his
students, who have an established track record in systems research, a diligent undergraduate student
with systems background could make considerable headway over the 10-week period.

1 Mentor

Dr. Kyle C. Hale (the mentor) is an Assistant Professor of Computer Science at Illinois Institute of
Technology. He received his Ph.D. in 2016 from Northwestern University. His research generally is in
experimental computer systems and lies at the intersection of operating systems, high-performance parallel
computing, and computer architecture. He developed the hybrid runtime model for parallel runtimes and has
worked on major open-source research codebases, including the Nautilus Aerokernel (for which he is lead
developer), the Philix OS toolkit for Intel Xeon Phis, and the Palacios Virtual Machine Monitor.

References

[1] EN GL ER , D. R., KA A SH OE K , M. F., A N D O’TO OL E, JR ., J. Exokernel: An operating system

architecture for application-level resource management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP 1995) (Dec. 1995), pp. 251–266.

[2] HA LE , K. C., A ND DI N DA , P. A. A case for transforming parallel runtimes into operating system

kernels. In Proceedings of the 24th ACM Symposium on High-performance Parallel and Distributed
Computing (HPDC 2015) (June 2015).

[3] HALE, K. C., AND DINDA, P. A. Automatic hybridization of runtime systems. In Proceedings of the

25th ACM International Symposium on High-Performance Parallel and Distributed Computing (June
2016), pp. 137–140.

[4] HALE, K. C., AND DINDA, P. A. Enabling hybrid parallel runtimes through kernel and virtualization

support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2016) (Apr. 2016), pp. 161–175.

[5] KA NT EE , A. The Design and Implementation of the Anykernel and Rump Kernels. PhD thesis,

Helsinki, Finland, 2012.

[6] LA NK E S, S., PI C KA RT Z, S., A ND BR EI T BA RT, J. HermitCore: A unikernel for extreme scale
computing. In Proceedings of the 6th International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS 2016) (June 2016).

[7] MA DH AVA PE DDY, A., MO RTI E R, R., ROT SO S , C., SC OT T, D., SI N GH , B., GA ZAG NA I R E, T., SM I T

H, S., HA ND , S., A ND CROW C RO F T, J. Unikernels: Library operating systems for the cloud. In
Proceedings of the 18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2013) (Mar. 2013), pp. 461–472.

[8] PET ER , S., A ND AN DE R SO N, T. Arrakis: A case for the end of the empire. In Proceedsings of the

14th Workshop on Hot Topics in Operating Systems (HotOS 2013) (May 2013), pp. 26:1–26:7.

