
FaBRiQ: Leveraging Distributed Hash Tables towards

Distributed Publish-Subscribe Message Queues

Iman Sadooghi, Ke Wang, Dharmit Patel, Dongfang Zhao, Tonglin Li, Shiva Srivastava, Ioan Raicu

isadoogh@iit.edu, {kwang22, dpatel74, dzhao8, tli13, ssriva10}@hawk.iit.edu, iraicu@cs.iit.edu
Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Abstract— The advent of Big Data has brought many

challenges and opportunities in distributed systems, which have

only amplified with the rate of growth of data. There is a need to

rethink the software stack for supporting data intensive

computing and big data analytics. Over the past decade, the data

analytics applications have turned to finer granular tasks which

are shorter in duration and much more in quantity. Such

applications require new frameworks to handle their data flow.

Distributed Message Queues have proven to be essential building

blocks in distributed computing towards the support for fine

granular workloads. Distributed message queues such as

Amazon’s SQS or Apache’s Kafka have been used in handling

massive data volumes, content delivery, and many more. They

have also been used in large scale job scheduling on public

clouds. However, even these frameworks have some limitations

that make them incapable of handling large scale data with high

efficiency. Those are not suitable for High Performance

Computing (HPC) applications that require lower latency than

what is available on the cloud. We propose Fabriq, a distributed

message queue that runs on top of a Distributed Hash Table. The

design goal of Fabriq is to achieve lower latency and higher

efficiency while being able to handle large scales. Moreover,

Fabriq is persistent, reliable and consistent. Also, unlike other

state-of-the-art systems, Fabriq guarantees exactly once delivery

of the messages. The results show that Fabriq was able to

achieve high throughput in both small and large messages. At the

scale of 128 nodes, Fabriq’s throughput was as high as 1.8

Gigabytes/sec for 1 Megabytes messages, and more than 90,000

messages/sec for 50 bytes messages. At the same scale, Fabriq’s

latency was less than 1 millisecond. Our framework outperforms

other state of the art systems including Kafka and SQS in

throughput and latency. Furthermore, our experiments show

that Fabriq provides a significantly better load balancing than

Kafka. The load difference between Fabriq servers was less than

9.5% (compared to the even share), while in Kafka this

difference was 100%, meaning that some servers did not receive

any messages and remained idle.

Keywords— Message Queue, Data Analytics, Distributed Hash

Tables, Distributed Systems

I. INTRODUCTION

The advent of Big Data and the exascale computing has
changed many paradigms in the computing science area. More
than 2.5 exabytes of data is generated every day, and more than
70% of it is unstructured ‎[19]. Various organizations including
governments and big companies generate massive amounts of
data in different formats including logs, and other unstructured
raw data every day. Experts predict that by the end of 2018, the
exascale computers will start to work ‎[22]. With the growth of
the data at the current rate, it is unlikely for the traditional data

processing systems to be able to handle the requirement of Big
Data processing. There is a need to reinvent the wheel instead
of using the traditional systems. Traditional data processing
middleware and tools such as SQL databases and file system
are being replaced by No-SQL data-stores and key-value
storage systems in order to be able to handle the data
processing at the current scale. Another key tool that is getting
more attention from the industry is distributed queuing service.

A Distributed Message Queue (DMQ) could be an
important building block for a reliable distributed system.
Message Queues could be useful in various data movement and
communication scenarios. In High Throughput Computing
(HTC), message queues can help decouple different
components of a bigger system that aims to run in larger scales.
Using distributed queues, different components can
communicate without dealing with the blocking calls and
tightly coupled communication.

Over the past few years, distributed queuing services have
been used in both industrial and scientific applications and
frameworks ‎[1]‎[2]‎[20]‎[21]‎[26]‎[28]. SQS is a distributed queue
service by Amazon AWS, which is being leveraged by various
commercial applications. Some systems have used SQS as a
buffer for their server to handle massive number of requests.
Other applications have used SQS in monitoring, workflow
applications, big data analytics, log processing and many other
distributed systems scenarios ‎[1]‎[23]‎[36].

The large scale log generation and processing is another
example that has become a major challenge on companies that
have to deal with the big data. Many companies have chosen to
use distributed queue services to address this challenge.
Companies like LinkedIn, Facebook ‎[6], Cloudera ‎[4] and
Yahoo have developed similar queuing solutions to handle
gathering and processing of terabytes of log data on their
servers ‎[5]. For example LinkedIn’s Kafka ‎[3] feeds hundreds
of gigabytes of data into Hadoop ‎[25] clusters and other servers
every day.

Distributed Queues can play an important role in Many
Task Computing (MTC) ‎[8] and High Performance Computing
(HPC). Modern Distributed Queues can handle data movement
on HPC and MTC workloads in larger scales without adding
significant overhead to the execution ‎[7].

CloudKon is a Distributed Job Scheduling system that is
optimized to handle MTC and HPC jobs. It leverages SQS as a
task delivery fabric that could be accessed simultaneously and
achieve load balancing at scale ‎‎[2]‎[29]. CloudKon has proved
to outperform other state-of-the-art schedulers like Sparrow
‎[18] by more than 2X in throughput. One of the main
motivations of this work is to provide a DMQ that can replace
SQS in future versions of the CloudKon. There are a few

limitations with SQS including having duplicate messages, and
getting the system tied to AWS cloud environment. CloudKon
‎[2] uses DynamoDB ‎[27] to filter out the duplicate messages.
Among the various DMQs, Fabriq and Kafka are the only
alternatives that can provide the acceptable performance at
larger scales required by CloudKon. Kafka is mainly optimized
for large scale log delivery. It does not support multiple clients
read from one broker at the same time. Moreover, it does not
have a notion of independent messages or tasks. These
limitations can significantly degrade the performance of
CloudKon. Fabriq has none of those limitations. Leveraging
Fabriq, CloudKon can run independently on any generic
distributed system without being tied to SQS, DynamoDB, or
the Amazon AWS Cloud in general ‎[30]. Moreover, our results
on section ‎V show that Fabriq provides a much higher
throughput and much lower latency than SQS. According to
our comparison results between SQS and Fabriq, and based on
the fact that the future version of CloudKon will not have the
overhead of DynamoDB, we expect about a 20X performance
improvement (13X for using Fabriq and 1.5X for not using
DynamoDB) on future version of CloudKon.

There are various commercial and open sourced queuing
services available ‎[9]‎[10]‎[11]‎[12]. However, they have many
limitations. Traditional queue services usually have centralized
architecture and cannot scale well to handle‎ today’s‎ big‎ data‎
requirements. Providing features such as transactional support
or consumption acknowledgement makes it almost impossible
for these queues to achieve low latency. Another important
feature is persistence. Many of the currently available options
are in memory queues and cannot guarantee persistence. There
are‎only‎a‎ few‎DMQs‎ that‎can‎scale‎ to‎ today’s‎data‎analytics‎
requirement. Kafka is one of those that provide large scale
message delivery with high throughput. However, as it is
shown in ‎Fig. 8 and ‎Fig. 9, Kafka has a long message delivery
latency range. Moreover, as we have shown in ‎Fig. 6, Kafka
cannot provide a good load balance among its nodes. That
could cause Kafka to perform inefficiently in larger scales.

Today’s‎ data‎ analytics‎ applications‎ have‎ moved‎ from‎
coarse granular tasks to fine granular tasks which are shorter in
duration and much more in number ‎[18]. Such applications
cannot tolerate a data delivery middleware with an overhead in
the order of seconds. It is necessary for a DMQ to be as
efficient as possible without adding substantial overhead to the
workflow.

We propose Fast, Balanced and Reliable Distributed
Message Queue (Fabriq), a persistent reliable message queue
that aims to achieve high throughput and low latency while
keeping the near perfect load balance even on large scales.
Fabriq uses ZHT as its building block. ZHT is a persistent
distributed hash table that allows low latency operations and is
able to scale up to more than 8k-nodes ‎[13]. Fabriq leverages
ZHT components to support persistence, consistency and
reliable messaging. Another unique feature of Fabriq is the
guarantee of exactly once delivery. To our best knowledge, no
other DMQ provides such guarantee. This requirement
becomes a challenge for the systems that aim to support large
scale delivery. A common practice is to keep multiple copies
of the message on multiple servers of a DMQ. Once the
message gets delivered by a server, it will asynchronously
inform other servers to remove their local copies. However,

since the informing process is asynchronous, there is a change
of having a message delivered to multiple clients before
getting removed from the servers. Hence, the systems with
such procedure can generate duplicate messages.

The fact that Fabriq provides low latency makes it a good
fit for HPC and MTC workloads that are sensitive to latency
and require high performance. Also, unlike the other
compared systems (‎Fig. 8 and ‎Fig. 9), Fabriq provides a very
stable delivery in terms of latency variance. Providing a stable
latency could be substantial for MTC applications, as well as
towards having predictable performance. Finally, Fabriq
supports dynamic scale up/down during the operation. In
summary, the contributions of Fabriq are:

 It uses ZHT as its building block to implement a
scalable DMQ.

 Leveraging ZHT components, it supports persistence,
consistency, reliable messaging and dynamic scalability.

 It guarantees exactly once delivery of the messages.

 It achieves a near perfect load balance among its
servers.

 It provides high throughput and low latency
outperforming Kafka and SQS. It also provides a shorter
latency variance than the other two systems.

 It could be used on HPC environments that do not
support Java (e.g. Blue Gene L/P supercomputers).

The rest of the paper is organized as follows. We review
the related works on section II. Section III discusses the
Fabriq’s‎architecture. We first briefly go over the architecture
of ZHT and explain how Fabriq leverages ZHT to provide an
efficient and scalable DMQ. Later on section IV, we analyze
the communication costs on Fabriq. Section V evaluates the
performance of the Fabriq in different metrics. Finally, section
VI concludes the paper and discusses about the future work.

II. RELATED WORK

Enterprise queue systems are not new in the distributed
computing area. They have been around for quite a long time
and have played a major role in asynchronous data movement
‎[32]‎[33]‎[34]. Systems like JMS ‎[12] and IBM Websphere MQ
‎[11] have been used in distributed applications. However,
these systems have some limitations that make them unusable
for‎ today’s‎ big‎ data‎ computing‎ systems.‎ First,‎ these‎ systems
usually add significant overhead to the message flow that
makes them incapable of handling large scale data flows. JMS
supports delivery acknowledgement for each message. IBM
Websphere MQ provides atomic transaction support that lets
the publisher submit a message to all of the clients. These
features can add significant overhead to the process. It is not
trivial to handle these features for the larger scale systems. In
general, traditional queuing services have many assumptions
that prevent them from scaling well. Also, many of these
traditional services do not support persistence ‎[35].

ActiveMQ ‎[10] is a message broker in Java that supports
AMQP protocol. It also provides a JMS client. ActiveMQ
provides many configurations and features. But it does not
support any message delivery guarantee. Messages could be
delivered twice or even get lost. Other researches have shown
that it cannot scale very well in larger scales ‎[3].

RabbitMQ ‎[9] is a robust enterprise queuing system with a
centralized manager. The platform provides option to choose

between performance and reliability. That means enabling
persistence would highly degrade the performance. Other than
the persistence, the platform also provides options like
delivery acknowledgement and mirroring of the servers. The
message latency on RabbitMQ is large and not tolerable for
any application that is sensitive to the efficiency. Being
centralized makes RabbitMQ not scale very well. It also
makes it unreliable because of having a single point of failure.
Other researches have shown that it cannot perform well in
larger scales as compared to scalable systems like Kafka ‎[3].

Besides the traditional queuing systems, there are two
modern queuing services that have got quite popular among
commercial and open source user community. Those two are
Apache Kafka ‎[2] and Amazon Simple Queue Service (SQS)
‎[14]. Kafka is an open source, distributed publish and
consume service which is introduced by LinkedIn. The design
goal of Kafka is to provide a system that gathers the logs from
a large number of servers, and feeds it into HDFS ‎[15] or
other analysis clusters. Other log management systems that
were provided by other big companies are usually saving data
to offline file systems and data warehouses. That means they
do not have to provide low latency. However, Kafka can
deliver data to both offline and online systems. Therefore, it
needs to provide low latency on message delivery. Kafka is
fully distributed and provides high throughput. We discuss
more about Kafka later in a separate section.

Amazon SQS is a well-known commercial service which
provides reliable message delivery in large scales. SQS is
persistent. Like many other Amazon AWS services ‎[16], SQS
is reliable and highly available. It is fully distributed and
highly scalable. We discuss more about SQS and compare its
features to Fabriq in another section.

III. FABRIQ ARCHITECTURE AND DESIGN PRINCIPLES

This section discusses the Fabriq design goals and
demonstrates its architecture. As we discussed in the previous
section, many of the available alternative solutions do not
guarantee exactly once delivery, persistence and reliability.
There are many ways to implement a distributed queue. A
distributed queue should be able to guarantee message
delivery. It should also be reliable. Finally, a distributed queue
has to be highly scalable. Most of the straight forward design
options include centralized manager component that limit the
scalability. Depending on the architecture, a Distributed Hash
Table (DHT) could achieve high scalability as well as
maintaining other benefits. Fabriq uses a DHT as its building
block of our queuing services. The simple put and get methods
of a DHT could be similar to the push and pop methods on a
DMQ. We chose to use ZHT which is a low overhead and low
latency DHT, and has a constant routing time. It also supports
persistence. Before discussing the design details of Fabriq, we
briefly review the architecture and the key features of ZHT.

A. ZHT overview

ZHT has a simple API with 4 major methods: 1.
insert(key, value); 2. lookup(key); 3. remove(key), and 4.
append(key,value). The key in ZHT is a simple ASCII
character string, and the value can be a complex object. A key
look up in ZHT can take from 0 (if the key exists in the local
server) to 2 network communications. This helps providing

the fastest possible look up in a scalable DHT. The following
sections discuss main features of ZHT.

1) Network Communication
ZHT supports both TCP and UDP protocols. In order to

optimize the communication speed, the TCP connections will
be cached by a LRU cache. That will make TCP connections
almost as fast as UDP. In Fabriq, we rely on the ZHT for the
network communications. Having optimized TCP
communications enables Fabriq to achieve low latency on its
operations.

2) Consistency
ZHT supports replication to provide a reliable service. In

order to achieve high throughput ZHT follows a weak
consistency model. The first two replications for each dataset
are strongly consistent. That means the data will be written to
the primary and the secondary replicas. After completion of
the write on the secondary replica, the replication to the
following replicas happens in an asynchronous fashion ‎[31].

3) Fault Tolerance
ZHT supports fault tolerance by lazily tagging the servers

that are not being responsive. In case of failure, the secondary
replica will take the place of the primary replica. Since each
ZHT server operates independently from the other servers, the
failure of a single server does not affect the system
performance. Every change to the in-memory DHT data is
also written to the disk. Therefore, in case of system shut
down (e.g. reboot, power outage, maintenance, etc.) the entire
data could be retrieved from the local disk of the servers.

4) Persistence
ZHT is an in-memory data-structure. In order to provide

persistence, ZHT uses its own Non-Volatile Hash Table
(NoVoHT). NoVoHT uses a log based persistence mechanism
with periodic check-pointing.

5) Dynamic Scalability (membership)
ZHT supports dynamic membership. That means server

nodes can join or leave the system any time during the
operation. Hence, the system scale can be dynamically
changed on ZHT (and also Fabriq) during the operation.
Although dynamic scalability of Fabriq is supported, due to
space limitation, we will explore the evaluation of dynamic
membership in Fabriq in future work.

B. Fabriq Design and Architecture
The main design goal of Fabriq is achieving high

scalability, efficiency and perfect load balance. Since Fabriq is
using ZHT as its building block for saving messages and the
communication purposes, and ZHT has proven to be able to
scale more than 8k-nodes, we can expect Fabriq to also scale
as much as ZHT ‎[13].

Fabriq distributes the queue load of each of the user queue
among all of its servers. That means user queues can co-exist
on multiple servers. When a single server is down due to any
reason such as failure or maintenance, the system can continue
serving all of the users with other servers. That enables the
system to provide a very high availability and reliability. ‎Fig.
1 depicts the message delivery of multiple user queues in
Fabriq.

Like any other message queue, Fabriq has the simple push
and pop functions. In addition to those, Fabriq also supports
peek method which is reading the contents of a message

without removing it. In order to implement the queue
functionalities, we have used ZHT as our system building
block and extended the queue functionalities to it. ‎Fig. 2
shows the structure of a single Fabriq server. Besides the local
NoVoHT hash table, there are two different data structures on
each server.

Fig. 1. Fabriq servers and clients with many user queues.

MessageId Queue: it is a local in-memory queue, used to
keep the message IDs of a user queue that are saved on the
local NoVoHT on this server. The purpose of having this
queue is to be able to get messages of a user queue from the
local hash table without having the message Ids, and also to
distinguish the messages of different user queues from each
other. This way, each Fabriq server can independently serve
the clients without having to get the message Ids of a user
queue from a central server.

Metadata List: each user queue has a unique Metadata list
in the whole system which keeps the address of the servers
which have messages of this certain queue. The Metadata list
only exists in one server. The purpose of having this list is to
reduce‎ the‎ chance‎ of‎ accesses‎ to‎ the‎ servers‎ that‎ don’t‎ have‎
messages for a user queue.

Fig. 2. Structure of a Fabriq server.

Next, we discuss about the process of delivering messages
by explaining the major methods on Fabriq. Besides the below
mentioned methods, Fabriq has peek and deleteQueue.

1) createQueue
This method lets users define their own queue. The method

gets a unique name for the queue (assume‎ it‎ is‎ “Qx”), and
hashes the name. Based on the hashing value, the client sends
a createQueue request to the destination server. Then it will
define‎a‎unique‎Metadata‎List‎for‎“Qx”.‎The‎Metadata‎List‎is‎

supposed to keep the address of the servers that keep the
messages‎of‎ “Qx”.‎ It‎will‎ also‎ create‎ a‎MessageId‎queue‎ for‎
“Qx”‎for‎ the‎future‎ incoming‎messages‎ to‎ this‎server.‎A‎user‎
queue can have more than one MessageId queue in the whole
system, but it has only one Metadata List. The Metadata List
of a user queue resides on the server with the same address as
the hash value of that user queue name.

2) push
Once a user queue has been defined, the client can push

messages to it. The method has two inputs: the queue name
and the message contents. Fabriq uses Google Protocol Buffer
for message serialization and encoding. Therefore, the
message contents input supports both string or user defined
objects.

Once the push method is called, the client first generates a
message Id using its IP Address, port, and a counter. The
message Id is unique on the whole system. Then, the client
hashes the message Id and chooses the destination server
based on the hash value. Since the hashing function in Fabriq
distributes the signature uniformly among all of the servers,
the message could land on any of the collaborating servers.

‎Fig. 3 depicts the push procedure on Fabriq. After
receiving the push request, the destination server performs one
of the following based on the queue name:

Fig. 3. Push operation.

a) If the MessageId queue exists in this server, it will add
the new MessageId to the queue and then it will make a put
request to the underlying ZHT server. Since the hashing
function used to hash the message Id on the client side is the
same‎ as‎ the‎ ZHT‎ server’s‎ hashing‎ function,‎ the‎ hash‎ value‎
will again determine the local server itself as the destination.
Thus the ZHT server will add the message to its local
NoVoHT server and there will be no additional network
communications involved.

b) If the destination server does not have a MessageId
queue with the name of this user queue, the server first creates
a new MessageId queue for the user queue on this server, and
then it will push the message to the MessageId queue and the
local NoVoHT. Meanwhile, the Metadata List of this user
queue has to be updated with the information of the new
server that keeps its messages. The server makes a request to
the server that keeps Metadata List of the user queue and adds
its own address to that list. The address of the destination
server that keeps the Metadata list will be retrieved by hashing
the name of the user queue.

3) pop
The pop method requests a message from a user queue on

a local or remote Fabriq server. We want to make sure to
retrieve a message from a Fabriq server with the lowest
latency and the minimum network communication overhead.

A message of a certain queue may reside in any of the
servers. The client can always refer to the Metadata list of a
certain queue to get the address of a server that keeps
messages of that queue. However, referring to the owner of
the Metadata list in order to find a destination server adds
network communication overhead and degrades the
performance. Moreover, on larger scales, accessing the single
metadata list owner could become a bottleneck for the whole
system. In order to avoid the communication overhead, the
client first tries the following ways before directly going to the
metadata List owner:

(1) When a client starts to run, it first checks if there is a
local Fabriq server running on the current node. The pop
method first gets all of the messages on the local Fabriq
server. The method sends the pop request to the local server
and keeps getting messages until the mId queue is empty.
After that the server returns a null value meaning that there is
nothing left for this user queue on this server.

(2) After getting the null value, the client uses the second
approach. It generates a random string and makes a pop
request to a random server based on its hash value. Please note
that the random string is not used as the message Id to be
retrieved and it is only used to choose a remote server. If the
destination server has messages, the client saves the random
string as the last known server for the later accesses of this
user queue. The client keeps popping messages from the last
known server until it runs out of the messages for this user
queue and returns null value.

(3) Finally, after client finds out that the last know server
has returned null, using the hash value of the user queue name,
it sends a request to the metadata list and gets the address of a
server that has messages for this queue. Once a server returns
null, the client again goes back to the metadata list owner and
asks for a new server address.

‎Fig. 4 shows a remote pop operation that only takes 1 hop.
On the server side, the pop method looks for the MessageId
queue of the requested user queue: a) If the mId queue does
not exist in this server or if it is empty, the pop method returns
a null value to the client. b) If the mId queue exists and has at
least one message Id, it will retrieve a mId from the queue and
makes a ZHT get request. Since the message Ids on the local
queue‎ have‎ the‎ same‎ hash‎ value‎ as‎ the‎ local‎ server’s‎ Id,‎ the‎
get request which is supposed to hash the message Id to find
the server’s‎ address will get the value from the local ZHT

server. Then the pop method will return that message to the
client. If the retrieved mId was last one on the mId queue, the
server calls a thread to asynchronously update the Metadata
List of this user queue and remove the server Id from it.

C. Features

In this section, we discuss about some of the important
features of Fabriq that makes it superior to other state-of-the-
art message queues.

Fig. 4. A remote pop operation with a single hop cost.

1) Load Balancing
One of the design goals of Fabriq is to achieve a near

perfect load balance. We want to make sure that the load from
multiple queues gets distributed on all of the servers.

The load balancing of a system can highly depend on its
message routing strategy. The systems with deterministic
message routing usually have a static load distribution. That
means the messages of multiple queues are statically split
among all of the servers. This design is more convenient for
the centralized and hierarchical architectures. However, there
are many limitations with such design. In these architectures,
the load balance on the system can fluctuate depending on the
submission rate on different queues. On the other hand, the
systems with non-deterministic routing have a more dynamic
load on the servers. In order to have a dynamic load
distribution, Fabriq Client generates a randomly generated key
for each message. Based on the hash value of the key, the
message will be sent to a Fabriq server. Fabriq uses a
uniformly distributed hash function.

2) Order of messages
Like many other distributed message queues, Fabriq

cannot guarantee to keep the order of messages in the whole
queue ‎[2]‎[13]. However, it can guarantee the order of the
messages in a single server. The messages of a user queue are
written in a local message queue on each server and the order
of the messages is kept in that queue. Therefore the order of
messages delivery in the server will be kept.

The message delivery order can be important for some
workflows in scientific applications or HPC, we have
provided a specific mode to define queues in a way that it
keeps the message order. In this mode the messages of the
user queue are only submitted to a single server. Since the
order is kept in the single server, the order of the delivery will
be kept as submitted.

3) Message delivery guarantee
When it comes to large scale distributed systems, the

delivery of the content becomes a real challenge. Distributed
systems cannot easily deal with this problem. On most of the
loosely coupled systems where each node controls its own

state, the delivery is not guaranteed. In distributed Message
Queues, the delivery of the messages is an inevitable
requirement. Therefore, most of the state of the art systems
guarantee of the delivery. It is hard for the independent servers
to synchronize with each other at large scales. Therefore they
guarantee the delivery at the cost of producing duplicate
messages. Thus, they guarantee at least once delivery.
However, Fabriq guarantees exactly once delivery.

Fabriq benefits from using a persistent DHT as its
backbone. The push method in Fabriq makes a put request on
the ZHT. The data in each server is persistent. ZHT also
provides replication. Replication can prevent the loss of data
in case of losing the hard disk on a node. The push and pop
functions are both blocking functions. The client only removes
the message from the memory after the server returns a
success notification. There are two possible scenarios in case
of the network or the server failure. If the message somehow
does not get delivered, the server will not send a success
notification. Therefore the push function times out and the
message will be sent again. However, there is a possibility that
the message gets delivered and the notification signal gets lost.
In such scenario, the client will again send the message. This
behavior could lead to duplicate messages on the system.
However, the message destination is determined by the hash
value of its message Id (mId). That means a message with a
certain mId will always deliver to the same destination server.
In case of the duplicate delivery, the ZHT destination server
will notice a rewrite on the same Id and throws an exception.
Therefore the messages are pushed with no duplicate
messages.

Likewise, on the pop operation, the server only removes
the message from ZHT when the client returns a success
notification. The pop method first performs a ZHT get on the
server side. It only performs a ZHT remove after it gets a
notification from the client. Since the network proxy is TCP, if
the client fails to receive the message or if it fails to notify the
server, the TCP proxy throws an error and server notifies the
client to ensure the delivery. Also, since Fabriq guarantees
strong consistency between the primary and the secondary
servers, the secondary server will not deliver a message that
was removed from the primary server. In the rare case of the
network temporary partition when the primary server gets
disconnected, the secondary server delivers the message.
When the primary server comes back online, it might deliver
the message that was already popped. This could be prevented
by attempting to detect the network partition, and issue a
protocol for verifying that all replicas are consistent. We leave
that as a future work.

Therefore, Fabriq can guarantee exactly once delivery
except when temporary network partitions take place, in
which case we could implement a protocol to validate
consistency.

4) Persistence
Fabriq extends‎ the‎ ZHT’s‎ persistence‎ strategy‎ to‎ provide‎

persistence. In ZHT, a background thread periodically writes
the hash table data into the disk. Using ZHT, we can make
sure the messages are safe in the hash table. But Fabriq still
needs to keep its own data structure persistent in the disk.
Otherwise, in case of system shut down of memory fail,
Fabriq will not be able to retrieve messages from the hash

table. In order to save the MessageId Queues and the
Metadata List on each server, we have defined a few key-
value pairs in the local NoVoHT table of each server. We save
the list of the Metadata Lists and the MessageId Queues in
two key-value pairs. We also save the contents of each single
queue or list on an object and save those separately in the hash
table. The background thread periodically updates the values
of the data structures on the hash table. In case of failure, the
data structures could be rebuilt using the key for the list of
queues and lists in the hash table.

5) Consistency and Fault tolerance
Fabriq extends the ZHT strategies for its fault tolerance

and consistency. It supports a strong consistency model on the
first two replicas. The consistency is weak after the second
replica. Fabriq also implements the lazy tagging of failed
servers. In case of failure the secondary replica will take over
the delivery. The metadata lists and the MessageId queues of
each Fabriq server are locally saved on its ZHT. Therefore
they are automatically replicated on different servers. In case
of the failure of a server, they can be easily regenerated from
the replica server.

Another strategy which helps Fabriq provide better fault
tolerance is spreading each user queue over all of the servers.
In case of the failure of a server, without any need to link the
client, the client will randomly choose any other server and
continue pushing/retrieving messages from the system.
Meanwhile, the secondary replica takes over and fills the gap.

6) Multithreading
Fabriq supports multithreading on the client side. The

client can do push or pop using multiple threads. On the server
side, Fabriq can handle simultaneous requests. But it does not
use multithreading. The Fabriq server uses an event-driven
model based on epoll which is able to outperform the
multithreaded model by 3x. The event-driven model also
achieves a much better scalability compared to the
multithreading approach ‎[13].

IV. NETWORK COMMUNICATION COST

In order to achieve low latency and high efficiency, it is
important to keep the number of network communications
low. In Fabriq, we design our push and pop operation with the
minimum possible number of network communications. In
this paper, we consider each network communication as one
hop.

Push cost: As shown in ‎Fig. 3, the push operation takes
only one hop to complete. Since the update of the metadata list
is executed by a separate thread in a non-blacking fashion, we
don’t‎ count‎ it‎ as‎ an‎ extra‎ hop. Moreover, it only happens in
the first push of each server. Therefore it does not count as an
extra hop for the push operation.

Pop cost: A pop operation communication cost varies
depending on the situation of both the client and the server. In
order to be able to model the cost, we make a few assumptions
and simplify our model. We assume that the uniform hash
function works perfectly, and evenly distributes the messages
among all of the servers. We analyze this assumption in
practice in section ‎V.C.

We model the total cost of the pop operation in a system
with a single consumer and multiple servers. s shows the
number of servers and m shows the total number of messages

that was produced by the clients. We model the cost in two
situations: (a) when the total number of messages is more than
the number of servers (m>s); and (b) when the number of
messages is less than the number of servers (m<s). The total
cost when m>s is shown below:

Based on the assumption of having perfect uniform

distribution, we can assume that each server has m/s messages
at the beginning of the consumption. Since the consumer first
consumes all of the messages on its local server, the cost of
the first m/s messages is going to be zero hop. After that, the
consumer randomly chooses a server among the s-1 that are
left. The cost of finding a server with messages can be either 1
or 3. The client saves the id of the last known server and only
makes a random call when the last known server has no
messages left. After finding a new server, the client fetches all
of the messages on the last known server until the server is
empty. The cost of all of these messages ((m/s)-1) is 1 hop.
This process continues until all of the messages of each server
are consumed. We can conclude that on each of the s-1 remote
servers there will be a single message that is going to be
retrieved with the cost of 1 or 3 hops and (m/s)-1 messages
that are retrieved with the cost of exactly 1 hop. Having the
total cost of the retrieval, we can calculate the average cost of
each pop operation by dividing the total cost by the number of
total messages:

We can induce the range of the cost from the average cost

formula. The average cost ranges from <1 to <1.5 hops. In the
second scenario where the total number of messages is less
than the number of servers, the total cost is:

In this case, since each server gets one message at most, the

cost of retrieving each message can be either 1 or 3. The
average cost analysis is provided below:

Again, we can induce that the average cost of pop in this

case ranges from 2 to 3 hops.
In order to confirm our analysis, we ran an experiment with

a single consumer and counted the average number of hops on
each pop operation. ‎Fig. 5 shows the hop count in an
experiment with 1 client and 64 servers. The total number of
messages in this run was 64,000 messages. The results show
that there were 1,079 messages on the local queue with the cost
of 0 hops. Based on the cost model the average cost of hops in
this experiment is 0.984 and the actual average cost is 1.053
hops, which means the model is fairly accurate.

The maximum communication cost in a system with
multiple clients could be more than 3 hops. Since multiple
clients can request a queue metadata owner for a message
server at the same time, there is a chance that they both
receive the same message server address from the metadata
owner. Assuming the message server has only 1 message for
this queue, the first client can get that last message, and the
second client gets a null return value. In that case the client

has to request the owner server again for another message
server. This process can be repeated for s times until the
client gets a message. However the chances of this occasion
are very low. In fact, we have ran experiments in up to 128
instances scale and have not experienced a pop operation with
more than 5 hops.

Fig. 5. Cumulative Distribution of 1 client and 64 servers.

V. PERFORMANCE EVALUATION

This section analyzes the performance of Fabriq in different
scenarios, compared with the other state of the two art Message
Queue systems. But first, we summarize different features of
Fabriq, compared with Kafka and SQS. We compare the
performance of the three systems in terms of throughput and
latency. We also compare the load balancing of the Kafka and
Fabriq.

A. Fabriq, Kafka, and SQS

All three of the compared systems are fully distributed and
are able to scale very well. However, they use different
techniques in their architecture. Fabriq uses a DHT as its
building block, while Kafka uses Zookeeper ‎[17] to handle the
metadata management. SQS is closed source and there is
minimal information available about its architecture.

One of the important features of a distributed queue is its
message retrieval policy. All of the Fabriq servers act as a
shared pool of messages together. That means all of the clients
have equal chance of accessing a message at the same time.
This feature enables the system to provide better load
balancing. Moreover, having this feature, the producer can
make sure that its messages are not going only to a specific
consumer, but all of the consumers. SQS provides this feature
as well. In Kafka, messages that reside in a broker (server) are
only consumed by a single consumer at a time. The messages
of that broker will only be available when the consumer gets
the number of messages it requires. This can cause load
imbalance when there is not enough messages in all of the
brokers and degrade the system performance. This design goal
in Kafka was a tradeoff to provide the rewind feature. Unlike
other conventional queue systems including Fabriq and SQS,
Fabriq provides message rewind feature that lets consumers to
re-consume a message that was already consumed. However, s
mentioned before, having this feature means only one
consumer can access a broker at a time.

‎TABLE I. summarizes the features of the three queuing
services. One of the major benefits of Fabriq over the other
systems is providing exactly once delivery. Unlike the other

two systems, Fabriq does not support message batching yet.
However this feature is currently supported in the latest
version of ZHT and can be easily integrated with Fabriq. We
expect that batching is going to improve the throughput
significantly.

In Kafka brokers, messages are written as a continuous
record and are only separated by the offset number. This
feature helps Kafka provides better throughput for continues
log writing and reading from producers and consumers.
However, as mentioned before, this makes it impossible for
multiple consumers to access the same broker at the same
time. SQS and Fabriq save messages as separate blocks of
data that enables those to provide simultaneous access on a
single broker. All three of the systems provide the queue
abstraction for multiple clients. In Fabriq and SQS, the client
can achieve this by creating new queues. In Kafka, the client
achieves this by defining new topics. Another important
feature of Fabriq is the fact that it is able to run on different
types‎of‎supercomputers‎including‎Blue‎Gene‎series‎that‎don’t‎
support Java. Kafka is written in Java, and SQS is closed
source. Scientists are unable to use those two systems for HPC
applications that run on such supercomputers.

TABLE I. COMPARISON OF FABRIQ, SQS AND KAFKA

Feature Fabriq Kafka SQS

Persistence Yes Yes Yes

Delivery
Guarantee

Exactly Once At least Once At least Once

Message
Order

Inside Node Inside Node -

Replication Customizable Mirroring 3x

Shared Pool Yes No Yes

Batching
No

(Future work)
Yes Yes

B. Testbed and Configurations

Since SQS runs on AWS, in order to keep our comparisons
fair, we chose Amazon EC2 as our testbed. The experiments
scale from 1 to 128 instances. We chose m3.medium
instances. Each instance has a single CPU core, a 1 Gigabit
network card, and 16 GB of SSD storage.

C. Load Balance

As discussed before, we believe that Fabriq provides a
very good load balance. In this section we compare the load
balancing of Fabriq with Kafka by checking the message
distribution‎ on‎ the‎ server‎ of‎ both‎ systems.‎ Since‎ we‎ don’t‎
have access to the servers on SQS, we cannot include this
system on this experiment.

‎Fig. 6 shows the number of messages received on each
server of the two systems. In this experiment, each producer
has sent 1000 messages. The total number of messages is
64000. The results show a very good load balance on Fabriq.
The number of messages range from 940 to 1088 messages on
64 servers. We ran the experiment 5 times and found out that
the error rate is less than 5% for at least 89% of the servers,
and is less than 9.5% in worst case. In Kafka, we observe a
major load imbalance. The number of messages per server
ranged from 0 to 6352. More than half of the servers got less
than 350 messages.

Considering the fact that each server can only be accessed
by one consumer at a time, we can notice that there will be a
major load imbalance in the system. In a system with a 1 to 1
mapping between the servers and the consumers, more than
half of the consumers go idle after finishing the messages of
the underutilized servers and will wait for the rest of
consumers to finish consuming their messages. Only after that,
they can consume the rest of the messages and finish the
workload.

Fig. 6. Load Balance of Fabriq vs. Kafka on 64 instances.

D. Latency

The latency of the message delivery is a very important
metric for a distributed message queue. It is important for a
DMQ to provide low latency on larger scales in order to be
able to achieve high efficiency. Nowadays, many of the
modern scientific and data analytics applications run tasks with
the granularity of sub-seconds ‎[18]. Therefore, such systems
will not be able to exploit a message queue service that delivers
messages in the order of seconds.

We measured latency by sending and receiving 1000, 50
bytes messages. Each instance ran 1 client and 1 server. ‎Fig. 7
shows the average latency of the three systems in push and pop
operations.

Fig. 7. Average latency of push and pop operations.

All the three systems show stable latency in larger scale.
Fabriq provides the best latency among the three systems.

Since the communications are local at the scale of 1 for Kafka
and Fabriq, they both show significantly lower latency than
the other scales. We can notice that there is almost an order of
magnitude difference between the average latency of Fabriq
and the other two systems. In order to find out the reason
behind this difference, we have generated the cumulative
distribution on both push and pop operations for the scales of
64 and 128 instances. According to ‎Fig. 8, at the 50 percentile,
the push latency of Fabriq, Kafka, and SQS are respectively
0.42ms, 1.03ms, and 11ms. However, the problem with the
Kafka is having a long tail on latency. At the 90 percentile, the
push latency of Fabriq, Kafka, and SQS are respectively
0.89ms, 10.4ms, and 10.8ms. We can notice that the range of
latency on Fabriq significantly shorter than the Kafka. At the
99.9 percentile, the push latency of Fabriq, Kafka, and SQS
are respectively 11.98ms, 543ms, and 202ms.

Fig. 8. Cumulative distribution of the push latency.

Similarly, ‎Fig. 9 shows a long range on the pop operations
for Kafka and SQS. The maximum pop operation time on the
on Fabriq, Kafka, and SQS were respectively 25.5ms,
3221ms, and 512ms.

Fig. 9. Cumulative distribution of the pop latency.

As we observed on from the plots, Fabriq provides a more
stable latency with a shorter range than the other two systems.
Among the three systems, Kafka has the longest range of

latency. There could be many reasons for the poor
performance of Kafka. Before starting to produce or consume,
each node needs to get the broker information from a
centralized Zookeeper. In larger scales, this could cause a long
wait for some of the nodes. Another reason for the long range
of message delivery is the load imbalance. We have already
discussed about it on the previous sections.

E. Throughput

It is substantial for a DMQ to provide high throughput in
different scales. In this section, we compare the throughput of
the three systems. We have chosen three different message
sizes to cover small, medium and large messages. All of the
experiments were run on 1 to 128 instances with a 1 to 1
mapping between the clients and servers in Fabriq and Kafka.
In SQS, since the server is handled by AWS, we only run the
client that includes producer and consumer on each instance.

‎Fig. 10 shows the throughput of both push and pop
operations for the short messages. Each client sends and
receives 1000 messages that are each 50 bytes long. Among
the three systems, Fabriq provides the best throughput on both
push and pop operations. As mentioned before, due to
problems such as bad load distribution, and the problem of
single access to the broker by the consumers, the throughput
of Kafka is almost an order of magnitude lower than the
Fabriq.

Fig. 10. Throughput for short (50 bytes) messages (msgs/sec).

All of the three systems are scaling almost nearly up to the
scale of 128 instances. We can also notice that the throughput
of pop operation is higher than the push operation. The reason
for that in Fabriq is that the consumers first try to fetch the
local messages. Also, in general we know that in a local
system, the read operation is usually faster than the write
operation. ‎Fig. 11 compares the throughput of push and pop
operations for medium (256KB) and large (1MB) messages.
At the largest scale, Fabriq could achieve 1091 MB/sec on
push operation and 1793 MB/sec on pop operation. We notice
that the throughput of the Kafka for push and pop operations
is respectively 759 MB/sec and 1433 MB/sec which is
relatively close to what Fabriq can achieve. The reason for
that is the continuous writing and reading on the same block
of file instead of having separate files for different messages.
This way, Kafka is able to deliver large messages with the
minimum overhead. Therefore it performs well while
delivering larger messages.

Fig. 11. Push and pop throughput for large messages (MB/sec).

VI. CONCLUSION AND FUTURE WORK

A Distributed Message Queue can be an essential building
block for distributed systems. A DMQ can be used as a
middleware in a large scale distributed system that decouples
different components from each other. It is essential for a
DMQ to reduce the complexity of the workflow and to
provide low overhead message delivery. We proposed Fabriq,
a distributed message queue that runs on top a Distributed
Hash Table. Fabriq was designed with the goal of achieving
low latency and high throughput while maintaining the perfect
load balance among its nodes. Servers in Fabriq are fully
independent. The load of each queue is shared among all of
the nodes of the Fabriq. This makes Fabriq achieve good load
balance and high availability. The network communication
protocol in Fabriq is tuned to provide low latency. A push
operation could take 0 to 1 roundtrip communication between
the servers. A pop operation takes 0, 1 or 3 operations for
more than 99% of the operations.

The results show that Fabriq achieve higher efficiency and
lower overhead than Kafka and SQS. The message delivery
latency on SQS and Kafka is orders of magnitude larger than
Fabriq. Moreover, they have a long range of push and pop
latency which makes them unsuitable for applications that are
sensitive to operations with long tails. Fabriq provides a very
stable latency throughout the delivery. Results show that more
than 90% of the operations take less than 0.9ms and more than
99% percent of the operations take less than 8.3ms in Fabriq.
Fabriq also achieves high throughput is large scales for both
small and large messages. At the scale of 128, Fabriq was able
to achieve more than 90000 msgs/sec for small messages. At
the same scale, Fabriq was able to deliver large messages at
the speed of 1.8 GB/sec.

There are many directions for the future work of Fabriq.
One of the directions is to provide message batching support
in Fabriq. The latest version of ZHT which is under
development supports message batching. We are going to
integrate Fabriq with the latest version of ZHT and enable the
batching support ‎[38]. Another future direction of this work is
to enable our network protocol to support two modes for
different workflow scenarios. In this feature, the user will be
able to choose between the two modes of heavy workflows
with lots of messages, and a moderate workflow with less
number of messages. We are going to optimize Fabriq for task
scheduling purposes and leverage it in CloudKon ‎[2] and
MATRIX ‎[26]‎[39] which are both task scheduling and
execution systems optimized for different environments and
workflows. Finally, inspired by the work stealing technique
used in MATRIX ‎[37], we are planning to implement
message-stealing on the servers in order to support pro-active

dynamic load balancing of messages. Pro-active load
balancing of the messages helps balancing the server loads
when the message consumption is uneven.

REFERENCES
[1] W.‎Vogels.‎“‎Improving‎the‎Cloud‎ - More‎Efficient‎Queuing‎with‎SQS”‎[online]

2012, http://www.allthingsdistributed.com/2012/11/efficient-queueing-sqs.html

[2] I.‎ Sadooghi,‎ S.‎ Palur,‎ et‎ al.‎ “Achieving‎ Efficient‎ Distributed‎ Scheduling‎ with‎

Message Queues in the Cloud for Many-Task Computing and High-Performance

Computing”,‎ Proceedings of the International Symposium on Cluster Computing

and the Grid (CCGRID), 2014.

[3] J.‎Kreps,‎N.‎Narkhede,‎and‎J.‎Rao.‎“Kafka:‎A‎distributed‎messaging‎system‎for‎log‎

processing”.‎NetDB,‎2011.

[4] A. Alten-Lorenz, Apache Flume, [online] 2013, https://cwiki.apache.org/FLUME/

[5] A.‎ Thusoo,‎ Z.‎ Shao,‎ et‎ al,‎ “Data‎ warehousing‎ and‎ analytics‎ infrastructure‎ at‎

facebook,”‎in‎SIGMOD‎Conference,‎2010,‎pp.‎1013–1020.

[6] J. Pearce, Scribe, [online] https://github.com/facebookarchive/scribe

[7] T.‎J.‎Hacker‎and‎Z.‎Meglicki,‎“Using‎queue‎structures‎to‎improve‎job‎reliability,”‎

in Proceedings of the 16th International Symposium on High-Performance

Distributed Computing (HPDC), 2007, pp. 43–54.

[8] I. Raicu, I. Foster, and Y. Zhao, ” Many-task computing for grids and

supercomputers”, In MTAGS 2008, p. 1-11

[9] A.‎Videla‎and‎J.‎J.‎Williams,‎“RabbitMQ‎in‎action”.‎Manning,‎2012.

[10] B. Snyder, D. Bosanac, And R. Davies, “ActiveMQ in‎action”‎Manning,‎2011.

[11] S.‎ Davies,‎ and‎ P.‎ Broadhurst,‎ “WebSphere‎ MQ‎ V6‎ Fundamentals”,‎ IBM‎

Redbooks, 2005

[12] Java Message Service Concepts, Oracle, [online] 2013,

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

[13] T.‎Li,‎X.‎Zhou,‎et.‎Al.‎“ZHT:‎A‎ light-weight reliable persistent dynamic scalable

zero-hop‎distributed‎hash‎table,”‎in‎Proceedings‎of‎the‎IEEE‎IPDPS,‎2013.

[14] Amazon SQS, [online] 2014, http://aws.amazon.com/sqs/

[15] D.Borthakur, HDFS architecture. Tech. rep., Apache Software Foundation, 2008.

[16] Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web Services, [online]

2013, http://aws.amazon.com/ec2/

[17] P. Hunt, et. al.,‎ “ZooKeeper: wait-free coordination for internet-scale‎ systems,”‎

Proceedings‎of‎USENIXATC’10,‎2010.

[18] K.‎Ousterhout,‎P.‎Wendell,‎M.‎Zaharia,‎ and‎ I.‎Stoica.‎ “Sparrow:‎distributed,‎ low‎

latency‎scheduling”.‎Proceedings‎SOSP‎'13.‎

[19] M.‎Wall,‎“Big‎Data:‎Are‎you‎ready‎for blast-off”,‎BBC‎Business, March 2014

[20] J. Lin and D. Ryaboy. Scaling big data mining infrastructure: The twitter

experience. SIGKDD Explorations, 14(2), 2012.

[21] A. Reda, Y. Park, M. Tiwari, C. Posse, and S. Shah. Metaphor: a system for related

search recommendations. In CIKM, 2012.

[22] I.‎Raicu,‎P.‎Beckman,‎ I.‎ Foster.‎ “Making‎ a‎Case‎ for‎Distributed‎ File‎Systems‎ at‎

Exascale”,‎Invited‎Paper,‎LSAP,‎2011‎

[23] R. Ramesh, L. Hu,‎and‎K.‎Schwan.‎“Project‎Hoover:‎auto-scaling streaming map-

reduce‎applications”.‎Proceedings of (MBDS '12). ACM, USA, 7-12. 2012

[24] H. Liu, “Cutting mapreduce cost with spot market”. 3rd USENIX Workshop on Hot

Topics in Cloud Computing (2011).

[25] T.‎White,‎“Hadoop:‎The‎Definitive‎Guide.”‎O’Reilly‎Media,‎Inc.,‎2009

[26] K. Wang, et. al. "Optimizing Load Balancing and Data-Locality with Data-aware

Scheduling", IEEE Big Data 2014.

[27] Amazon DynamoDB. [online] 2014 http://aws.amazon.com/dynamodb/
[28] N. Liu, A. Haider, X.-H. Sun and D. Jin. "FatTreeSim: Modeling a Large-scale

Fat-Tree Network for HPC Systems and Data Centers Using Parallel and Discrete

Event Simulation," ACM SIGSIM PADS, 2015.

[29] N. Liu, et. al. “On‎ the‎ role‎ of‎ burst‎ buffers‎ in‎ leadership-class‎ storage‎ systems,”‎

IEEE MSST conference, 2012

[30] I.‎Sadooghi,‎J.‎Martin,‎T.‎Li,‎I.‎Raicu,‎et.‎al.‎“Understanding‎the‎Performance‎and‎

Potential‎of‎Cloud‎Computing‎for‎Scientific‎Applications”,‎IEEE‎Transactions‎on‎

Cloud Computing (TCC), 2015

[31] T.‎ Li,‎ et.‎ al.‎ “A‎ Convergence‎ of‎ Distributed Key-Value Storage in Cloud

Computing‎ and‎ Supercomputing”,‎ Journal‎ of‎ Concurrency‎ and‎ Computation‎

Practice and Experience (CCPE) 2015.

[32] K. Wang, K. Qiao, I. Sadooghi, et. al. “Load-balanced and locality‐aware

scheduling for data‐intensive workloads at extreme scales”, Journal of

Concurrency and Computation Practice and Experience (CCPE) 2015.

[33] T.‎ Li,‎ I.‎ Raicu,‎ L.‎ Ramakrishnan,‎ “Scalable‎ State‎ Management‎ for‎ Scientific‎

Applications in the Cloud”, BigData 2014

[34] T.‎ Li,‎K.‎Keahey,‎K.‎Wang,‎D.‎Zhao,‎ I.‎Raicu,‎ “A‎Dynamically‎Scalable‎Cloud‎

Data‎Infrastructure‎for‎Sensor‎Networks”,‎ScienceCloud‎2015

[35] D. Patel, F. Khasib, I. Sadooghi, I. Raicu. “Towards In-Order and Exactly Once

Delivery using Hierarchical Distributed Message Queues”,‎(SCRAMBL’14)‎2014

[36] C. Dumitrescu, I. Raicu, I. Foster. "The Design, Usage, and Performance of

GRUBER: A Grid uSLA-based Brokering Infrastructure", International Journal of

Grid Computing, 2007

[37] K. Wang, K. Brandstatter, I. Raicu.‎ “SimMatrix: Simulator for MAny-Task

computing‎execution‎fabRIc‎at‎eXascales”,‎ACM‎HPC‎2013

[38] T. Li, R. Verma, X. Duan, H. Jin, I. Raicu.‎“Exploring‎Distributed‎Hash‎Tables‎in‎

High-End‎Computing”,‎ACM‎Performance‎Evaluation‎Review‎(PER),‎2011

[39] A. Rajendran, I. Raicu. "MATRIX: Many-Task Computing Execution Fabric for

Extreme Scales", Illinois Institute of Technology, MS Thesis, 2013

