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Abstract— The advent of Big Data has brought many 

challenges and opportunities in distributed systems, which have 

only amplified with the rate of growth of data. There is a need to 

rethink the software stack for supporting data intensive 

computing and big data analytics. Over the past decade, the data 

analytics applications have turned to finer granular tasks which 

are shorter in duration and much more in quantity. Such 

applications require new frameworks to handle their data flow. 

Distributed Message Queues have proven to be essential building 

blocks in distributed computing towards the support for fine 

granular workloads. Distributed message queues such as 

Amazon’s SQS or Apache’s Kafka have been used in handling 

massive data volumes, content delivery, and many more. They 

have also been used in large scale job scheduling on public 

clouds. However, even these frameworks have some limitations 

that make them incapable of handling large scale data with high 

efficiency. Those are not suitable for High Performance 

Computing (HPC) applications that require lower latency than 

what is available on the cloud. We propose Fabriq, a distributed 

message queue that runs on top of a Distributed Hash Table. The 

design goal of Fabriq is to achieve lower latency and higher 

efficiency while being able to handle large scales. Moreover, 

Fabriq is persistent, reliable and consistent. Also, unlike other 

state-of-the-art systems, Fabriq guarantees exactly once delivery 

of the messages.  The results show that Fabriq was able to 

achieve high throughput in both small and large messages. At the 

scale of 128 nodes, Fabriq’s throughput was as high as 1.8 

Gigabytes/sec for 1 Megabytes messages, and more than 90,000 

messages/sec for 50 bytes messages. At the same scale, Fabriq’s 

latency was less than 1 millisecond. Our framework outperforms 

other state of the art systems including Kafka and SQS in 

throughput and latency. Furthermore, our experiments show 

that Fabriq provides a significantly better load balancing than 

Kafka. The load difference between Fabriq servers was less than 

9.5% (compared to the even share), while in Kafka this 

difference was 100%, meaning that some servers did not receive 

any messages and remained idle. 
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I. INTRODUCTION  

The advent of Big Data and the exascale computing has 
changed many paradigms in the computing science area. More 
than 2.5 exabytes of data is generated every day, and more than 
70% of it is unstructured ‎[19]. Various organizations including 
governments and big companies generate massive amounts of 
data in different formats including logs, and other unstructured 
raw data every day. Experts predict that by the end of 2018, the 
exascale computers will start to work ‎[22]. With the growth of 
the data at the current rate, it is unlikely for the traditional data 

processing systems to be able to handle the requirement of Big 
Data processing. There is a need to reinvent the wheel instead 
of using the traditional systems. Traditional data processing 
middleware and tools such as SQL databases and file system 
are being replaced by No-SQL data-stores and key-value 
storage systems in order to be able to handle the data 
processing at the current scale. Another key tool that is getting 
more attention from the industry is distributed queuing service.  

A Distributed Message Queue (DMQ) could be an 
important building block for a reliable distributed system. 
Message Queues could be useful in various data movement and 
communication scenarios. In High Throughput Computing 
(HTC), message queues can help decouple different 
components of a bigger system that aims to run in larger scales. 
Using distributed queues, different components can 
communicate without dealing with the blocking calls and 
tightly coupled communication.  

Over the past few years, distributed queuing services have 
been used in both industrial and scientific applications and 
frameworks ‎[1]‎[2]‎[20]‎[21]‎[26]‎[28]. SQS is a distributed queue 
service by Amazon AWS, which is being leveraged by various 
commercial applications. Some systems have used SQS as a 
buffer for their server to handle massive number of requests. 
Other applications have used SQS in monitoring, workflow 
applications, big data analytics, log processing and many other 
distributed systems scenarios ‎[1]‎[23]‎[36].  

The large scale log generation and processing is another 
example that has become a major challenge on companies that 
have to deal with the big data. Many companies have chosen to 
use distributed queue services to address this challenge. 
Companies like LinkedIn, Facebook ‎[6], Cloudera ‎[4] and 
Yahoo have developed similar queuing solutions to handle 
gathering and processing of terabytes of log data on their 
servers ‎[5]. For example LinkedIn’s Kafka ‎[3] feeds hundreds 
of gigabytes of data into Hadoop ‎[25] clusters and other servers 
every day.  

Distributed Queues can play an important role in Many 
Task Computing (MTC) ‎[8] and High Performance Computing 
(HPC). Modern Distributed Queues can handle data movement 
on HPC and MTC workloads in larger scales without adding 
significant overhead to the execution ‎[7].  

CloudKon is a Distributed Job Scheduling system that is 
optimized to handle MTC and HPC jobs. It leverages SQS as a 
task delivery fabric that could be accessed simultaneously and 
achieve load balancing at scale ‎‎[2]‎[29]. CloudKon has proved 
to outperform other state-of-the-art schedulers like Sparrow 
‎[18] by more than 2X in throughput. One of the main 
motivations of this work is to provide a DMQ that can replace 
SQS in future versions of the CloudKon. There are a few 



limitations with SQS including having duplicate messages, and 
getting the system tied to AWS cloud environment. CloudKon 
‎[2] uses DynamoDB ‎[27] to filter out the duplicate messages. 
Among the various DMQs, Fabriq and Kafka are the only 
alternatives that can provide the acceptable performance at 
larger scales required by CloudKon. Kafka is mainly optimized 
for large scale log delivery. It does not support multiple clients 
read from one broker at the same time. Moreover, it does not 
have a notion of independent messages or tasks. These 
limitations can significantly degrade the performance of 
CloudKon. Fabriq has none of those limitations. Leveraging 
Fabriq, CloudKon can run independently on any generic 
distributed system without being tied to SQS, DynamoDB, or 
the Amazon AWS Cloud in general ‎[30]. Moreover, our results 
on section ‎V show that Fabriq provides a much higher 
throughput and much lower latency than SQS. According to 
our comparison results between SQS and Fabriq, and based on 
the fact that the future version of CloudKon will not have the 
overhead of DynamoDB, we expect about a 20X performance 
improvement (13X for using Fabriq and 1.5X for not using 
DynamoDB) on future version of CloudKon. 

There are various commercial and open sourced queuing 
services available ‎[9]‎[10]‎[11]‎[12]. However, they have many 
limitations. Traditional queue services usually have centralized 
architecture and cannot scale well to handle‎ today’s‎ big‎ data‎
requirements. Providing features such as transactional support 
or consumption acknowledgement makes it almost impossible 
for these queues to achieve low latency. Another important 
feature is persistence. Many of the currently available options 
are in memory queues and cannot guarantee persistence. There 
are‎only‎a‎ few‎DMQs‎ that‎can‎scale‎ to‎ today’s‎data‎analytics‎
requirement. Kafka is one of those that provide large scale 
message delivery with high throughput. However, as it is 
shown in ‎Fig. 8 and ‎Fig. 9, Kafka has a long message delivery 
latency range. Moreover, as we have shown in ‎Fig. 6, Kafka 
cannot provide a good load balance among its nodes. That 
could cause Kafka to perform inefficiently in larger scales. 

Today’s‎ data‎ analytics‎ applications‎ have‎ moved‎ from‎
coarse granular tasks to fine granular tasks which are shorter in 
duration and much more in number ‎[18]. Such applications 
cannot tolerate a data delivery middleware with an overhead in 
the order of seconds. It is necessary for a DMQ to be as 
efficient as possible without adding substantial overhead to the 
workflow. 

We propose Fast, Balanced and Reliable Distributed 
Message Queue (Fabriq), a persistent reliable message queue 
that aims to achieve high throughput and low latency while 
keeping the near perfect load balance even on large scales. 
Fabriq uses ZHT as its building block. ZHT is a persistent 
distributed hash table that allows low latency operations and is 
able to scale up to more than 8k-nodes ‎[13]. Fabriq leverages 
ZHT components to support persistence, consistency and 
reliable messaging.  Another unique feature of Fabriq is the 
guarantee of exactly once delivery. To our best knowledge, no 
other DMQ provides such guarantee. This requirement 
becomes a challenge for the systems that aim to support large 
scale delivery. A common practice is to keep multiple copies 
of the message on multiple servers of a DMQ. Once the 
message gets delivered by a server, it will asynchronously 
inform other servers to remove their local copies. However, 

since the informing process is asynchronous, there is a change 
of having a message delivered to multiple clients before 
getting removed from the servers. Hence, the systems with 
such procedure can generate duplicate messages.  

The fact that Fabriq provides low latency makes it a good 
fit for HPC and MTC workloads that are sensitive to latency 
and require high performance. Also, unlike the other 
compared systems (‎Fig. 8 and ‎Fig. 9), Fabriq provides a very 
stable delivery in terms of latency variance. Providing a stable 
latency could be substantial for MTC applications, as well as 
towards having predictable performance. Finally, Fabriq 
supports dynamic scale up/down during the operation. In 
summary, the contributions of Fabriq are: 

 It uses ZHT as its building block to implement a 
scalable DMQ. 

 Leveraging ZHT components, it supports persistence, 
consistency, reliable messaging and dynamic scalability. 

 It guarantees exactly once delivery of the messages. 

 It achieves a near perfect load balance among its 
servers. 

 It provides high throughput and low latency 
outperforming Kafka and SQS. It also provides a shorter 
latency variance than the other two systems. 

 It could be used on HPC environments that do not 
support Java (e.g. Blue Gene L/P supercomputers). 

The rest of the paper is organized as follows. We review 
the related works on section II. Section III discusses the 
Fabriq’s‎architecture. We first briefly go over the architecture 
of ZHT and explain how Fabriq leverages ZHT to provide an 
efficient and scalable DMQ. Later on section IV, we analyze 
the communication costs on Fabriq. Section V evaluates the 
performance of the Fabriq in different metrics. Finally, section 
VI concludes the paper and discusses about the future work. 

II. RELATED WORK 

Enterprise queue systems are not new in the distributed 
computing area. They have been around for quite a long time 
and have played a major role in asynchronous data movement 
‎[32]‎[33]‎[34]. Systems like JMS ‎[12] and IBM Websphere MQ 
‎[11] have been used in distributed applications. However, 
these systems have some limitations that make them unusable 
for‎ today’s‎ big‎ data‎ computing‎ systems.‎ First,‎ these‎ systems 
usually add significant overhead to the message flow that 
makes them incapable of handling large scale data flows. JMS 
supports delivery acknowledgement for each message. IBM 
Websphere MQ provides atomic transaction support that lets 
the publisher submit a message to all of the clients. These 
features can add significant overhead to the process. It is not 
trivial to handle these features for the larger scale systems. In 
general, traditional queuing services have many assumptions 
that prevent them from scaling well. Also, many of these 
traditional services do not support persistence ‎[35]. 

ActiveMQ ‎[10] is a message broker in Java that supports 
AMQP protocol. It also provides a JMS client. ActiveMQ 
provides many configurations and features. But it does not 
support any message delivery guarantee. Messages could be 
delivered twice or even get lost. Other researches have shown 
that it cannot scale very well in larger scales ‎[3]. 

RabbitMQ ‎[9] is a robust enterprise queuing system with a 
centralized manager. The platform provides option to choose 



between performance and reliability. That means enabling 
persistence would highly degrade the performance. Other than 
the persistence, the platform also provides options like 
delivery acknowledgement and mirroring of the servers. The 
message latency on RabbitMQ is large and not tolerable for 
any application that is sensitive to the efficiency. Being 
centralized makes RabbitMQ not scale very well. It also 
makes it unreliable because of having a single point of failure. 
Other researches have shown that it cannot perform well in 
larger scales as compared to scalable systems like Kafka ‎[3]. 

Besides the traditional queuing systems, there are two 
modern queuing services that have got quite popular among 
commercial and open source user community. Those two are 
Apache Kafka ‎[2] and Amazon Simple Queue Service (SQS) 
‎[14]. Kafka is an open source, distributed publish and 
consume service which is introduced by LinkedIn. The design 
goal of Kafka is to provide a system that gathers the logs from 
a large number of servers, and feeds it into HDFS ‎[15] or 
other analysis clusters. Other log management systems that 
were provided by other big companies are usually saving data 
to offline file systems and data warehouses. That means they 
do not have to provide low latency. However, Kafka can 
deliver data to both offline and online systems. Therefore, it 
needs to provide low latency on message delivery. Kafka is 
fully distributed and provides high throughput. We discuss 
more about Kafka later in a separate section. 

Amazon SQS is a well-known commercial service which 
provides reliable message delivery in large scales. SQS is 
persistent. Like many other Amazon AWS services ‎[16], SQS 
is reliable and highly available. It is fully distributed and 
highly scalable. We discuss more about SQS and compare its 
features to Fabriq in another section. 

III. FABRIQ ARCHITECTURE AND DESIGN PRINCIPLES 

This section discusses the Fabriq design goals and 
demonstrates its architecture. As we discussed in the previous 
section, many of the available alternative solutions do not 
guarantee exactly once delivery, persistence and reliability. 
There are many ways to implement a distributed queue. A 
distributed queue should be able to guarantee message 
delivery. It should also be reliable. Finally, a distributed queue 
has to be highly scalable. Most of the straight forward design 
options include centralized manager component that limit the 
scalability. Depending on the architecture, a Distributed Hash 
Table (DHT) could achieve high scalability as well as 
maintaining other benefits. Fabriq uses a DHT as its building 
block of our queuing services. The simple put and get methods 
of a DHT could be similar to the push and pop methods on a 
DMQ. We chose to use ZHT which is a low overhead and low 
latency DHT, and has a constant routing time. It also supports 
persistence. Before discussing the design details of Fabriq, we 
briefly review the architecture and the key features of ZHT.  

A. ZHT overview 

ZHT has a simple API with 4 major methods: 1. 
insert(key, value); 2. lookup(key); 3. remove(key), and 4. 
append(key,value). The key in ZHT is a simple ASCII 
character string, and the value can be a complex object. A key 
look up in ZHT can take from 0 (if the key exists in the local 
server) to 2 network communications. This helps providing 

the fastest possible look up in a scalable DHT. The following 
sections discuss main features of ZHT. 

1) Network Communication 
ZHT supports both TCP and UDP protocols. In order to 

optimize the communication speed, the TCP connections will 
be cached by a LRU cache. That will make TCP connections 
almost as fast as UDP. In Fabriq, we rely on the ZHT for the 
network communications. Having optimized TCP 
communications enables Fabriq to achieve low latency on its 
operations. 

2) Consistency 
ZHT supports replication to provide a reliable service. In 

order to achieve high throughput ZHT follows a weak 
consistency model. The first two replications for each dataset 
are strongly consistent. That means the data will be written to 
the primary and the secondary replicas. After completion of 
the write on the secondary replica, the replication to the 
following replicas happens in an asynchronous fashion ‎[31].  

3) Fault Tolerance 
ZHT supports fault tolerance by lazily tagging the servers 

that are not being responsive. In case of failure, the secondary 
replica will take the place of the primary replica. Since each 
ZHT server operates independently from the other servers, the 
failure of a single server does not affect the system 
performance. Every change to the in-memory DHT data is 
also written to the disk. Therefore, in case of system shut 
down (e.g. reboot, power outage, maintenance, etc.) the entire 
data could be retrieved from the local disk of the servers.  

4) Persistence 
ZHT is an in-memory data-structure. In order to provide 

persistence, ZHT uses its own Non-Volatile Hash Table 
(NoVoHT). NoVoHT uses a log based persistence mechanism 
with periodic check-pointing. 

5) Dynamic Scalability (membership) 
ZHT supports dynamic membership. That means server 

nodes can join or leave the system any time during the 
operation. Hence, the system scale can be dynamically 
changed on ZHT (and also Fabriq) during the operation. 
Although dynamic scalability of Fabriq is supported, due to 
space limitation, we will explore the evaluation of dynamic 
membership in Fabriq in future work.  

B. Fabriq Design and Architecture 
The main design goal of Fabriq is achieving high 

scalability, efficiency and perfect load balance. Since Fabriq is 
using ZHT as its building block for saving messages and the 
communication purposes, and ZHT has proven to be able to 
scale more than 8k-nodes, we can expect Fabriq to also scale 
as much as ZHT ‎[13].  

Fabriq distributes the queue load of each of the user queue 
among all of its servers. That means user queues can co-exist 
on multiple servers. When a single server is down due to any 
reason such as failure or maintenance, the system can continue 
serving all of the users with other servers. That enables the 
system to provide a very high availability and reliability. ‎Fig. 
1 depicts the message delivery of multiple user queues in 
Fabriq.  

Like any other message queue, Fabriq has the simple push 
and pop functions. In addition to those, Fabriq also supports 
peek method which is reading the contents of a message 



without removing it. In order to implement the queue 
functionalities, we have used ZHT as our system building 
block and extended the queue functionalities to it. ‎Fig. 2 
shows the structure of a single Fabriq server. Besides the local 
NoVoHT hash table, there are two different data structures on 
each server.  

 
Fig. 1. Fabriq servers and clients with many user queues. 

MessageId Queue: it is a local in-memory queue, used to 
keep the message IDs of a user queue that are saved on the 
local NoVoHT on this server. The purpose of having this 
queue is to be able to get messages of a user queue from the 
local hash table without having the message Ids, and also to 
distinguish the messages of different user queues from each 
other. This way, each Fabriq server can independently serve 
the clients without having to get the message Ids of a user 
queue from a central server. 

Metadata List: each user queue has a unique Metadata list 
in the whole system which keeps the address of the servers 
which have messages of this certain queue. The Metadata list 
only exists in one server. The purpose of having this list is to 
reduce‎ the‎ chance‎ of‎ accesses‎ to‎ the‎ servers‎ that‎ don’t‎ have‎
messages for a user queue. 

  

Fig. 2. Structure of a Fabriq server. 

Next, we discuss about the process of delivering messages 
by explaining the major methods on Fabriq. Besides the below 
mentioned methods, Fabriq has peek and deleteQueue.  

1) createQueue 
This method lets users define their own queue. The method 

gets a unique name for the queue (assume‎ it‎ is‎ “Qx”), and 
hashes the name. Based on the hashing value, the client sends 
a createQueue request to the destination server. Then it will 
define‎a‎unique‎Metadata‎List‎for‎“Qx”.‎The‎Metadata‎List‎is‎

supposed to keep the address of the servers that keep the 
messages‎of‎ “Qx”.‎ It‎will‎ also‎ create‎ a‎MessageId‎queue‎ for‎
“Qx”‎for‎ the‎future‎ incoming‎messages‎ to‎ this‎server.‎A‎user‎
queue can have more than one MessageId queue in the whole 
system, but it has only one Metadata List. The Metadata List 
of a user queue resides on the server with the same address as 
the hash value of that user queue name. 

2) push 
Once a user queue has been defined, the client can push 

messages to it. The method has two inputs: the queue name 
and the message contents. Fabriq uses Google Protocol Buffer 
for message serialization and encoding. Therefore, the 
message contents input supports both string or user defined 
objects.   

Once the push method is called, the client first generates a 
message Id using its IP Address, port, and a counter. The 
message Id is unique on the whole system. Then, the client 
hashes the message Id and chooses the destination server 
based on the hash value. Since the hashing function in Fabriq 
distributes the signature uniformly among all of the servers, 
the message could land on any of the collaborating servers. 

‎Fig. 3 depicts the push procedure on Fabriq. After 
receiving the push request, the destination server performs one 
of the following based on the queue name: 

 
Fig. 3. Push operation.  

a) If the MessageId queue exists in this server, it will add 
the new MessageId to the queue and then it will make a put 
request to the underlying ZHT server. Since the hashing 
function used to hash the message Id on the client side is the 
same‎ as‎ the‎ ZHT‎ server’s‎ hashing‎ function,‎ the‎ hash‎ value‎
will again determine the local server itself as the destination. 
Thus the ZHT server will add the message to its local 
NoVoHT server and there will be no additional network 
communications involved. 



b) If the destination server does not have a MessageId 
queue with the name of this user queue, the server first creates 
a new MessageId queue for the user queue on this server, and 
then it will push the message to the MessageId queue and the 
local NoVoHT. Meanwhile, the Metadata List of this user 
queue has to be updated with the information of the new 
server that keeps its messages. The server makes a request to 
the server that keeps Metadata List of the user queue and adds 
its own address to that list. The address of the destination 
server that keeps the Metadata list will be retrieved by hashing 
the name of the user queue.  

3) pop 
The pop method requests a message from a user queue on 

a local or remote Fabriq server. We want to make sure to 
retrieve a message from a Fabriq server with the lowest 
latency and the minimum network communication overhead. 

A message of a certain queue may reside in any of the 
servers. The client can always refer to the Metadata list of a 
certain queue to get the address of a server that keeps 
messages of that queue. However, referring to the owner of 
the Metadata list in order to find a destination server adds 
network communication overhead and degrades the 
performance. Moreover, on larger scales, accessing the single 
metadata list owner could become a bottleneck for the whole 
system. In order to avoid the communication overhead, the 
client first tries the following ways before directly going to the 
metadata List owner: 

(1) When a client starts to run, it first checks if there is a 
local Fabriq server running on the current node. The pop 
method first gets all of the messages on the local Fabriq 
server. The method sends the pop request to the local server 
and keeps getting messages until the mId queue is empty. 
After that the server returns a null value meaning that there is 
nothing left for this user queue on this server.  

(2) After getting the null value, the client uses the second 
approach. It generates a random string and makes a pop 
request to a random server based on its hash value. Please note 
that the random string is not used as the message Id to be 
retrieved and it is only used to choose a remote server. If the 
destination server has messages, the client saves the random 
string as the last known server for the later accesses of this 
user queue. The client keeps popping messages from the last 
known server until it runs out of the messages for this user 
queue and returns null value.  

(3) Finally, after client finds out that the last know server 
has returned null, using the hash value of the user queue name, 
it sends a request to the metadata list and gets the address of a 
server that has messages for this queue. Once a server returns 
null, the client again goes back to the metadata list owner and 
asks for a new server address.  

‎Fig. 4 shows a remote pop operation that only takes 1 hop. 
On the server side, the pop method looks for the MessageId 
queue of the requested user queue: a) If the mId queue does 
not exist in this server or if it is empty, the pop method returns 
a null value to the client. b) If the mId queue exists and has at 
least one message Id, it will retrieve a mId from the queue and 
makes a ZHT get request. Since the message Ids on the local 
queue‎ have‎ the‎ same‎ hash‎ value‎ as‎ the‎ local‎ server’s‎ Id,‎ the‎
get request which is supposed to hash the message Id to find 
the server’s‎ address will get the value from the local ZHT 

server. Then the pop method will return that message to the 
client. If the retrieved mId was last one on the mId queue, the 
server calls a thread to asynchronously update the Metadata 
List of this user queue and remove the server Id from it. 

C. Features 

In this section, we discuss about some of the important 
features of Fabriq that makes it superior to other state-of-the-
art message queues. 

 
Fig. 4. A remote pop operation with a single hop cost. 

1) Load Balancing 
One of the design goals of Fabriq is to achieve a near 

perfect load balance. We want to make sure that the load from 
multiple queues gets distributed on all of the servers.  

The load balancing of a system can highly depend on its 
message routing strategy. The systems with deterministic 
message routing usually have a static load distribution. That 
means the messages of multiple queues are statically split 
among all of the servers. This design is more convenient for 
the centralized and hierarchical architectures. However, there 
are many limitations with such design. In these architectures, 
the load balance on the system can fluctuate depending on the 
submission rate on different queues. On the other hand, the 
systems with non-deterministic routing have a more dynamic 
load on the servers. In order to have a dynamic load 
distribution, Fabriq Client generates a randomly generated key 
for each message. Based on the hash value of the key, the 
message will be sent to a Fabriq server. Fabriq uses a 
uniformly distributed hash function.  

2) Order of messages 
Like many other distributed message queues, Fabriq 

cannot guarantee to keep the order of messages in the whole 
queue ‎[2]‎[13]. However, it can guarantee the order of the 
messages in a single server. The messages of a user queue are 
written in a local message queue on each server and the order 
of the messages is kept in that queue. Therefore the order of 
messages delivery in the server will be kept. 

The message delivery order can be important for some 
workflows in scientific applications or HPC, we have 
provided a specific mode to define queues in a way that it 
keeps the message order. In this mode the messages of the 
user queue are only submitted to a single server. Since the 
order is kept in the single server, the order of the delivery will 
be kept as submitted. 

3) Message delivery guarantee 
When it comes to large scale distributed systems, the 

delivery of the content becomes a real challenge. Distributed 
systems cannot easily deal with this problem. On most of the 
loosely coupled systems where each node controls its own 



state, the delivery is not guaranteed. In distributed Message 
Queues, the delivery of the messages is an inevitable 
requirement. Therefore, most of the state of the art systems 
guarantee of the delivery. It is hard for the independent servers 
to synchronize with each other at large scales. Therefore they 
guarantee the delivery at the cost of producing duplicate 
messages. Thus, they guarantee at least once delivery. 
However, Fabriq guarantees exactly once delivery. 

Fabriq benefits from using a persistent DHT as its 
backbone. The push method in Fabriq makes a put request on 
the ZHT. The data in each server is persistent. ZHT also 
provides replication. Replication can prevent the loss of data 
in case of losing the hard disk on a node. The push and pop 
functions are both blocking functions. The client only removes 
the message from the memory after the server returns a 
success notification. There are two possible scenarios in case 
of the network or the server failure. If the message somehow 
does not get delivered, the server will not send a success 
notification. Therefore the push function times out and the 
message will be sent again. However, there is a possibility that 
the message gets delivered and the notification signal gets lost. 
In such scenario, the client will again send the message. This 
behavior could lead to duplicate messages on the system. 
However, the message destination is determined by the hash 
value of its message Id (mId). That means a message with a 
certain mId will always deliver to the same destination server. 
In case of the duplicate delivery, the ZHT destination server 
will notice a rewrite on the same Id and throws an exception. 
Therefore the messages are pushed with no duplicate 
messages. 

Likewise, on the pop operation, the server only removes 
the message from ZHT when the client returns a success 
notification. The pop method first performs a ZHT get on the 
server side. It only performs a ZHT remove after it gets a 
notification from the client. Since the network proxy is TCP, if 
the client fails to receive the message or if it fails to notify the 
server, the TCP proxy throws an error and server notifies the 
client to ensure the delivery. Also, since Fabriq guarantees 
strong consistency between the primary and the secondary 
servers, the secondary server will not deliver a message that 
was removed from the primary server. In the rare case of the 
network temporary partition when the primary server gets 
disconnected, the secondary server delivers the message. 
When the primary server comes back online, it might deliver 
the message that was already popped. This could be prevented 
by attempting to detect the network partition, and issue a 
protocol for verifying that all replicas are consistent. We leave 
that as a future work. 

Therefore, Fabriq can guarantee exactly once delivery 
except when temporary network partitions take place, in 
which case we could implement a protocol to validate 
consistency. 

4) Persistence  
Fabriq extends‎ the‎ ZHT’s‎ persistence‎ strategy‎ to‎ provide‎

persistence. In ZHT, a background thread periodically writes 
the hash table data into the disk. Using ZHT, we can make 
sure the messages are safe in the hash table. But Fabriq still 
needs to keep its own data structure persistent in the disk. 
Otherwise, in case of system shut down of memory fail, 
Fabriq will not be able to retrieve messages from the hash 

table.  In order to save the MessageId Queues and the 
Metadata List on each server, we have defined a few key-
value pairs in the local NoVoHT table of each server. We save 
the list of the Metadata Lists and the MessageId Queues in 
two key-value pairs. We also save the contents of each single 
queue or list on an object and save those separately in the hash 
table. The background thread periodically updates the values 
of the data structures on the hash table. In case of failure, the 
data structures could be rebuilt using the key for the list of 
queues and lists in the hash table. 

5) Consistency and Fault tolerance 
Fabriq extends the ZHT strategies for its fault tolerance 

and consistency. It supports a strong consistency model on the 
first two replicas. The consistency is weak after the second 
replica. Fabriq also implements the lazy tagging of failed 
servers. In case of failure the secondary replica will take over 
the delivery. The metadata lists and the MessageId queues of 
each Fabriq server are locally saved on its ZHT. Therefore 
they are automatically replicated on different servers. In case 
of the failure of a server, they can be easily regenerated from 
the replica server.  

Another strategy which helps Fabriq provide better fault 
tolerance is spreading each user queue over all of the servers. 
In case of the failure of a server, without any need to link the 
client, the client will randomly choose any other server and 
continue pushing/retrieving messages from the system. 
Meanwhile, the secondary replica takes over and fills the gap.  

6) Multithreading 
Fabriq supports multithreading on the client side. The 

client can do push or pop using multiple threads. On the server 
side, Fabriq can handle simultaneous requests. But it does not 
use multithreading. The Fabriq server uses an event-driven 
model based on epoll which is able to outperform the 
multithreaded model by 3x. The event-driven model also 
achieves a much better scalability compared to the 
multithreading approach ‎[13]. 

IV. NETWORK COMMUNICATION COST 

In order to achieve low latency and high efficiency, it is 
important to keep the number of network communications 
low. In Fabriq, we design our push and pop operation with the 
minimum possible number of network communications. In 
this paper, we consider each network communication as one 
hop. 

Push cost: As shown in ‎Fig. 3, the push operation takes 
only one hop to complete. Since the update of the metadata list 
is executed by a separate thread in a non-blacking fashion, we 
don’t‎ count‎ it‎ as‎ an‎ extra‎ hop. Moreover, it only happens in 
the first push of each server. Therefore it does not count as an 
extra hop for the push operation.  

Pop cost: A pop operation communication cost varies 
depending on the situation of both the client and the server. In 
order to be able to model the cost, we make a few assumptions 
and simplify our model. We assume that the uniform hash 
function works perfectly, and evenly distributes the messages 
among all of the servers. We analyze this assumption in 
practice in section ‎V.C. 

We model the total cost of the pop operation in a system 
with a single consumer and multiple servers. s shows the 
number of servers and m shows the total number of messages 



that was produced by the clients. We model the cost in two 
situations: (a) when the total number of messages is more than 
the number of servers (m>s); and (b) when the number of 
messages is less than the number of servers (m<s). The total 
cost when m>s is shown below:  

    
Based on the assumption of having perfect uniform 

distribution, we can assume that each server has m/s messages 
at the beginning of the consumption. Since the consumer first 
consumes all of the messages on its local server, the cost of 
the first m/s messages is going to be zero hop. After that, the 
consumer randomly chooses a server among the s-1 that are 
left. The cost of finding a server with messages can be either 1 
or 3. The client saves the id of the last known server and only 
makes a random call when the last known server has no 
messages left. After finding a new server, the client fetches all 
of the messages on the last known server until the server is 
empty. The cost of all of these messages ((m/s)-1) is 1 hop.  
This process continues until all of the messages of each server 
are consumed. We can conclude that on each of the s-1 remote 
servers there will be a single message that is going to be 
retrieved with the cost of 1 or 3 hops and (m/s)-1 messages 
that are retrieved with the cost of exactly 1 hop. Having the 
total cost of the retrieval, we can calculate the average cost of 
each pop operation by dividing the total cost by the number of 
total messages: 

 
We can induce the range of the cost from the average cost 

formula. The average cost ranges from <1 to <1.5 hops. In the 
second scenario where the total number of messages is less 
than the number of servers, the total cost is: 

 
In this case, since each server gets one message at most, the 

cost of retrieving each message can be either 1 or 3. The 
average cost analysis is provided below: 

 
Again, we can induce that the average cost of pop in this 

case ranges from 2 to 3 hops. 
In order to confirm our analysis, we ran an experiment with 

a single consumer and counted the average number of hops on 
each pop operation. ‎Fig. 5 shows the hop count in an 
experiment with 1 client and 64 servers. The total number of 
messages in this run was 64,000 messages. The results show 
that there were 1,079 messages on the local queue with the cost 
of 0 hops. Based on the cost model the average cost of hops in 
this experiment is 0.984 and the actual average cost is 1.053 
hops, which means the model is fairly accurate. 

The maximum communication cost in a system with 
multiple clients could be more than 3 hops. Since multiple 
clients can request a queue metadata owner for a message 
server at the same time, there is a chance that they both 
receive the same message server address from the metadata 
owner. Assuming the message server has only 1 message for 
this queue, the first client can get that last message, and the 
second client gets a null return value. In that case the client 

has to request the owner server again for another message 
server.  This process can be repeated for s times until the 
client gets a message. However the chances of this occasion 
are very low. In fact, we have ran experiments in up to 128 
instances scale and have not experienced a pop operation with 
more than 5 hops. 

 
Fig. 5. Cumulative Distribution of 1 client and 64 servers.  

V. PERFORMANCE EVALUATION 

This section analyzes the performance of Fabriq in different 
scenarios, compared with the other state of the two art Message 
Queue systems. But first, we summarize different features of 
Fabriq, compared with Kafka and SQS. We compare the 
performance of the three systems in terms of throughput and 
latency. We also compare the load balancing of the Kafka and 
Fabriq. 

A. Fabriq, Kafka, and SQS 

All three of the compared systems are fully distributed and 
are able to scale very well. However, they use different 
techniques in their architecture. Fabriq uses a DHT as its 
building block, while Kafka uses Zookeeper ‎[17] to handle the 
metadata management. SQS is closed source and there is 
minimal information available about its architecture. 

One of the important features of a distributed queue is its 
message retrieval policy. All of the Fabriq servers act as a 
shared pool of messages together. That means all of the clients 
have equal chance of accessing a message at the same time. 
This feature enables the system to provide better load 
balancing. Moreover, having this feature, the producer can 
make sure that its messages are not going only to a specific 
consumer, but all of the consumers. SQS provides this feature 
as well. In Kafka, messages that reside in a broker (server) are 
only consumed by a single consumer at a time. The messages 
of that broker will only be available when the consumer gets 
the number of messages it requires. This can cause load 
imbalance when there is not enough messages in all of the 
brokers and degrade the system performance. This design goal 
in Kafka was a tradeoff to provide the rewind feature. Unlike 
other conventional queue systems including Fabriq and SQS, 
Fabriq provides message rewind feature that lets consumers to 
re-consume a message that was already consumed. However, s 
mentioned before, having this feature means only one 
consumer can access a broker at a time.  

‎TABLE I. summarizes the features of the three queuing 
services. One of the major benefits of Fabriq over the other 
systems is providing exactly once delivery. Unlike the other 



two systems, Fabriq does not support message batching yet. 
However this feature is currently supported in the latest 
version of ZHT and can be easily integrated with Fabriq. We 
expect that batching is going to improve the throughput 
significantly. 

In Kafka brokers, messages are written as a continuous 
record and are only separated by the offset number. This 
feature helps Kafka provides better throughput for continues 
log writing and reading from producers and consumers. 
However, as mentioned before, this makes it impossible for 
multiple consumers to access the same broker at the same 
time. SQS and Fabriq save messages as separate blocks of 
data that enables those to provide simultaneous access on a 
single broker. All three of the systems provide the queue 
abstraction for multiple clients. In Fabriq and SQS, the client 
can achieve this by creating new queues. In Kafka, the client 
achieves this by defining new topics. Another important 
feature of Fabriq is the fact that it is able to run on different 
types‎of‎supercomputers‎including‎Blue‎Gene‎series‎that‎don’t‎
support Java. Kafka is written in Java, and SQS is closed 
source. Scientists are unable to use those two systems for HPC 
applications that run on such supercomputers. 

TABLE I.  COMPARISON OF FABRIQ, SQS AND KAFKA 

Feature Fabriq Kafka SQS 

Persistence Yes Yes Yes 

Delivery 
Guarantee 

Exactly Once At least Once At least Once 

Message 
Order 

Inside Node Inside Node - 

Replication Customizable Mirroring 3x 

Shared Pool Yes No Yes 

Batching 
No        

(Future work) 
Yes Yes 

B. Testbed and Configurations 

Since SQS runs on AWS, in order to keep our comparisons 
fair, we chose Amazon EC2 as our testbed. The experiments 
scale from 1 to 128 instances. We chose m3.medium 
instances. Each instance has a single CPU core, a 1 Gigabit 
network card, and 16 GB of SSD storage. 

C. Load Balance 

As discussed before, we believe that Fabriq provides a 
very good load balance. In this section we compare the load 
balancing of Fabriq with Kafka by checking the message 
distribution‎ on‎ the‎ server‎ of‎ both‎ systems.‎ Since‎ we‎ don’t‎
have access to the servers on SQS, we cannot include this 
system on this experiment. 

‎Fig. 6 shows the number of messages received on each 
server of the two systems. In this experiment, each producer 
has sent 1000 messages. The total number of messages is 
64000. The results show a very good load balance on Fabriq. 
The number of messages range from 940 to 1088 messages on 
64 servers. We ran the experiment 5 times and found out that 
the error rate is less than 5% for at least 89% of the servers, 
and is less than 9.5% in worst case. In Kafka, we observe a 
major load imbalance. The number of messages per server 
ranged from 0 to 6352. More than half of the servers got less 
than 350 messages.  

Considering the fact that each server can only be accessed 
by one consumer at a time, we can notice that there will be a 
major load imbalance in the system. In a system with a 1 to 1 
mapping between the servers and the consumers, more than 
half of the consumers go idle after finishing the messages of 
the underutilized servers and will wait for the rest of 
consumers to finish consuming their messages. Only after that, 
they can consume the rest of the messages and finish the 
workload. 

 
Fig. 6. Load Balance of Fabriq vs. Kafka on 64 instances. 

D. Latency 

The latency of the message delivery is a very important 
metric for a distributed message queue.  It is important for a 
DMQ to provide low latency on larger scales in order to be 
able to achieve high efficiency. Nowadays, many of the 
modern scientific and data analytics applications run tasks with 
the granularity of sub-seconds ‎[18]. Therefore, such systems 
will not be able to exploit a message queue service that delivers 
messages in the order of seconds.  

We measured latency by sending and receiving 1000, 50 
bytes messages. Each instance ran 1 client and 1 server. ‎Fig. 7 
shows the average latency of the three systems in push and pop 
operations.  

 
Fig. 7. Average latency of push and pop operations. 

All the three systems show stable latency in larger scale. 
Fabriq provides the best latency among the three systems. 



Since the communications are local at the scale of 1 for Kafka 
and Fabriq, they both show significantly lower latency than 
the other scales. We can notice that there is almost an order of 
magnitude difference between the average latency of Fabriq 
and the other two systems. In order to find out the reason 
behind this difference, we have generated the cumulative 
distribution on both push and pop operations for the scales of 
64 and 128 instances. According to ‎Fig. 8, at the 50 percentile, 
the push latency of Fabriq, Kafka, and SQS are respectively 
0.42ms, 1.03ms, and 11ms. However, the problem with the 
Kafka is having a long tail on latency. At the 90 percentile, the 
push latency of Fabriq, Kafka, and SQS are respectively 
0.89ms, 10.4ms, and 10.8ms. We can notice that the range of 
latency on Fabriq significantly shorter than the Kafka. At the 
99.9 percentile, the push latency of Fabriq, Kafka, and SQS 
are respectively 11.98ms, 543ms, and 202ms.  

 
Fig. 8. Cumulative distribution of the push latency. 

Similarly, ‎Fig. 9 shows a long range on the pop operations 
for Kafka and SQS. The maximum pop operation time on the 
on Fabriq, Kafka, and SQS were respectively 25.5ms, 
3221ms, and 512ms. 

 
Fig. 9. Cumulative distribution of the pop latency. 

As we observed on from the plots, Fabriq provides a more 
stable latency with a shorter range than the other two systems. 
Among the three systems, Kafka has the longest range of 

latency. There could be many reasons for the poor 
performance of Kafka. Before starting to produce or consume, 
each node needs to get the broker information from a 
centralized Zookeeper. In larger scales, this could cause a long 
wait for some of the nodes. Another reason for the long range 
of message delivery is the load imbalance. We have already 
discussed about it on the previous sections. 

E. Throughput 

It is substantial for a DMQ to provide high throughput in 
different scales. In this section, we compare the throughput of 
the three systems. We have chosen three different message 
sizes to cover small, medium and large messages.  All of the 
experiments were run on 1 to 128 instances with a 1 to 1 
mapping between the clients and servers in Fabriq and Kafka. 
In SQS, since the server is handled by AWS, we only run the 
client that includes producer and consumer on each instance.  

‎Fig. 10 shows the throughput of both push and pop 
operations for the short messages. Each client sends and 
receives 1000 messages that are each 50 bytes long. Among 
the three systems, Fabriq provides the best throughput on both 
push and pop operations.  As mentioned before, due to 
problems such as bad load distribution, and the problem of 
single access to the broker by the consumers, the throughput 
of Kafka is almost an order of magnitude lower than the 
Fabriq. 

 
Fig. 10. Throughput for short (50 bytes) messages (msgs/sec). 

All of the three systems are scaling almost nearly up to the 
scale of 128 instances. We can also notice that the throughput 
of pop operation is higher than the push operation. The reason 
for that in Fabriq is that the consumers first try to fetch the 
local messages. Also, in general we know that in a local 
system, the read operation is usually faster than the write 
operation. ‎Fig. 11 compares the throughput of push and pop 
operations for medium (256KB) and large (1MB) messages. 
At the largest scale, Fabriq could achieve 1091 MB/sec on 
push operation and 1793 MB/sec on pop operation. We notice 
that the throughput of the Kafka for push and pop operations 
is respectively 759 MB/sec and 1433 MB/sec which is 
relatively close to what Fabriq can achieve. The reason for 
that is the continuous writing and reading on the same block 
of file instead of having separate files for different messages. 
This way, Kafka is able to deliver large messages with the 
minimum overhead. Therefore it performs well while 
delivering larger messages. 



 

Fig. 11. Push and pop throughput for large messages (MB/sec). 

VI. CONCLUSION AND FUTURE WORK 

A Distributed Message Queue can be an essential building 
block for distributed systems. A DMQ can be used as a 
middleware in a large scale distributed system that decouples 
different components from each other. It is essential for a 
DMQ to reduce the complexity of the workflow and to 
provide low overhead message delivery. We proposed Fabriq, 
a distributed message queue that runs on top a Distributed 
Hash Table. Fabriq was designed with the goal of achieving 
low latency and high throughput while maintaining the perfect 
load balance among its nodes. Servers in Fabriq are fully 
independent. The load of each queue is shared among all of 
the nodes of the Fabriq. This makes Fabriq achieve good load 
balance and high availability. The network communication 
protocol in Fabriq is tuned to provide low latency. A push 
operation could take 0 to 1 roundtrip communication between 
the servers. A pop operation takes 0, 1 or 3 operations for 
more than 99% of the operations.  

The results show that Fabriq achieve higher efficiency and 
lower overhead than Kafka and SQS. The message delivery 
latency on SQS and Kafka is orders of magnitude larger than 
Fabriq. Moreover, they have a long range of push and pop 
latency which makes them unsuitable for applications that are 
sensitive to operations with long tails. Fabriq provides a very 
stable latency throughout the delivery. Results show that more 
than 90% of the operations take less than 0.9ms and more than 
99% percent of the operations take less than 8.3ms in Fabriq. 
Fabriq also achieves high throughput is large scales for both 
small and large messages. At the scale of 128, Fabriq was able 
to achieve more than 90000 msgs/sec for small messages. At 
the same scale, Fabriq was able to deliver large messages at 
the speed of 1.8 GB/sec. 

There are many directions for the future work of Fabriq. 
One of the directions is to provide message batching support 
in Fabriq. The latest version of ZHT which is under 
development supports message batching. We are going to 
integrate Fabriq with the latest version of ZHT and enable the 
batching support ‎[38]. Another future direction of this work is 
to enable our network protocol to support two modes for 
different workflow scenarios. In this feature, the user will be 
able to choose between the two modes of heavy workflows 
with lots of messages, and a moderate workflow with less 
number of messages. We are going to optimize Fabriq for task 
scheduling purposes and leverage it in CloudKon ‎[2] and 
MATRIX ‎[26]‎[39] which are both task scheduling and 
execution systems optimized for different environments and 
workflows. Finally, inspired by the work stealing technique 
used in MATRIX ‎[37], we are planning to implement 
message-stealing on the servers in order to support pro-active 

dynamic load balancing of messages. Pro-active load 
balancing of the messages helps balancing the server loads 
when the message consumption is uneven.  
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