
Modeling Many-Task Computing Workloads
on a Petaflop IBM Blue Gene/P Supercomputer

Ke Wang†, Zhangjie Ma†, Ioan Raicu†‡

kwang22@hawk.iit.edu, zma11@hawk.iit.edu, iraicu@cs.iit.edu

†Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

Abstract— Understanding the behavior of Bag-of-Tasks (BOT)
is crucial for analyzing workflow-generated Many-Task
Computing (MTC) workloads to aid in designing optimized job
scheduling systems. Future job scheduling systems will need to
be able to schedule large bags of tasks onto large-scale
supercomputers and adaptive clouds with heterogeneous
processors, I/O performance, and cost, all while minimizing
job turn-around time and respecting the upper bound for the
user-defined budget. Due to the strong periodicity and self-
similarity during long time periods, BOTs have been shown to
be an efficient approach for modeling High-Throughput
Computing (HTC) workloads. However, applying the same
analysis to MTC workloads poses significant challenges due to
the significantly larger scale in terms of number of tasks,
resource usage, and work granularity. In this paper, we extract
two workloads from traces obtained from running MTC
applications on a 40K-node IBM Blue Gene/P supercomputer
and a 128-node Linux cluster. The traces span a 17-month
period, cover 173M tasks, and have an average task runtime of
95 seconds. We propose methods to verify the existence of BOT
arrival pattern, and ways to measure their impacts on system
performance. We also examine the correlations among several
BOT attributes, such as BOT size, runtime, CPU times, and
inter-arrival time of BOT. The results show that the inter-
arrival time of the two BOT workloads has Generalized Pareto
(GP) distribution, and there are autocorrelations and cross-
correlations among the BOT attributes.

Keywords: Many-Task Computing; MTC; Bag-of-Tasks;
BOT; workload modeling

I. INTRODUCTION
Workload analysis is important to evaluate the

performance of computer systems, especially large-scale
parallel and distributed systems such as Grids and Clouds.
Job scheduling systems have the demand to understand
properties of the workloads, in order to select efficient
scheduling strategies. Performance evaluation of scheduling
studies requires representative workloads to produce
dependable results [1]. Although real workloads (traces) are
usually collected and they reflect reality, they have not yet
become widely available. Workload models, which generate
synthetic workloads, have a number of advantages over
traces [2]. Though workload modeling usually makes
simplified assumptions on workload characteristics, such as
fixed-interval, bulk, or Poisson job arrivals, it has been
found that pseudo-periodicity, long range dependence

(LRD), and the “bag-of-tasks” behavior with strong
temporal locality are the main properties that characterize
data-intensive workloads [40] in large-scale distributed
systems. Applications that can be structured as a set of
independent computational tasks are called bag-of-tasks
(BOT) [3][4]. Despite their simplicity, BOT applications are
utilized in a variety of research areas, such as computational
biology [5], computing imaging [6], data mining, and
astronomy [42]. Due to the independence of the tasks, BOT
applications have been considered most suitably to be
executed over widely distributed computational grids.
However, we believe that BOT applications should also be
able to be executed on other large-scale systems, such as
clouds with the help of workflow systems and the Many-
Task Computing (MTC) paradigm [7][45].

Many-Task Computing is a new distributed paradigm
which aims at bridging the gap between High Performance
Computing (HPC) and High Throughput Computing (HTC).
Many MTC applications are structured as graphs of discrete
tasks, with explicit input and output dependencies forming
the graph edges. In many cases, the data dependencies will
be files that are written to and read from a file system shared
between the compute resources; however, MTC does not
exclude applications in which tasks communicate in other
manners. MTC applications often demand a short time to
solution, may be communication intensive or data intensive,
and may comprise of a large number of short tasks. Tasks
may be small or large, uniprocessor or multiprocessor,
compute-intensive or data-intensive. The set of tasks may be
static or dynamic, homogeneous or heterogeneous, loosely
coupled or tightly coupled. The aggregate number of tasks,
quantity of computing, and volumes of data may be
extremely large. For many applications, a graph of distinct
tasks is a natural way to conceptualize the computation,
especially for BOT applications.

MTC relies on the workflow systems (e.g. Swift [8][9])
to generate graphs of distinct tasks forming layered DAGs.
Tasks can be grouped into BOT within one layer, and be
scheduled together in the unit of BOT. A large number of
applications [42][44][45] have been covered with this new
programming model, spanning everything from
supercomputers [44] to grids [50] and clouds [47], and data-
intensive systems [46].

Though there are differences between the MTC-based
scientific computing workloads and the initial target
workloads of clouds (e.g. in required system size, in
performance demand, and in the job execution model [10]),
we believe that the undergoing improvements to the cloud
performance would help us run scientific applications in
dynamic resources of cloud environment more efficient,
under the constraints of time and budgets.

In this paper, we abstract two batches of BOTs from the
traces obtained from MTC applications running on a 40K-
node IBM Blue Gene/P supercomputer and a 128-node
Linux cluster. Based on the two BOT workloads, we
analyze the arrival pattern, and the correlations among
several BOT attributes.

The contributions of this paper are as follows:
• Extract two groups of BOTs from the traces

obtained from running MTC applications on
production systems.

• Demonstrate that among several random variable
distributions, Generalized Pareto (GP) distribution
fits the MTC workloads best.

• Define various BOT attributes (e.g. BOT size,
runtime, CPU times, and inter-arrival time of BOTs)
and examine the correlations among them.

The rest of this paper is organized as follows. In Section
II, we present the related work about workloads modeling
and BOT applications scheduling. Section III describes the
BOT workloads, the way we model the BOT arrivals and
the analysis of correlations among BOT attributes. Finally,
we draw conclusions and discuss future work in Section IV.

II. RELATED WORK
There is extensive research about workload modeling for

large-scale distributed systems. Dumitrescu et al. [41]
covered the practical aspects of running workloads in large-
scale grids. H. Li et al. [11] conducted a comprehensive
statistical analysis of a variety of workload traces, which
includes the workload patterns and the corresponding
models with software. S.B. Lowen et al. [12] described the
job traffic as a stochastic fractal-based point process, based
on which H. Li modeled the job arrivals by modeling inter-
arrival time processes with Markov modulated Poisson
process (MMPP) [13]. Mallat et al. [14] introduced a
particular analysis-by-synthesis method called matching
pursuit to model the Pseudo-Periodicity of the workloads.
Matching Pursuit is a greedy, iterative algorithm which
searches a set of candidate functions for the element that
best matches the signal and subtracts this function to form a
residual signal to be approximated in the next iteration. It
can be used to separate and extract periodic patterns from
signals. The long range dependent (LRD) process of a
workload was modeled by H. Li et al. [15] using the Multi-
fractal Wavelet Model (MWM) [16]. A. Iosup et al. [4]
found that the Weibull distribution is the best fit for
modeling the inter-arrival times of BOT for workloads in
the Grid environment. However, all the research focuses on

the HPC and HTC applications under the Cluster and Grid
environments, and in the meantime, we take some of their
methods, such as statistics analysis of the job inter-arrival
time, and apply them to model workflow-generated MTC
workloads in supercomputers and clouds.

A great effort has been done in scheduling BOT
applications in large-scale distributed systems. Most work
on BOT applications focuses on the initial scheduling
[17][18][19][20], which means that tasks are scheduled
without considering the dynamic behavior of resources and
applications. Task replication techniques have been
developed to reduce task turnaround time and handle the
lack of information from resources and tasks [21]. Task
replication could be considered as a particular type of
rescheduling, which has the drawbacks of wasting resources
and causing consistent problems. Marco et al. [22] proposed
a coordinated rescheduling algorithm for BOT applications
and an evaluation of the impact of run time when scheduling
these applications across multiple providers. A. Oprescu et
al. [23] developed a scheduler, BaTS, to schedule BOTs in
dynamic cloud environment under the user-defined budget
constraint. However, the scalability of these algorithms is
not clear.

BOT applications could be considered as the subset of
MTC. There is effort to improve the cloud performance in
order to run MTC applications efficiently. A. Iosup et al.
[10] conducted performance analysis of Cloud Computing
Services for Many-Tasks Scientific Computing. Two job
schedulers for MTC workloads have been developed:
Falkon [24] and MATRIX [25]. Falkon is a light-weight
task execution framework specifically for MTC applications.
Falkon had a centralized architecture, and although it scaled
and performed orders of magnitude better than the state of
the art Job scheduling systems, its centralized architecture
did not even scale to petascale systems. A naïve hierarchical
Falkon implementation was shown to scale to a petascale
system in [8], however the approach taken by Falkon
suffered from poor load balancing under failures, high
variance in tasks execution times, or unpredictability of task
execution times. MATRIX is a distributed MTC execution
framework, which utilizes an adaptive work stealing
algorithm [26][37] to achieve distributed load balancing.
MATRIX uses ZHT (a distributed zero hop key-value store)
[27] for task metadata management, to submit tasks and
monitor the task execution progress by the clients. The
MATRIX project is still in its infancy, with scales up to 1K
nodes (4K cores).

III. WORKLOAD MODELING
In this section, we present the BOT workloads obtained

from traces of MTC applications running on a 40K-node
Blue Gene/P supercomputer (denoted by BGP) and a 128-
node Linux cluster of Argonne National Laboratory and
University of Chicago (denoted by ANLUC), define the
BOT attributes, propose the methods to model the inter-
arrival time of BOT, and analyze the correlations among
BOT attributes.

A. Workload Trace
We investigated the largest available trace of real MTC

workloads, collected over a 17-month period comprising of
173M tasks [38][39]. We filtered out the logs to isolate only
the 160K-core IBM Blue Gene/P Intrepid supercomputer
from Argonne National Laboratory, which netted about
34.8M tasks with the minimum runtime of 0 seconds,
maximum runtime of 1469.62 seconds, average runtime of
95.20 seconds, and standard deviation of 188.08. We plotted
the Cumulative Distribution Function of the 34.8M tasks,
shown in Figure 1.

Figure 1: Cumulative Distribution Function of the MTC workloads

We see that most of the tasks have the lengths ranging
from several seconds to hundreds of seconds, and the
medium task length is about 30 seconds, which is just one
third of the average (95.2 seconds). Based on the condition
that, all jobs in the same BOT have exactly the same values
with respect to the following attributes: user name, job name,
and requested number of processors, these 34.8M tasks are
partitioned into 1395 BOTs (where BOTs are clearly
marked in the logs). We name this workload the BGP
workload. Another workload log is from running MTC
applications on the 128-node Linux Cluster, similarly, we
generated 825 BOTs from 36M tasks. We name this
workload the ANLUC workload.

B. BOT Attributes
We define several BOT attributes in this section. These

attributes, namely BOT size, runtime, CPU time, average
execution time, In-Bag inter-arrival, and throughput,
characterize important properties of BOT workload. The
definitions of the attributes are as follows:

BOT size concerns how many tasks in the BOT.
According to the results revealed in [28], if users increase
their BOT sizes, tasks tend to run longer and definitely this
will have negative effect on the performance of parallel
systems.

Runtime is the execution time of entire BOT, which is
time period between the arrival of its first task, and the end
of execution of its last task.

CPU time means the total execution of all tasks in a
BOT. It is calculated as summation of the execution time of
each individual task in the BOT. Usually, the CPU time is
longer than the runtime, because tasks could be executed in
parallel.

Average execution time is calculated by CPU time
divided by BOT size.

In-Bag Inter-arrival is calculated as the time period
between the arrival of its first task, and the arrival of its last
task. Dividing the In-Bag Inter-arrival by runtime, we get
the arrival intensity of the BOT during the execution. We
expect that the more intensive the arrival is, the more
degradation of the system performance would be due to the
overhead for scheduling.

Throughput is calculated as BOT size divided by the
runtime.

Currently, we focus on these attributes that have been
identified and studied frequently. We will study other BOT
attributes, such as geometric mean of execution time,
median execution time, in the future.

C. BOT Arrivals
In a parallel system, the arrival process (refers to either

job or BOT arrivals) of applications can be described as a
(stochastic) point access [15]. The point access is defined
using a mathematical model that represents individual
events as random time points !! . There are different
representations of a point process, among which an inter-
arrival time process !! is a common one. !! is a real-valued
random sequence with !! = !! − !!!!, which describes the
time difference between two consecutive time points.

We start the analysis of BOT arrivals with their inter-
arrival times to characterize the workload bursts. The
modeling of the Cumulative Distribution Functions (CDF)
of inter-arrival times of the BGP and ANLUC workloads
are shown in Figure 2. We use five random variable
distributions, namely Generalized Pareto (GP) [29],
Weibull(wbl) [30], Lognormal (logn) [31], Gamma (gamma)
[32], and Exponential (expn) [33], to fit the trace. These five
distributions have been extensively used in workload
analysis [34].

We observe that the inter-arrival pattern of both
workloads could be correctly modeled using these
distributions, in which Generalized Pareto (GP) distribution
is the best fit. It remains quite close to both the workloads,
which means that the sampling of inter-arrival times on the
basis of GP distribution should be meaningful. Another
notable fact is that for ANLUC workload (Figure 2 (b)), the
sampled CDFs of different models differ significantly. But
still, the GP distribution matches the workload the best. It
might not be convincible to generalize a distribution for all
workloads, but similar methods could be applied to build
model for each workload.

We use the Maximum Likelihood Estimation (MLE)
method [35] to estimate the parameters of these distributions
in the fitting process with a confidence level of 95%. For

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01 0.1 1 10 100 1000

P
er

ce
nt

ag
e

Task Execution Time (s)

each distribution with the estimated parameters presented in
Table 1, we use a Goodness-of-Fit test, called Kolmogorov-
Smirnov (KS test) [34], to assess the quality of the fitting
process. In KS, ! denotes the maximum distance between
the estimated fitting CDF and the real one. A smaller !
(closer to 0) indicates a better fit between the real data and
the estimated distribution. Table 2 shows the ! values of
different estimated distributions. We could observe more
clearly that GP distribution is the best fit (0.081 for BGP
workload, and 0.074 for ANLUC workload).

(a) BGP workload

(b) ANLUC workload

Figure 2: CDF of BOT inter-arrival time

Table 1: Estimated parameters of different distributions

 BGP ANLUC
GP(a,b,θ) 1.15, 2692, 0 2.08, 331.6, 0
Wbl(a,b) 0.52, 7868 0.32, 2189

LogN(µ,σ) 8.01, 1.99 5.98, 3.89
Gam(a,b) 0.37, 51258 0.16, 314500

Exp(µ) 18741 496390

Table 2: D values of different distributions and workloads

 GP Wbl LogN Gam Exp
BGP 0.081 0.142 0.093 0.207 0.366

ANLUC 0.074 0.133 0.147 0.311 0.402

D. Autocorrelation of BOT Arrivals
This section attempts to address the following two

questions:
1. Do bursts exist and for how long?
2. Do the bursts have any periodicity pattern, and what

is the relationship among the BOT attributes’ burst
periods?

We represent the BOT arrivals as a rate process, which
characterizes the Long-Range-Dependency (LRD) [15] and
the periodicity properties of the BOT workload. The
periodicity and the LRD of an arrival process can be
observed via the autocorrelation function of the BOT
arrivals.

The autocorrelation functions are shown in Figure 3 for
both workloads, with each lag representing 1 day. Since we
select a time scale of 1 day, weekly or monthly cycles of a
rate process can be detected if its autocorrelation function
repeats every 7 or 30 lags. Because the workloads cover a
relatively long time period, and produce not enough BOTs,
therefore we cannot detect the periodicity at lower
granularity. Furthermore, in ANLUC workload, it can be
observed from the raw data that there were about three long
vacations during the time period, during which there was no
computation request taking. Therefore, these days are
removed from the workload, which leads to seamlessly
continued workload of 201 days from the original 473 nodes.

 (a) BGP workload

(b) ANLUC workload

Figure 3: Autocorrelation of BOT arrivals; 1 lag equals 1 day

We can observe that the BGP workload (Figure 3 (a))
has a strong monthly repetition, which reveals a periodic

pattern in this workload. What’s more, the signal decays
after 300 days. We can see the amplitude is decreasing as
the time lasts. This indicates the workload keeps its
periodicity within a limited time period, and after that such
pattern might decay.

From Figure 3 (b) we can see that the ANLUC workload
has the repetition property, and the repetition itself is
periodic, which implies this workload might be staged.
From lag 60 to lag 100, and from lag 140 to lag 172, we can
observe a similar repetition with original signal. It seems
plausible to assume the ANLUC workload can be divided
into different stages. Considering the 200 days we removed
from the workload, this workload has three different stages,
namely idle (no computation requests), busy (moderate
requests), and busier (burst). In Figure 3 (b), at each stage,
the system might be busy or busier. To verify the staged
pattern in the ANLUC workload, we preprocess the data
further by remove 60 days in the workload. These days
present obvious dependence on original signal, from lag 1 to
10, lag 60 to lag 100, and from lag 140 to 172. Then we
make the rest workload seamless by concatenating the next
period to the previous one. This is done by modifying the
arrival time stamps of the affected tasks. This modification,
of course, changes, even removes some information of the
workload; therefore it is not to be used in modeling. We just
use it to verify the existence of the staged pattern in part of
the workload.

We adjust the lag from 1 day to 8 hours. In Figure 4, we
can see periodicity in every three to five days, and the
periodicity is much stronger. For the time periods, during
which autocorrelation function is not similar as the
beginning signal, they can also have LRD. Therefore, we
believe this workload has staged pattern. For every 60 to 80
days, it might have a burst (busier) lasting for 30 to 40 days,
then after that will be 30 to 40 days’ not burst but still
running period (busy), and then it will be totally idle for
another 60-80 days. With this staged pattern, it is necessary
to model the workload within different stages.

E. Correlation among Arributes
In this section, we focus on examining the cross-

correlations among the attributes of BOTs, namely BOT
size, runtime, CPU time, average execution time, In-Bag
inter-arrival, and throughput, for both BGP and ANLUC
workloads.

1) BOT Runtime with respect to BOT Size
We present the cross-correlation of BOT runtime with

respect to BOT size for both workloads. As shown in Figure
5, with the increase of the BOT size, the BOT runtime is
also growing. What’s more, BGP workload has a lower
growing speed compared to ANLUC workload, which is
because the ANLUC workload has smaller BOT size.

Figure 4: Autocorrelation of BOT arrivals for modified ANLUC

workload (1 lag equals 8 hours)

(a) BGP workload

(b) ANLUC workload

Figure 5: BOT runtime trend with respect to the BOT size

2) Throughput Trend
Throughput has a relationship with respect to the BOT

size, and the number of busy workers, shown from Figure 6
to Figure 8.

Figure 6 (BGP workload) and Figure 7 (ANLUC
workload) show that as the BOT size increases, the
throughput is also increasing. This trend means that bigger
BOT size benefits the system performance (produces higher
throughput), even though bigger BOT size increases the
runtime a little bit (Figure 5). Another fact we can observe
from Figure 6 and Figure 7 is that at smaller BOT size, there
are some outliers, which mean high performance variation
due to the smaller BOT size (not enough sampling points).
These outliers do not exist at bigger size level.

Figure 6: Phase 1, throughput trend with respect to the BOT size and

the number of busy workers (BGP workload)

Figure 7: throughput trend with respect to the BOT size (ANLUC

workload)

Figure 8: Phase 2, throughput trend with respect to the BOT size and

the number of busy workers (BGP workload)

It can be observed in Figure 8 that the throughput is also
dependent on the number of busy workers. With the
growing of number of workers, the throughput also
increases. This makes sense, because more workers are
executing tasks. The model fitting in Figure 8 displays the
dependent relationship of the throughput on the BOT size
and number of workers.

The accuracy of the model fitting is listed in Table 3, with
three criteria, SSE value, R-square value, and RMSE value.
All of them show good result.

Table 3: Goodness of fit results

 SSE R-square RMSE
Figure 8 905.2 0.9085 0.8146

3) BOT Execution Time with respect to BOT Size

We show the cross-correlation of BOT execution time (both
the BOT CPU time and the average execution time) with
respect to BOT size for both workloads. Figure 9 shows the
BOT CPU time, with Figure 10 showing the average
execution time.

(a) BGP workload

(b) ANLUC workload

Figure 9: BOT CPU time trend with respect to the BOT size

As shown in Figure 9, the BOT CPU time is increasing
as the BOT size grows, which is quite reasonable (more
tasks, more CPU hours). But it remains to be further
modeled because the variance at each BOT size is quite big.
It might be necessary to sampling on the median of the
distribution. Comparing BGP workload (Figure 9 (a)) and
ANLUC workload (Figure 9 (b)), we can see different
clusters in ANLUC workload. A clustering algorithm might
be helpful to extract specific information.
The results in Figure 10 show that the average execution per

task (CPU time / BOT size) always remains same at the
same level with different BOT sizes. This means that the
increasing speed of the BOT CPU time is as fast as the

increasing speed of the BOT size. This is confirmed by the
linear relationship between the CPU time and the BOT size
in Figure 9. This also indicates that the task execution time

of each task within the BOT does not vary significantly,
which leads to stable relationship between the CPU time and

the BOT size.

(a) BGP workload

(b) ANLUC workload

Figure 10: BOT average execution time trend with respect to the BOT
size

4) BOT Execution Time with respect to BOT In-Bag
Inter-Arrival

In order to model the arrival pattern of the tasks inside a
BOT, it is necessary to discuss the In-Bag inter-arrival
pattern of each task in the BOT. However, this work has not
yet gone through very successfully, because different BOTs
have quite different patterns. It is difficult, even impossible
to pick up a representative or generalized model. Therefore,
we assume that the tasks in a BOT are arriving with a
Uniform distribution, which means the inter-arrival
frequency will always be the same. The arrival frequency
can be calculated as dividing the BOT size by the In-Bag
inter-arrival time. We show the cross-correlation of BOT
execution time (both the BOT CPU time and the average
execution time) with respect to BOT In-Bag inter-arrival
time for both workloads in this section.

As shown in Figure 11, the BOT CPU time is increasing
as the BOT In-Bag inter-arrival time increases. In addition,
there exists a lower bound (thick blue lines) of BOT CPU
time with different BOT In-Bag inter-arrival time. We claim
this is due to the scheduling capability of the framework (e.g.
Falkon [22]). When the BOT stays on the margin, it means
the framework schedules these tasks with the highest
efficiency (tasks are executed immediately after they arrive).
But for the rest points, it implies that they are not scheduled
immediately, some tasks might be waiting in the waiting
queue.

(a) BGP workload

(b) ANLUC workload

Figure 11: BOT CPU time with respect to the BOT In-Bag inter-
arrival

Figure 12 and Figure 13 show the correlation of BOT
execution time (both the BOT CPU time and average
execution time) with respect to the In-Bag inter-arrival and
the BOT size, for BGP and ANLUC workloads.

(a) BGP workload

(b) ANLUC workload

Figure 12: BOT CPU time with respect to the BOT In-Bag inter-
arrival and the BOT size

(a) BGP workload

(b) ANLUC workload

Figure 13: BOT average execution time with respect to the BOT In-
Bag inter-arrival and the BOT size

As shown in Figure 12, the BOT CPU time is increasing
with both the BOT In-Bag inter-arrival and the BOT size.
These trends are already seen in previous section. From
Figure 13, we see that In-Bag inter-arrival and BOT size
have significant impact on the average execution time.

However, we couldn’t tell the exact relationship, the treads
are not obvious. We need more tasks and BOTs to build
clear models for this.

In Figure 13, we use a 5*5 degree polynomial model. A
LAR robust method [36] is used to avoid the over fitting
caused by the outliers. As there is no obvious correlation of
BOT execution time with respect to BOT size and In-Bag
inter-arrival, therefore we assume that these variables are
independent with each other. The Goodness of fits of both
workloads is listed in Table 4. We could see that, this model
is accurate in estimating both workloads, except for
modeling the correlation of BOT average execution time
 with respect to BOT size and In-Bag inter-arrival for
ANLUC workload (R-square is about 0.6, and RMSE is
almost 2).

Table 4: Goodness of fit

 SSE R-square RMSE
Figure 12 (a) 529.6 0.8795 0.6408
Figure 12 (b) 1635 0.822 1.126
Figure 13 (a) 271.1 0.8592 0.9858
Figure 13 (b) 1050 0.6121 1.94

The conclusions about the correlations among the BOT

attributes we draw from this section are: the BOT runtime
is growing as the BOT size increases; the throughput would
be increasing when increasing the BOT size and the number
of busy workers; the BOT CPU time is increasing as the
BOT size grows, while the average execution per task
always remains at the same level with different BOT sizes;
the BOT CPU time is increasing with both the BOT In-Bag
inter-arrival and the BOT size. While we couldn’t tell the
exact relationship between the average execution time and
the In-Bag inter-arrival and the BOT size, the In-Bag inter-
arrival and the BOT size have a significant impact on the
average execution time.

IV. CONCLUSION & FUTURE WORK
Workload analysis is important to evaluate the

performance of computer systems, especially large-scale
parallel and distributed systems [43]. Job scheduling
systems have the demand to understand properties of the
workloads, in order to select efficient scheduling strategies.
In this work, we extracted two groups of BOTs from the
traces obtained from running MTC applications on a Blue
Gene/P supercomputer and the ANLUC Cluster; applied
five random variable distributions to model the cumulative
distribution function of the BOT workloads, and found that
GP distribution is the most suitable one; define some BOT
attributes, such as BOT size, runtime, CPU times, and inter-
arrival time of BOT and examine the correlations among
them. Experiment results show that we could model the
MTC workloads with BOT behaviors, and there are
certainly some patterns of the BOT arrivals of the MTC
workloads, and there are auto and cross correlations among
the BOT attributes.

The results of this paper will hopefully lead to better
understanding future large-scale systems. We hope that
more realistic synthetic workloads could be created that can
be used to study a variety of scheduling algorithms [49].
Furthermore, we hope these results will lead to a better
understanding of fault-tolerance in extreme-scale systems.
[48]In the future, we will continue to collect more MTC
workloads to be able to analyze more BOTs, and try to
establish some representative models for different MTC
workloads. Dependent tasks generated by the workflow
system will also be investigated, and we plan to analyze the
BOT behavior of these workloads in a Cloud environment.

ACKNOWLEDGEMENT
This work was supported in part by the National Science

Foundation grant NSF-1054974. This research used
resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357. We want to thank Argonne
National Laboratory for giving us access to the IBM Blue
Gene/P supercomputer and the ANLUC Cluster where the
MTC application traces were obtained.

REFERENCES
[1] D. G. Feitelson. Workload Modeling for Performance Evaluation. In

M. C. Calzarossa and S. Tucci, editors, Performance Evaluation of
Complex Systems: Techniques and Tools, pages 114–141. Springer
Verlag, 2002. Lect. Notes Comput. Sci. vol. 2459.

[2] U. Lublin, D. G. Feitelson, “The workload on parallel
supercomputers: modeling the characteristics of rigid jobs”, Journal
of Parallel and Distributed Computing, Volume 63, Issue 11, Pages
1105-1122, 2003.

[3] C. Anglano and M. Canonico. Fault-tolerant scheduling for bag-of-
tasks grid applications. In Advances in Grid Computing, Lecture
Notes in Computer Science, volume 3470, pages 630–639, 2005.

[4] A. Iosup, O. Sonmez, S. Anoep, and D. Epema. The performance of
bags-of-tasks in large-scale distributed systems. In 17th International
Symposium on High Performance Distributed Computing, pages 97–
108, 2008.

[5] V. S. Pande, I. Baker, J. Chapman, S. Elmer, S. M. Larson, Y. M.
Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Zagrovic,
“Atomistic protein folding simulations on the submillisecond time
scale using worldwide distributed computing,” Peter Kollman
Memorial Issue, Biopolymers, vol. 68, no. 1, pp. 91–109, 2003.

[6] S. Smallen, H. Casanova, and F. Berman, “Applying scheduling and
tuning to on-line parallel tomography,” in Proceedings of the
ACM/IEEE Conference on Supercomputing (SC’01). Denver, USA:
ACM, November 10-16 2001.

[7] I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and
Supercomputers,” 1st IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS) 2008.

[8] I. Raicu, Z. Zhang, et. al. “Toward Loosely Coupled Programming on
Petascale Systems,” IEEE SC 2008.

[9] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I.
Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast, Reliable, Loosely
Coupled Parallel Computation,” IEEE Workshop on Scientific
Workflows 2007.

[10] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema, “Performance analysis of cloud computing services for
manytasks scientific computing,” IEEE Trans. on Parallel and Distrib.
Sys., 2010.

[11] H. Li. Workload Dynamics on Clusters and Grids. Technical Report
TR No. 2006-04, Leiden Institute of Advanced Computer Science,
Sep, 2006.

[12] S. B. Lowen & M. C. Teich. Fractal-Based Point Processes. John
Wiley & Sons, 2005.

[13] N. I. Ramesh. Statistical analysis on Markov-modulated Poisson
Processes, Environmetrics 6, pages 165-179, 1995.

[14] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Tran. Signal Processing, 41:3397–3415, 1993.

[15] H. Li, M. Muskulus, Lex Wolters. Modeling Long Range Dependent
and Fractal Job Traffic in Data-Intensive Grids. Technical Report TR
No. 2007-03, Leiden Institute of Advanced Computer Science, April,
2007.

[16] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk. A
multifractal wavelet model with application to network traffic. IEEE
Transactions on Information Theory, 45(3):992–1019, April 1999.

[17] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, and F. Vivien,
“Offline and online master-worker scheduling of concurrent bags-of-
tasks on heterogeneous platforms,” in Proceedings of the 22nd IEEE
International Symposium on Parallel and Distributed Processing
(IPDPS’00). Miami, USA: IEEE Computer Society, April 14-18 2008.

[18] D. Abramson, R. Buyya, and J. Giddy, “A computational economy
for grid computing and its implementation in the Nimrod-G resource
broker,” Future Generation Computer Systems., vol. 18, no. 8, pp.
1061–1074, 2002.

[19] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, and R. Joshi,
“Dynamically mapping tasks with priorities and multiple deadlines in
a heterogeneous environment,” Journal of Parallel and Distributed
Computing, vol. 67, no. 2, pp. 154–169, 2007.

[20] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y.
Robert, “Centralized versus distributed schedulers for bag-of-tasks
applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 5, pp. 698–709, 2008.

[21] W. Cirne, F. V. Brasileiro, D. P. da Silva, L. F. W. G´ oes, and W.
Voorsluys, “On the efficacy, efficiency and emergent behavior of task
replication in large distributed systems,” Parallel Computing, vol. 33,
no. 3, pp. 213–234, 2007.

[22] M. A. S. Netto and R. Buyya, Coordinated Rescheduling of Bag-of-
Tasks for Executions on Multiple Resource Providers. Technical
Report CLOUDS-TR-2010-1, U. of Melbourne, Australia, Feb 2010.
Submitted (TPDS).

[23] A. Oprescu and T. Kielmann. Bag-of-Tasks Scheduling under Budget
Constraints. In 2nd International Conference on Cloud Computing,
Los Angeles, USA, 2009.

[24] I. Raicu, Y. Zhao, et. al. “Falkon: A Fast and Light-weight tasK
executiON Framework,” IEEE/ACM SC 2007.

[25] MATRIX: MAny-Task computing execution fabRIc at eXascales:
http://datasys.cs.iit.edu/projects/MATRIX/index.html, 2013.

[26] J. Dinan, D.B. Larkins, et. al. “Scalable work stealing,” In
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis (SC '09), 2009.

[27] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu. “Exploring Distributed
Hash Tables in High-End Computing”, ACM Performance Evaluation
Review (PER), 2011.

[28] N. M. Tran, Lex Wolters. Towards a profound analysis of bags-of-
tasks in parallel systems and their performance impact. Proceedings
of the 20th international symposium on High performance distributed
computing. Pages 111-122. 2011.

[29] Barry C. Arnold (1983). Pareto Distributions. International Co-
operative Publishing House. ISBN 0-89974-012-X.

[30] Weibull Distribution:
http://www.mathwave.com/articles/weibull_distribution.html, 2013.

[31] Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), "14:
Lognormal Distributions", Continuous univariate distributions. Vol.
1, Wiley Series in Probability and Mathematical Statistics: Applied

Probability and Statistics (2nd ed.), New York: John Wiley & Sons,
ISBN 978-0-471-58495-7, MR 1299979.

[32] Ahrens, J. H.; Dieter, U. "Computer methods for sampling from
gamma, beta, Poisson and binomial distributions". Computing 12:
223–246, 1974.

[33] D. F. Schmidt and E. Makalic, "Universal Models for the Exponential
Distribution", IEEE Transactions on Information Theory, Volume 55,
Number 7, pp. 3087–3090, 2009.

[34] D. G. Feitelson. Workload Characterization and Modeling Book.
version 0.36. School of Computer Science and Engineering, The
Hebrew University of Jerusalem. 2012.

[35] J. Myung. Tutorial on maximum likelihood estimation. Journal of
Mathematical Psychology, 47:90–100, 2003.

[36] Least absolute residual robust (LAR) method:
http://www.mathworks.com/help/curvefit/fit.html, 2013.

[37] K. Wang, I. Raicu. “Paving the Road to Exascale with Many-Task
Computing”, Doctoral Showcase, IEEE/ACM Supercomputing/SC
2012.

[38] I. Raicu, I. Foster, et al, “Middleware Support for Many-Task
Computing,” Cluster Computing, The Journal of Networks, Software
Tools and Applications, 2010.

[39] I. Raicu, et. al. “The Quest for Scalable Support of Data Intensive
Workloads in Distributed Systems,” ACM HPDC 2009.

[40] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu. “The Importance of
Data Locality in Distributed Computing Applications”, NSF
Workflow Workshop 2006.

[41] C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running
Workloads over Grid3”, The 4th International Conference on Grid
and Cooperative Computing (GCC 2005).

[42] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A Science
Gateway for Large-scale Astronomy Data Analysis”, TeraGrid
Conference 2006, June 2006.

[43] I. Raicu, C. Dumitrescu, M. Ripeanu, I. Foster. “The Design,
Performance, and Use of DiPerF: An automated DIstributed

PERformance testing Framework”, International Journal of Grid
Computing, Special Issue on Global and Peer-to-Peer Computing,
2006.

[44] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Clifford, M. Hategan,
K. Iskra, P. Beckman, I. Foster. “Extreme-scale scripting:
Opportunities for large task-parallel applications on petascale
computers”, Scientific Discovery through Advanced Computing
Conference (SciDAC09), 2009.

[45] I. Raicu. "Many-Task Computing: Bridging the Gap between High
Throughput Computing and High Performance Computing",
University of Chicago, Doctorate Dissertation, March 2009.

[46] I. Raicu, et al. “Towards Data Intensive Many-Task Computing”,
book chapter in Data Intensive Distributed Computing: Challenges
and Solutions for Large-Scale Information Management, IGI Global
Publishers, 2011.

[47] Y. Zhao, I. Raicu, S. Lu, X. Fei. "Opportunities and Challenges in
Running Scientific Workflows on the Cloud", IEEE International
Conference on Network-based Distributed Computing and
Knowledge Discovery (CyberC) 2011.

[48] D. Zhao, D. Zhang, K. Wang, I. Raicu. “RXSim: Exploring
Reliability of Exascale Systems through Simulations”, ACM HPC
2013.

[49] K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for
MAny-Task computing execution fabRIc at eXascales”, ACM HPC
2013.

[50] Yong Zhao, Ioan Raicu, Ian Foster, Mihael Hategan, Veronika
Nefedova, Mike Wilde. “Realizing Fast, Scalable and Reliable
Scientific Computations in Grid Environments”, book chapter in Grid
Computing Research Progress, ISBN: 978-1-60456-404-4, Nova
Publisher 2008.

