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 Abstract -As Many-Task Computing (MTC) is becoming 

common-place on clusters, grids, and supercomputers, 

research that aims to take advantage of the new 

advances in hardware for MTC workloads is becoming 

more relevant. A good example is the design of 

frameworks like GeMTC that incorporate general 

purpose GPU hardware to improve the concurrency of 

executing tasks. This work attempts to support MTC 

workloads on the Intel Xeon Phi accelerators. Our plan 

is to develop two frameworks that will achieve that goal. 

One based on OpenMP and the other one based on 

Intel’s Symmetric Communication Interface (SCIF) 

provided for Many-Integrated Core (MIC) accelerators 

like the Xeon Phi. Both frameworks aim to provide the 

same interface as GeMTC, leveraging the integration 

efforts with the Swift parallel programming system. Our 

end-goal is to present how programming many-core 

computing processors can be made easier and more 

productive using OpenMP or SCIF, and enable the 

execution of MTC workloads hybrid accelerator-based 

systems. 

 
Keywords-Many-task computing; Accelerators;  Intel Xeon 

Phi Coprocessor; Programming models; Execution models. 

I.  BACKGROUND INFORMATION 

The Intel Xeon Phi is a hardware coprocessor from Intel. 

It is a PCI device with roughly 60 cores and 240 hardware 

threads. Its design makes it ideal for applications that are 

performance critical and need large levels of parallelism. 

Moreover, the fact that it implements x86 for its instruction 

set architecture, makes its integration with existing systems 

simpler than the integration of other accelerators like 

General Purpose GPUs (GPGPUs). GeMTC is a CUDA 

based framework which allows Many-Task Computing 

workloads to run efficiently on NVIDIA GPUs [3]. The 

novelty in the design of this framework is that different jobs 

that are running in parallel are also isolated from each other 

and therefore the utilization of the GPU is almost 

maximized. Unfortunately, the framework’s implementation 

is very closely-tied to the architecture and the conventions 

of GPUs. Many-Task Computing (MTC) has been an 

emerging paradigm and area of research for some years 

now. Therefore, considering embedding the capabilities of 

the Xeon Phi in systems that support MTC workloads is 

considered a relatively new ground. This paper attempts to 

cover this ground. 

II. ARCHITECTURE 

     Due to the foundations of Intel architecture, the 

coprocessor can be programmed in several different ways. 

For the OpenMP implementation, we used offloading 

approach for offloading computations from host to the Phi. 

For the SCIF part, we implemented the framework to run 

natively on the Phi while accepting jobs from clients running 

on the host CPU [6]. The major advantage of native 

execution coupled with SCIF over offloading is that the 

developer gets more control overall in the configuration and 

the architecture of their design in order to maximize 

performance. In addition, different MIC cards can 

communicate directly with each other basically making 

certain designs more efficient.    

   The OpenMP version of the framework is developed using 

a Producer-Consumer architecture which communicates 

using shared memory for IPC. The Consumer side hosts the 

framework which runs as multiple worker threads which use 

the shared memory space as a queue structure, continuously 

accepting new tasks from producer. Likewise, the producer 

acts as a client process which submits tasks to the queue. 

Asynchronous offloading is used to allow the framework to 

be non-blocking to continue accepting tasks while other tasks 

are running on the Phi. This approach was chosen to provide 

the same feature set as GeMTC while taking advantage of 

asynchronous offloading capabilities of OpenMP.  

     The SCIF implementation is a complete port of the 

GeMTC framework. The core architecture of GeMTC is 

actually completely rewritten in C from CUDA and 

abstracted out into a shared library. The library includes all 

the main functionality of GeMTC. The rest of the framework 

is modeled after a client-server architecture where clients 

send their tasks to the Phi from the host and a server, which 

runs natively on the Phi, accepts the jobs. After submitting 

the job, the clients can request the result and the server will 

deliver it to them when the task has finished processing. The 

whole procedure is non-blocking for the server who can 

handle multiple requests and submissions at the same time. 

The SCIF API is used for communications between the 

server and the clients. 

III. EVALUATION 

All of our experiments were run on the Midway High- 

Performance Computing Cluster at University of Chicago. 

Our testing host is an Intel Sandy Bridge with 32 cores at 2.6 

Ghz and 32 GB of RAM. It has 2 Xeon Phis attached to it. 



Both of them are from the 5100 series of Intel coprocessors 

and have 60 cores at 1.053 GHz each and 8 GB RAM. 

A. Synthetic Sleep Workloads 

Experiments were performed using various sleep length 

tasks. As seen below, preliminary results show that 

efficiency reaches higher 90s for task lengths at 1 msec when 

using 1 worker on host, 2 msec for 60 workers and 5 msec 

for 128 workers. This clearly shows that this framework 

using OpenMP performs better than GeMTC on Xeon Phi 

which reaches higher efficiency only at 5 ms. To reduce the 

overhead of multithreading, we took an approach of creating 

threads on the Phi before offloading tasks which reduced the 

overall execution time considerably [7]. Also, SCIF 

approach performs at higher 90s with sleep tasks of 1 msec.  

 

 
Figure 1.  Efficiency of sleep jobs (usec) on Xeon Phi using OpenMP 

measured by varying number of worker threads and tasks on Xeon Phi. 

 

Figure 2.  Efficiency of sleep jobs using OpenMP and SCIF (a 

comparison). 

B. Matrix Multiplication Results 

In order to assess the real-world performance of Xeon 

Phi, the team performed tests using naïve matrix 

multiplication. The overhead of OpenMP data transfer only 

became negligible when matrix sizes of 64x64 were tested. 

Before that point, the task completion time remained fairly 

constant. At larger matrix sizes, the time taken increases 

linearly with the amount of work performed. The team also 

analyzed the performance gain from an increase in the 

number of threads. It was found that while single-threaded 

tasks scaled fairly linearly with the workload, many-threaded 

tasks didn’t achieve optimal scalability until much larger 

matrices were tested. Data transfer offload overhead seems 

to be high when offloading large amounts of data and 

techniques for reducing data transfer overhead and reusing 

the allocated memory are being investigated. Our SCIF 

implementation does not support bulk I/O for testing with 

large matrixes. Enabling bulk I/O for SCIF implementation 

using RMA API is part of future work. 

IV. CONCLUSION AND FUTURE WORK 

     To enable running MTC workloads on Xeon Phi, we 

designed a framework that not only sends and executes tasks 

on Xeon Phi but also ensures that these tasks are isolated 

from each other and can run in parallel. Our work is built 

upon the existing functionality of GeMTC and in the future 

would allow for an identical interface which could be 

dropped into Swift/T. We implemented both OpenMP as 

well as SCIF-based frameworks and were able to run MTC 

workloads on Xeon Phi. Our preliminary evaluation data are 

encouraging and should provide enough motivation for 

future. Our future work includes evaluating the design 

further and enabling Swift/T integration. 
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