## **FALKON:**

A FAst and Light-weight tasK executiON Framework http://datasys.cs.iit.edu/projects/Falkon/

## **Illinois Institute of Technology Computer Science Department** Data-Intensive Distributed Systems Laboratory

Falkon aims to enable the rapid and efficient execution of many tasks on large compute clusters, and to improve application performance and scalability using novel data management techniques. Falkon combines three techniques to achieve these goals: (1) multi-level scheduling techniques to enable separate treatments of resource provisioning and the dispatch of user tasks to those resources; (2) a streamlined task dispatcher able to achieve order-of-magnitude higher task dispatch rates than conventional schedulers; and (3) performs data caching and uses a data-aware scheduler to leverage the co-located computational and storage resources to minimize the use of shared storage streamlined

infrastructure. Falkon's integration of multi-level scheduling, dispatchers, and data management delivers performance not provided by any other system. Falkon has been deployed and tested in a wide range of environments, from 100 node clusters, to Grids (TeraGrid), to specialized machines Allocated CPUs (60 sec average (SiCortex with 5832 CPUs), to supercomputers (IBM BlueGene/P with 160K CPUs). Micro-benchmarks have shown Falkon to achieve over 15K+ tasks/sec throughputs, scale to millions of queued tasks, and to execute billions of tasks per day. Large-scale applications from many domains have been successfully executed using the Falkon framework. Data diffusion has also shown to improve applications scalability and performance, with its ability to achieve hundreds of Gb/s I/O rates on modest sized clusters, with Tb/s I/O rates on the horizon. Falkon is actively being developed at Illinois Institute of Technology (Professor Ioan Raicu) and the University of Chicago / Argonne National Laboratory (Professor Ian T. Foster and Mike Wilde) with funding from NSF, DOE, and NASA, and has been instrumental in several other proposals to DOE and NSF for additional funding.



## Applications

| Field                 | Description                                                                                              | Characteristics                                                                               | Status         |
|-----------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|
| Astronomy             | Creation of montages from many digital images                                                            | Many 1-core tasks, much communication, complex dependencies                                   | Experimental   |
| Astronomy             | Stacking of cutouts from digital sky surveys                                                             | Many 1-core tasks, much communication                                                         | Experimental   |
| Biochemistry*         | Analysis of mass-spectrometer data for post-<br>translational protein modifications                      | 10,000-100 million jobs for proteomic searches using<br>custom serial codes                   | In development |
| Biochemistry*         | Protein structure prediction using iterative fixing algorithm; exploring other biomolecular interactions | Hundreds to thousands of 1- to 1,000-core simulations and data analysis                       | Operational    |
| Biochemistry*         | Identification of drug targets via computational docking/screening                                       | Up to 1 million 1-core docking operations                                                     | Operational    |
| Bioinformatics*       | Metagenome modeling                                                                                      | Thousands of 1-core integer programming problems                                              | In development |
| Business<br>economics | Mining of large text corpora to study media bias                                                         | Analysis and comparison of over 70 million text files of news articles                        | In development |
| Climate science       | Ensemble climate model runs and analysis of output data                                                  | Tens to hundreds of 100- to 1,000-core simulations                                            | Experimental   |
| Economics*            | Generation of response surfaces for various eco-<br>nomic models                                         | 1,000 to 1 million 1-core runs (10,000 typical), then data analysis                           | Operational    |
| Neuroscience*         | Analysis of functional MRI datasets                                                                      | Comparison of images; connectivity analysis with structural equation modeling, 100,000+ tasks | Operational    |
| Radiology             | Training of computer-aided diagnosis algorithms                                                          | Comparison of images; many tasks, much communication                                          | In development |
| Radiology             | Image processing and brain mapping for neuro-<br>surgical planning research                              | Execution of MPI application in parallel                                                      | In development |





ILLINOIS INSTITUTE OF TECHNOLOGY



