
I. Sadooghi, Dissertation Proposal Pages 1 of 74

Scalable Resource Management in Cloud Computing

Iman Sadooghi
Department of Computer Science
Illinois Institute of Technology

isadoogh@iit.edu
Fall 2015

Committee Members:
Ioan Raicu:! Research Advisor, Department of Computer Science, Illinois Institute of Technology &

Math and Computer Science Division, Argonne National Laboratory, iraicu@cs.iit.edu!
!

Zhiling Lan:! Department of Computer Science, Illinois Institute of Technology, lan@iit.edu!
!

Boris glavic:! Department of Computer Science, Illinois Institute of Technology, bglavic@iit.edu!
!

Erdal Oruklu:! Department of Electrical and Computing Engineering, Illinois Institute of Technology,
erdal@iit.edu!

Abstract
The exponential growth of data and application complexity has brought new challenges in the

distributed computing field. Scientific applications are growing more diverse with various workloads,
including traditional MPI high performance computing (HPC) to fine-grained loosely coupled many-task
computing (MTC). Traditionally, these workloads have been shown to run well on supercomputers and
highly-tuned HPC Clusters. The advent of Cloud computing has brought the attention of scientists to
exploit these resources for scientific applications at a potentially lower cost. We investigate the nature of
the cloud and its ability to run scientific applications efficiently. Delivering high throughput and low
latency for the various types of workloads at large scales has driven us to design and implement new job
scheduling and execution systems that are fully distributed and have the ability to run in public clouds. We
discuss the design and implementation of a job scheduling and execution system (CloudKon) that has three
major features: 1) it is optimized to exploit the cloud resources efficiently through a variety of cloud
services (Amazon SQS and DynamoDB) in order to get the best performance and utilization; 2) it is fully
distributed and it is able to run large scale applications; 3) it supports various workloads including MTC
and HPC applications concurrently. To further improve the performance and the flexibility of CloudKon,
we designed and implemented a fully distributed message queue (Fabriq) that delivers an order of
magnitude better performance than the Amazon Simple Queuing System (SQS). Designing Fabriq helped
us expand our scheduling system to many other distributed system including non-Amazon clouds. We
evaluated CloudKon with synthetic MTC workloads, synthetic HPC workloads, and synthetic MapReduce
applications on the Amazon AWS cloud with up to 1K instances. Fabriq was also evaluated with synthetic
workloads on Amazon AWS cloud with up to 128 instances.

I. Sadooghi, Dissertation Proposal Pages 2 of 74

1.! Introduction

The advent of Big Data and the Exascale computing has changed many paradigms in the computing
science area. More than 2.5 exabytes of data is generated every day, and more than 70% of it is
unstructured [1]. Various organizations including governments and big companies generate massive
amounts of data in different formats including logs, and other unstructured raw data every day. Experts
predict that by the end of 2018, the exascale (1018 FLOPS) computers will start to work [2]. Other
predictions suggest that by the end of this decade, distributed systems will reach this scale with millions of
nodes running billions of threads [3]. Many science domains (e.g. bio-informatics, drug discovery, energy,
weather modeling, global warming, etc.) will achieve significant advancements due to exascale computing.
However, running applications in such scales poses new scheduling and resource management challenges.
One cannot expect to get satisfactory performance, efficiency and utilization by approaching the exascale
systems with the traditional solutions. It is unlikely for the traditional centralized variations of the
scheduling systems to be able to handle exascales [111]. Such systems are likely to get saturated at smaller
scales. Therefore, there is emergent need for new scheduling systems that can provide acceptable
performance on such scales without possessing significant overheads [110]. This has driven us to design
and implement new job scheduling systems for the next generation distributed systems, specifically clouds.
We have chosen to approach cloud environment as an alternative resource for scientific applications. Cloud
computing has gained the attention of scientists as a competitive resource to run HPC applications at a
potentially lower cost. Thus, we have chosen to provide job scheduling solutions for large scale scientific
computing on cloud environment. From this point, the terms of resource management system, resource
manager, job scheduling system and job scheduler are used interchangeably. Also, the terms of job and task
would be used interchangeably.

Traditionally, scientific applications have been shown to run well on supercomputers and highly-tuned
HPC Clusters. Scientific applications usually require significant resources, however not all scientists have
access to sufficient high-end computing systems. The idea of using clouds for scientific applications has
been around for several years, but it has not gained traction primarily due to many issues such as lower
network bandwidth or poor and unstable performance. Scientific applications often rely on access to large
legacy data sets and pre-tuned application software libraries. These applications today run in HPC
environments with low latency interconnect and rely on parallel file systems. They often require high
performance systems that have high I/O and network bandwidth. Using commercial clouds gives scientists
opportunity to use the larger resources on-demand. However, there is an uncertainty about the capability
and performance of clouds to run scientific applications because of their different nature. Clouds have a
heterogeneous infrastructure compared with homogenous high-end computing systems (e.g.
supercomputers). The design goal of the clouds was to provide shared resources to multi-tenants and
optimize the cost and efficiency. On the other hand, supercomputers are designed to optimize the
performance and minimize latency. Before choosing the cloud environment as an eligible competitive
resource to run scientific applications, we need to assess its abilities and make sure it is capable to provide
comparable performance. The first part of our research is to evaluate the capabilities of the cloud.

We chose Amazon AWS cloud as our main benchmarking target. The reason for this decision is that (1)
it is the most commonly used public cloud (2) it is used by our job scheduling system, CloudKon. We first
analyze the potentials of the cloud by evaluating the raw performance of different services of AWS such as
compute, memory, network and I/O. Based on the findings on the raw performance, we then evaluate the
performance of the scientific applications running in the cloud. Finally, we compare the performance of
AWS with a private cloud, in order to find the root cause of its limitations while running scientific
applications. We assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud
in terms of both raw performance and scientific applications performance. Furthermore, we evaluate other
services including S3, EBS and DynamoDB among many AWS services in order to assess the abilities of

I. Sadooghi, Dissertation Proposal Pages 3 of 74

those to be used by scientific applications and frameworks. We also evaluate a real scientific computing
application through the Swift parallel scripting system at scale.

Cloud computing has become a popular resource to host data-analytics workloads. Hadoop is a good
data-analytics example for an application that could majorly benefit from running on cloud environments.
Features such as reliability of the Hadoop framework enables it to fit well within the commodity resources
of the cloud. However, exploiting the cloud resources efficiently at larger scales remains a major concern.
There is need for resource management and job scheduling systems that could manage cloud resources and
distribute Hadoop jobs efficiently on those. This has been one of the main motivations of our work. The
main goal of this work is to design and implement a distributed job scheduling system for scientific and
data-analytics applications that could exploit the cloud environment resources efficiently, and also scale
well on larger scales. The function of a job scheduling system is to efficiently manage the distributed
computing power of workstations, servers, and supercomputers in order to maximize job throughput and
system utilization. With the dramatic increase of the scales of today’s distributed systems, it is urgent to
develop efficient job schedulers. Unfortunately, today’s schedulers have centralized Master/Slaves
architecture (e.g. Slurm [4], Condor [5][6], PBS [7], SGE [8]), where a centralized server is in charge of the
resource provisioning and job execution. This architecture has worked well in grid computing scales and
coarse granular workloads [9], but it has poor scalability at the extreme scales of petascale systems with
fine-granular workloads [10][11]. The solution to this problem is to move to the decentralized architectures
that avoid using a single component as a manager. Distributed schedulers are normally implemented in
either hierarchical [12] or fully distributed architectures [13] to address the scalability issue. Using new
architectures can address the potential single point of failure and improve the overall performance of the
system up to a certain level, but issues can arise in distributing the tasks and load balancing among the
nodes [14].

Having extensive resources, public clouds could be exploited for executing tasks in extreme scales in a
distributed fashion. In this project, we provide a compact and lightweight distributed task execution
framework that runs on the Amazon Elastic Compute Cloud (EC2) [15], by leveraging complex distributed
building blocks such as the Amazon Simple Queuing Service (SQS) and the Amazon distributed NoSQL
key/value store (DynamoDB) [17].

There have been many research works about utilizing public cloud environment on scientific computing
and High Performance Computing (HPC). Most of these works show that cloud was not able to perform
well running scientific applications. Most of the existing research works have taken the approach of
exploiting the public cloud using as a similar resource to traditional clusters and super computers. Using
shared resources and virtualization technology makes public clouds totally different than the traditional
HPC systems. Instead of running the same traditional applications on a different infrastructure, we are
proposing to use the public cloud service based applications that are highly optimized on cloud
environment. Using public clouds like Amazon as a job execution resource could be complex for end-users
if it only provided raw Infrastructure as a Service (IaaS) [22]. It would be very useful if users could only
login to their system and submit jobs without worrying about the resource management.

Another benefit of the cloud services is that using those services, users can implement relatively
complicated systems with a very short code base in a short period of time. Our scheduler is a working
evidence that shows using these services we are able to provide a system that provides high quality service
that is on par with the state of the art systems in with a significantly smaller code base. We design and
implement a scalable task execution framework on Amazon cloud using different AWS cloud services, and
aimed it at supporting both many-task computing and high-performance workloads.

The most important component of our system is Amazon Simple Queuing Service (SQS) which acts as
a content delivery service for the tasks, allowing clients to communicate with workers efficiently,
asynchronously, and in a scalable manner. Amazon DynamoDB is another cloud service that is used to
make sure that the tasks are executed exactly once (this is needed as Amazon SQS does not guarantee

I. Sadooghi, Dissertation Proposal Pages 4 of 74

exactly-once delivery semantics). We also leverage the Amazon Elastic Compute Cloud (EC2) to manage
virtual resources. With SQS being able to deliver extremely large number of messages to large number of
users simultaneously, the scheduling system can provide high throughput even in larger scales.

CloudKon is able to achieve great scalability while outperforming other state of the art scheduling
systems like Sparrow [14]. However it has some limitations. Due to using SQS, CloudKon is locked down
to Amazon EC2 cloud. That means users can only use it on AWS resources. That prevents us from testing
our prototype on other environments such as other public/private cloud, or HPC resources. Moreover, due
to running on a stand-alone separate server, SQS is not able to run internally on CloudKon. That adds
significant overhead to the system that cannot be prevented. An open-sourced solution that could be
integrated within the job scheduling system would suite it better. We investigated the available open-
sourced options. The available options do not fit the CloudKon requirements well. Some queuing services
add significant overhead to the system while others cannot scale well to large scales. In order to further
improve the performance and the flexibility of the CloudKon. That drove us to design and implement our
own distributed message queue.

A Distributed Message Queue (DMQ) could be an important building block for a reliable distributed
system. Message Queues could be useful in various data movement and communication scenarios. In High
Throughput Computing (HTC), message queues can help decouple different components of a bigger system
that aims to run in larger scales. Using distributed queues, different components can communicate without
dealing with the blocking calls and tightly coupled communication.

We propose Fast, Balanced and Reliable Distributed Message Queue (Fabriq), a persistent reliable
message queue that aims to achieve high throughput and low latency while keeping the near perfect load
balance even on large scales. Fabriq uses ZHT as its building block. ZHT is a persistent distributed hash
table that allows low latency operations and is able to scale up to more than 8k-nodes [23][107]. Fabriq
leverages ZHT components to support persistence, consistency and reliable messaging.

Among the various DMQs, Fabriq and Kafka are the only alternatives that can provide the acceptable
performance at larger scales required by CloudKon. Kafka is mainly optimized for large scale log delivery.
It does not support multiple clients read from one broker at the same time. Moreover, it does not have a
notion of independent messages or tasks. These limitations can significantly degrade the performance of
CloudKon. Fabriq has none of those limitations. Leveraging Fabriq, CloudKon can run independently on
any generic distributed system without being tied to SQS, DynamoDB, or the Amazon AWS Cloud in
general. Moreover, our results show that Fabriq provides a much higher throughput and much lower latency
than SQS. According to our comparison results between SQS and Fabriq, and based on the fact that the
future version of CloudKon will not have the overhead of DynamoDB, we expect about a 20X performance
improvement (13X for using Fabriq and 1.5X for not using DynamoDB) on future version of CloudKon.

This work motivates the usage of the cloud environment for scientific applications. In order to assess
the ability of cloud to run scientific applications, we design a methodology to evaluate the
capabilities/ability of the cloud in both raw performance and the real applications performance. Then, we
evaluate the performance of the Amazon AWS cloud as a pioneer public cloud.

After assessing the abilities of the cloud, we design and implement a distributed job scheduling system
that runs on Amazon EC2. We propose CloudKon as a job management system that achieves good load
balancing and high system utilization at large scales. Using CloudKon lets scientific applications exploit
the distributed computing resources in any required scale in an on-demand fashion. Using cloud services
such as Amazon SQS and DynamoDB that are integrated within the AWS software stack, our scheduler can
optimally utilize cloud resources and achieve better performance. CloudKon uses a fully distributed
queuing service (SQS) as its building block. Taking this approach, the system components are loosely
coupled to each other. Therefore the system will be highly scalable, robust, and easy to upgrade. Although
the motivation of CloudKon is to support MTC tasks, it also provides support for distributed HPC

I. Sadooghi, Dissertation Proposal Pages 5 of 74

scheduling. This enables CloudKon to be even more flexible running different type of workloads at the
same time. The results show that CloudKon delivers better scalability compared to other state-of-the-art
systems for some metrics – all with a significantly smaller code-base (5%).

To further improve the performance and flexibility of CloudKon, we design and implement a
distributed queuing service. We propose Fabriq, a distributed message queue that runs on top of a
Distributed Hash Table. The design goal of Fabriq is to achieve lower latency and higher efficiency while
being able to handle large scales. Moreover, Fabriq is persistent, reliable and consistent.

The results show that Fabriq was able to achieve high throughput in both small and large messages. At
the scale of 128 nodes, Fabriq’s throughput was as high as 1.8 Gigabytes/sec for 1 Megabytes messages,
and more than 90,000 messages/sec for 50 bytes messages. At the same scale, Fabriq’s latency was less
than 1 millisecond. Our framework outperforms other state of the art systems including Kafka and SQS in
throughput and latency. Furthermore, our experiments show that Fabriq provides a significantly better load
balancing than Kafka. The load difference between Fabriq servers was less than 9.5% (compared to the
even share), while in Kafka this difference was 100%, meaning that some servers did not receive any
messages and remained idle.

In summary, the main contributions of this work are as follows:

(1)! A comprehensive study on scientific applications characteristics and evaluation of their
performance on clouds. The study analyzes the potentials of the cloud as an alternative
environment for scientific computing [102].

(2)! A distributed job scheduling system (CloudKon) design that suites the cloud’s characteristics. A
system that is able to support HPC and MTC workloads. We conduct a performance evaluation up
to 1024 instances scale. [46]

(3)! A distributed message queuing (Fabriq) system that is scalable and provides ultra low latency.
Fabriq exploits distributed hash tables as a building block to deliver a highly scalable solution.
The proposed system is able to achieve near perfect load balancing and sub-milliseconds
distribution latency. Fabriq offers support for substantial features such as persistence, consistency,
reliability, dynamic scalability, and message delivery guarantees. [103]

2.! Understanding the Performance and Potential of Cloud Computing for Scientific
Applications

As we explained previously, before choosing to exploit the public cloud for scientific computing, we
need to assess its abilities in different aspects. In this chapter, we provide a comprehensive evaluation of
EC2 cloud in different aspects.

2.1! Background and Motivation

Commercial clouds bring a great opportunity to the scientific computing area. Scientific applications
usually require significant resources, however not all scientists have access to sufficient high-end
computing systems. Cloud computing has gained the attention of scientists as a competitive resource to run
HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds
are capable of running scientific applications with a reasonable performance per money spent. Moreover,
clouds are usually comprised of heterogeneous resources as opposed to the homogenous HPC resources.
The architecture of the cloud is optimized to provide resource sharing among various users. On the other
hand, supercomputers were designed to provide dedicated resources with optimum performance and
minimum latency.

I. Sadooghi, Dissertation Proposal Pages 6 of 74

Clouds have some benefits over supercomputers. They offer more flexibility in their environment.
Scientific applications often have dependencies on unique libraries and platforms. It is difficult to run these
applications on supercomputers that have shared resources with pre-determined software stack and
platform, while cloud environments also have the ability to set up a customized virtual machine image with
specific platform and user libraries. This makes it very easy for legacy applications that require certain
specifications to be able to run. Setting up cloud environments is significantly easier compared to
supercomputers, as users often only need to set up a virtual machine once and deploy it on multiple
instances. Furthermore, with virtual machines, users have no issues with custom kernels and root
permissions (within the virtual machine), both significant issues in non-virtualized high-end computing
systems.

There are some other issues with clouds that make them challenging to be used for scientific computing.
The network bandwidth in commercial clouds is significantly lower (and less predictable) than what is
available in supercomputers. Network bandwidth and latency are two of the major issues that cloud
environments have for high-performance computing. Most of the cloud resources use commodity network
with significantly lower bandwidth than supercomputers [33].

The virtualization overhead is also another issue that leads to variable compute and memory
performance. I/O is yet another factor that has been one of the main issues on application performance.
Over the last decade the compute performance of cutting edge systems has improved in much faster speed
than their storage and I/O performance. I/O on parallel computers has always been slow compared with
computation and communication. This remains to be an issue for the cloud environment as well.

Finally, the performance of parallel systems including networked storage systems such as Amazon S3
needs to be evaluated in order to verify if they are capable of running scientific applications. All of the
above mentioned issues raise uncertainty for the ability of clouds to effectively support HPC applications.
Thus it is important to study the capability and performance of clouds in support of scientific applications.
Although there have been early endeavors in this aspect [19][34][21]Error! Reference source not
found.[38][40], we develop a more comprehensive set of evaluation. In some of these works, the
experiments were mostly run on limited types and number of instances [34][21]Error! Reference source
not found.[35]. Only a few of the researches have used the new Amazon EC2 cluster instances that we
have tested [19][38][41]. However the performance metrics in those works are very limited. This chapter
covers a thorough evaluation covering major performance metrics and compares a much larger set of EC2
instance types and the commonly used Amazon Cloud Services. Most of the aforementioned above
mentioned works lack the cost evaluation and analysis of the cloud. Our work analyses the cost of the cloud
on different instance types.

The main goal of this chapter is to evaluate the performance of the Amazon public cloud as the most
popular commercial cloud available, as well as to offer some context for comparison against a private
cloud solution. We run micro benchmarks and real applications on Amazon AWS to evaluate its
performance on critical metrics including throughput, bandwidth and latency of processor, network,
memory and storage [15]. Then, we evaluate the performance of HPC applications on EC2 and compare it
with a private cloud solution [29]. This way we will be able to better identify the advantages and limitations
of AWS on the scientific computing area.

Over the past few years, some of the scientific frameworks and applications have approached using
cloud services as their building blocks to alleviate their computation processes [32][46]. We evaluate the
performance of some of the AWS services such as S3 and DynamoDB to investigate their abilities on
scientific computing area.

Finally, this work performs a detailed price/cost analysis of cloud instances to better understand the
upper and lower bounds of cloud costs. Armed with both detailed benchmarks to gauge expected
performance and a detailed monetary cost analysis, we expect this chapter will be a recipe cookbook for

I. Sadooghi, Dissertation Proposal Pages 7 of 74

scientists to help them decide where to deploy and run their scientific applications between public clouds,
private clouds, or hybrid clouds.

The rest of this chapter is organized as follows: Section 2.2 provides the evaluation of the EC2, S3 and
DynamoDB performance on different service alternatives of Amazon AWS. We provide an evaluation
methodology. Then we present the benchmarking tools and the environment settings of the testbed in this
project. Section 2.2.4 presents the benchmarking results and analyzes the performance. On 2.2.5 we
compare the performance of EC2 with FermiCloud on HPL application. Section 2.3 analyzes the cost of the
EC2 cloud based on its performance on different aspects. Section 2.4 summarizes this chapter and discusses
future work.

2.2! Performance Evaluation

In this section we provide a comprehensive evaluation of the Amazon AWS technologies. We evaluate
the performance of Amazon EC2 and storage services such as S3 and EBS. We also compare the Amazon
AWS public cloud to the FermiCloud private cloud.

2.2.1! Methodology
We design a performance evaluation method to measure the capability of different instance types of

Amazon EC2 cloud and to evaluate the cost of cloud computing for scientific computing. As mentioned,
the goal is to evaluate the performance of the EC2 on scientific applications. To achieve this goal, we first
measure the raw performance of EC2. We run micro benchmarks to measure the raw performance of
different instance types, compared with the theoretical performance peak claimed by the resource provider.
We also compare the actual performance with a typical non-virtualized system to better understand the
effect of virtualization. Having the raw performance we will be able to predict the performance of different
applications based on their requirements on different metrics. Then we compare the performance of a
virtual cluster of multiple instances running HPL application on both Amazon EC2 and the FermiCloud.
Comparing the performance of EC2, which we do not have much information about its underlying
resources with the FermiCloud, which we know the details about, we will be able to come up with a better
conclusion about the weaknesses of the EC2. On the following sections we try to evaluate the performance
of the other popular services of Amazon AWS by comparing them to the similar open source services.

Finally, we analyze the cost of the cloud computing based on different performance metrics from the
previous part. Using the actual performance results provides more accurate analysis of the cost of cloud
computing while being used in different scenarios and for different purposes.

The performance metrics for the experiments are based on the critical requirements of scientific
applications. Different scientific applications have different priorities. We need to know about the compute
performance of the instances in case of running compute intensive applications. We also need to measure
the memory performance, as memory is usually being heavily used by scientific applications. We also
measure the network performance which is an important factor on the performance of scientific
applications.

2.2.2! Benchmarking tools and applications
It is important for us to use wide-spread benchmarking tools that are used by the scientific community.

Specifically in Cloud Computing area, the benchmarks should have the ability to run over multiple
machines and provide accurate aggregate results.

For memory we use CacheBench. We perform read and write benchmarks on single instances. For
network bandwidth, we use Iperf [26]. For network latency and hop distance between the instances, we use
ping and traceroute. For CPU benchmarking we have chosen HPL benchmark [27]. It provides the results
in floating-point operations per second (FLOPS).

I. Sadooghi, Dissertation Proposal Pages 8 of 74

In order to benchmark S3, we had to develop our own benchmark suite, since none of the widespread
benchmarking tools can be used to test storage like this. We have also developed a tool for configuring a
fully working virtual cluster with support for some specific file systems.

2.2.3! Parameter space and testbed
In order to better show the capability of Amazon EC2 on running scientific applications we have used

two different cloud infrastructures: (1) Amazon AWS Cloud, and (2) FermiCloud. Amazon AWS is a
public cloud with many datacenters all around the world. FermiCloud is a private Cloud which is used for
internal use in Fermi National Laboratory.

In order to compare the virtualization effect on the performance we have also included two local
systems on our tests: (1) A 6-core CPU and 16 Gigabytes of memory system (DataSys), and (2) a 48-cores
and 256 Gigabytes memory system (Fusion).

a.! Amazon EC2

The experiments were executed on three Amazon cloud data centers: US East (Northern Virginia), US
West (Oregon) and US West (Northern California). We cover all of the different instance types in our
evaluations.

The operating system on all of the US West instances and the local systems is a 64bits distribution of
Ubuntu. The US East instances use 64 bits CentOS operating system. The US West instances use Para-
virtualization technique on their hypervisor. But the HPC instances on the US East cloud center use
Hardware-Assisted Virtualization (HVM) [29]. HVM techniques use the features of the new hardware to
avoid handling all of the virtualization tasks like context switching or providing direct access to different
devices at the software level. Using HVM, Virtual Machines can have direct access to hardware with the
minimal overhead.

We have included different instances as well as a non-virtualized machine. The m1.small instance is a
single core instance with low compute and network performance. M1.medium is a single core system with
3.75 GB of memory. C1.xlarge instance is a compute optimized with 8 cores and 7 GB of memory.
M2.4xlarge is a memory optimized instances and is supposed to have high memory performance.
Hi1.4xlarge is a storage optimized instace with 2 SSD drives. Finally cc1.4xlarge and cc2.8xlarge as cluster
compute instances, and c3.8xlarge as the new generation of HPC instances have 16 and 32 cores and more
than 40 GB memory. These instances are optimized for HPC workloads.

b.! FermiCloud

FermiCloud is a private cloud providing Infrastructure-as-a-Service services internal use. It manages
dynamically allocated services for both interactive and batch processing. As part of a national laboratory,
one of the main goals FermiCloud is being able to run scientific applications and models. FermiCloud uses
OpenNebula Cloud Manager for the purpose of managing and launching the Virtual Machines [43]. It uses
KVM hypervisor that uses both para-virtualization and full virtualization techniques [48]. The FermiCloud
Infrastructure is enabled with 4X DDR Infiniband network adapters. The main challenge to overcome in
the deployment of the network is introduced when virtualizing the hardware of a machine to be used (and
shared) by the VMs. This overhead slows drastically the data rate reducing the efficiency of using a faster
technology like Infiniband. To overcome the virtualization overhead they use a technique called Single
Root Input/output Virtualization (SRIOV) that achieves device virtualization without using device
emulation by enabling a device to be shared by multiple virtual machines. The technique involves with
modifications to the Linux’s Hypervisor as well as the OpenNebula manager [47].

Each server is enabled with a 4x (4 links) Infiniband card with a DDR data rate for a total theoretical
speed of up to 20 Gb/s and after the 8b/10b codification 16 Gb/s. Network latency is 1 �s when used with
MPI [28]. Each card has 8 virtual lanes that can create 1 physical function and 7 virtual functions via SR-

I. Sadooghi, Dissertation Proposal Pages 9 of 74

IOV. The servers are enabled with 2 quad core 2.66 GHz Intel processors, 48Gb of RAM and 600Gb of
SAS Disk, 12TB of SATA, and 8 port RAID Controller [47].

c.! Performance Evaluation of AWS Memory hierarchy performance

This section presents the memory benchmark results. We sufficed to run read and write benchmarks.
The experiments for each instance were repeated three times.

Memory bandwidth is a critical factor in scientific applications performance. Many Scientific
applications like GAMESS, IMPACT-T and MILC are very sensitive to memory bandwidth [30]. Amazon
has not included the memory bandwidth of the instances. It has only listed their memory size. We also
measure the memory bandwidth of each instance.

Figure 1 shows the system memory read bandwidth in different memory hierarchy levels. The
horizontal axis shows the cache size. The bandwidth is very stable up to a certain cache size. The
bandwidth starts to drop after a certain size. The reason for the drop off is surpassing the memory cache
size at a certain hierarchy level.

Memory performance of the m1.small instance is significantly lower than other instances. The low
memory bandwidth cannot be only attributed to the virtualization overhead. We believe the main reason is
memory throttling imposed based on the SLA of those instances.

Figure 1. CacheBench Read benchmark results, one benchmark process per instance

Another noticeable point is the low bandwidth of the cc2.8xlarge and c3.8xlarge. These instances have
similar performance that is much lower than other instances. A reason for that can be the result of the
different virtual memory allocation on the VMs by HVM virtualization on these instances. We have
however observed an effect in large hardware-assisted virtual machines such as those on FermiCloud. In
such machines, it will take a while for the system to balance the memory out to its full size at the first
launch of the VM.

I. Sadooghi, Dissertation Proposal Pages 10 of 74

After all, the results show that the memory bandwidth for read operation in the larger instances is close
to the local non-virtualized system. We can conclude that the virtualization effect on the memory is low,
which is a good sign for scientific applications that are mostly sensitive to the memory performance.

Figure 2 shows the write performance of different cloud instances and the local system. The write
performance shows different results from the read benchmark. As in write, the c3.8xlarge instance has the
best performance next to the non-virtualized local system.

For each instance we can notice two or three major drop-offs in bandwidth. These drop-offs show
different memory hierarchies. For example on the c3.8xlarge instance we can notice that the memory
bandwidth drops at 24 Kbytes. We can also observe that the write throughputs for different memory
hierarchies are different. These data points likely represent the different caches on the processor (e.g. L1,
L2, L3 caches).

Comparing the cluster instance with the local system, we observe that on smaller buffer sizes, the local
system performs better. But cloud instance outperforms the local system on larger cache sizes. The reason
for that could be the cloud instances residing on more powerful physical nodes with higher bandwidths. We
can observe that the write bandwidth on the cloud instances drops off at certain buffer sizes. That shows the
memory hierarchy effects on the write operation.

Users can choose the best transfer size for write operation based on the performance peaks of each
instance type to get the best performance. This would optimize a scientific application write bandwidth.

Figure 2. CacheBench write benchmark results, one benchmark process per instance

d.! Network performance

We have run many experiments on network performance of Amazon cloud. The experiments test the
network performance including bandwidth and latency.

We first test the local network bandwidth between the same types of instances. Figure 3 shows the
network performance of different types of nodes. In each case both of the instances were inside the same
datacenter. The network bandwidth for most of the instances were as expected except for two instances.

I. Sadooghi, Dissertation Proposal Pages 11 of 74

Figure 3. iPerf benchmark results. Network bandwidth in a single client and server connection,

internal network.

The lowest performance belongs to the t1.micro and m1.small instances. These two instances use the
same 1 Gb/s network cards used by other instances. But they have much lower bandwidth. We believe that
the reason is sharing the CPU cores and not having a dedicated core. This can affect network performance
significantly as the CPU is shared and many network requests cannot be handled while the instance is on its
idle time. During the idle time of the instance, the virtual system calls to the VMM will not be processed
and will be saved in the queue until the idle time is over. The network performance is highly affected by
processor sharing techniques. Other works had the same observations and conclusions about the network
performance in these two instance types [18]. Another reason for the low performance of the m1.small and
t1.micro instances could be throttling the network bandwidth by EC2. The Xen hypervisor has the ability of
network throttling if needed.

Among the instances that use the slower network cards the m1.medium instance has the best
performance. We did not find a technical reason for that. The m1.medium instances use the same network
card as other instances and does not have any advantage on system configuration over other instance types.
We assume the reason for that is the administrative decision on hypervisor level due to their popularity
among different instance types.

Another odd result is for m1.medium instance. The bandwidth in medium instance exceeds 1 Gb/Sec,
which is the specified network bandwidth of these. m1.medium instance bandwidth achieves up to 1.09
Gb/sec. That is theoretically not possible for a connection between two physical nodes with 1 Gb/s network
cards. We believe the reason is that both of the VMs reside in the same physical node or the same cluster.
In case of residing on the same node, the packets stay in the memory. Therefore the connection bandwidth
is not limited to the network bandwidth. We can also assume that not necessarily the instances have 1 Gb/s
network cards. In fact the nodes that run medium instances may have more powerful network cards in order
to provide better network performance for these popular instances.

The HPC instances have the best network bandwidth among the instances. They use 10 Gb/sec network
switches. The results show that the network virtualization overhead in these instances is very low. The
performance gets as high as 97% of ideal performance.

I. Sadooghi, Dissertation Proposal Pages 12 of 74

We also measure the network connection latency and the hop distance between instances inside the
Oregon datacenter of Amazon EC2. We run this experiment to find out about the correlation of connection
latency and the hop distance. We also want to find the connection latency range inside a datacenter. We
measure the latency and the hop distance on 1225 combinations of m1.small instances. Figure 4 shows the
network latency distribution of EC2 m1.small instances. It also plots the hop distance of two instances. The
network latency in this experiment varies between 0.006 ms and 394 ms, an arguably very large variation.

We can observe from the results that: (1) 99% of the instances which have the transmission latency of
0.24 to 0.99 ms are 4 or 6 hops far from each other. So we can claim that if the latency is between 0.24 to
0.99 ms the distance between the instances is 4 to 6 hops with the probability of 99%. (2) More than 94%
of the allocated instances to a user are 4-6 percent far from each other. In other words the hop distance is 4-
6 instances with the probability of more than 94%.

We can predict the connection latency based on the hop distance of instances. We have run the latency
test for other instance types. The results do not seem to be dependent on instance type for the instances with
the same network interconnect. The latency variance of Amazon instances is much higher than the variance
in a HPC system. The high latency variance is not desirable for scientific applications. In case of HPC
instances which have the 10 Gigabit Ethernet cards, the latency ranges from 0.19ms to 0.255ms which
shows a smaller variance and more stable network performance.

Figure 4. Cumulative Distribution Function and Hop distance of connection latency between

instances inside a datacenter.

Other researches have compared the latency of EC2 HPC instances with HPC systems. The latency of
the HPC instance on EC2 is reported to be 3 to 40 times higher than a HPC machine with a 23 Gb/s
network card [19]. The latency variance is also much higher.

e.! Compute Performance

In this section we evaluate the compute performance of EC2 instances. Figure 5 shows the compute
performance of each instance using HPL as well as the ideal performance claimed by Amazon. It also
shows the performance variance of instances.

I. Sadooghi, Dissertation Proposal Pages 13 of 74

Figure 5. HPL benchmark results: compute performance of single instances comparing with their

ideal performance.

Among the Amazon instances, the c3.8xlarge has the best compute performance. The t1.micro instance
shows the lowest performance. The figure also shows the performance variance for each instance. The
performance variance of the instances is low in most of the instance types. Providing a consistent
performance is an advantage for cloud instances.

Among all of the instances, the c3.8xlarge and the non-virtualized node achieve the best efficiency.
Overall we can observe that the efficiency of non-HPC instances is relatively low. Other papers have
suggested the low performance of HPL application while running on virtualized environments [31][34].
However, noticing the fact that the HPC instances were as efficient as the non-virtualized node, and the fact
that there is no other factor (e.g. network latency) affecting the benchmark, can imply that the virtualization
overhead has no major effect on this program on a single node scale.

f.! I/O Performance

In this section we evaluate the I/O performance of the EBS volume and local storage of each instance.
The following charts show the results obtained after running IOR on the local storage and EBS volume
storage of each of the instances with different transfer sizes and storage devices. Figure 6 shows the
performance of POSIX read operation on different instances. Except for the hi1.4xlarge, which is equipped
with SSDs, the throughput among other instances does not vary greatly from one another. For most of the
instances the throughput is close to a non-virtualized system with a normal spinning HDD.

I. Sadooghi, Dissertation Proposal Pages 14 of 74

Figure 6. Local POSIX read benchmark results on all instances

Figure 7 shows the maximum write and read throughput on each instance on both EBS volumes and
local storage devices. Comparing with local storage, EBS volumes show a very poor performance, which is
the result of the remote access delay over the network.

Figure 7. Maximum write/read throughput on different instances

Finally, to complete these micro-benchmarks, we set up a software RAID-0 with EBS volumes, varying
the number of volumes from 1 to 8. We ran the same benchmark on a c1.medium instance. Figure 8 shows
the write performance on RAID-0 on different number of EBS volumes. Looking at the write throughput,
we can observe that the throughput does not vary a lot and is almost constant as the transfer size increases.
That shows a stable write throughput on EBS drives. The write throughput on the RAID-0 increases with
the number of drives. The reason for that is that the data will be spread among the drives and is written in
parallel to all of the drives. That increases the write throughput because of having parallel write instead of
serial write. Oddly, the performance does not improve as the number of drives increases from 1 to 2 drives.
The reason for that is moving from the local writes to network. Therefore the throughput stays the same.

I. Sadooghi, Dissertation Proposal Pages 15 of 74

For 4 EBS volumes, we can observe a 4x increase on the throughput. In case of 8 EBS volumes we expect a
2x speed up comparing with the 4 EBS experiment. However the write throughput cannot scale better
because of the limitation of the network bandwidth. The maximum achievable throughput is around
120MB/s, which is bound to the network bandwidth of the instances that is 1 Gb/s. so we can conclude that
the RAID throughput will not exceed 120 MB/s if we add more EBS volumes.

Figure 8. RAID0 Setup benchmark for different transfer sizes – write

g.! S3 and PVFS Performance

In this section we evaluate and compare the performance of S3 and PVFS. S3 is a highly scalable
storage service from Amazon that could be used on multinode applications. Also, a very important
requirement for most of the scientific applications is a parallel file system shared among all of the
computing nodes. We have also included the NFS as a centralized file system to show how it performs on
smaller scales.

Figure 9. S3 performance, maximum read and write throughput

First we evaluate the s3 performance on read and write operations. Figure 9 shows the maximum read
and write throughput on S3 accessed by different instance types. Leaving aside the small instances, there is

I. Sadooghi, Dissertation Proposal Pages 16 of 74

not much difference between the maximum read/write throughput across instances. The reason is that these
values are implicitly limited by either the network capabilities or S3 itself.

Next, We compare the performance of the S3 and PVFS as two possible options to use for scientific
applications. PVFS is commonly used in scientific applications on HPC environments. On the other hand,
S3 is commonly used on the multi-node applications that run on cloud environment. We have only included
the read performance in this chapter. The experiment runs on m1.medium instances. Figure 10 shows that
the read throughput of the S3 is much lower compared to PVFS on small scales. This results from the fact
that the S3 is a remote network storage while PVFS is installed and is spread over each instance. As The
number of the instances increase, PVFS cannot scale as well as the S3 and the performance of the two
systems get closer to each other up to a scale that S3 slightly performs better than the PVFS. Therefore it is
better to choose S3 if we are using more than 96 instances for the application.

Figure 10. Comparing the read throughput of S3 and PVFS on different scales

Next, we evaluate the performance of PVFS2 for the scales of 1 to 64 as we found out that it performs
better than S3 in smaller scales. To benchmark PVFS2 for the following experiments we use the MPIIO
interface instead of POSIX. In the configuration that we used, every node in the cluster serves both as an
I/O and metadata server. Figure 11 shows the read operation throughput of PVFS2 on local storage with
different number of instances and variable transfer size. The effect of having a small transfer size is
significant, where we see that the throughput increases as we make the transfer size bigger. Again, this fact
is due to the overhead added by the I/O transaction.

I. Sadooghi, Dissertation Proposal Pages 17 of 74

Figure 11. PVFS read on different transfer sizes over instance storage

Finally, Figure 12, shows the performance of PVFS2 and NFS on memory through the POSIX interface.
The results show that the NFS cluster does not scale very well and the throughput does not increase as we
increase the number of nodes. It basically bottlenecks at the 1Gb/s which is the network bandwidth of a
single instance. PVFS2 performs better as it can scale very well on 64 nodes on memory. But as we have
shown above, it will not scale on larger scales.

Figure 12. Scalability of PVFS2 and NFS in read/write throughput using memory as storage

h.! DynamoDB performance

In this section we are evaluating the performance of Amazon DynamoDB. DynamoDB is a commonly
used NoSql database used by commercial and scientific applications [17]. We conduct micro benchmarks
to measure the throughput and latency of insert and look up calls scaling from 1 to 96 instances with total
number of calls scaling from 10000 to 960000 calls. We conduct the benchmarks on both m1.medium and
cc2.8xlarge instances. The provision capacity for the benchmarks is 10K operations/s which is the
maximum default capacity available. There is no information released about how many nodes are used to
offer a specific throughput. We have observed that the latency of DynamoDB doesn’t change much with

I. Sadooghi, Dissertation Proposal Pages 18 of 74

scales, and the value is around 10ms. This shows that DynamoDB is highly scalable. Figure 13 shows the
latency of look up and insert calls made from 96 cc2.8xxlarge instances. The average latency for insert and
look up are respectively 10 ms and 8.7 ms. 90% of the calls had a latency of less than 12 ms for insert and
10.5 ms for look up.

Figure 13. CDF plot for insert and look up latency on 96 8xxl instances

We compare the throughput of DynamoDB with ZHT on EC2 Error! Reference source not found..
ZHT is an open source consistent NoSql database providing a service which is comparable to DynamoDB
in functionality. We conduct this experiment to better understand the available options for having a scalable
key-value store. We use both m1.medium and cc2.8xlarge instances to run ZHT. On 96 nodes scale with
2cc.8xlarge instance type, ZHT offers 1215.0 K ops/s while DynamoDB failed the test since it saturated the
capacity. The maximum measured throughput of DynamoDB was 11.5K ops/s which is found at 64
cc2.8xlarge instance scale. For a fair comparison, both DynamoDB and ZHT have 8 clients per node.

Figure 14 shows that the throughput of ZHT on m1.medium and cc2.8xlarge instances are respectively
59x and 559x higher than DynamoDB on 1 instance scale. On the 96 instance scale they are 20x and 134x
higher than the DynamoDB.

I. Sadooghi, Dissertation Proposal Pages 19 of 74

Figure 14. Throughput comparison of DynamoDB with ZHT running on m1.medium and

cc2.8xlarge instances on different scales.

i.! Workflow Application Performance

In this section we analyze the performance of a complex scientific computing application on the
Amazon EC2 cloud. The application investigated is Power Locational Marginal Price Simulation (LMPS),
and it is coordinated and run through the Swift parallel programming system [32]. Optimal power flow
studies are crucial in understanding the flow and price patterns in electricity under different demand and
network conditions. A big computational challenge arising in power grid analysis is that simulations need
to be run at high time resolutions in order to capture effect occurring at multiple time scales. For instance,
power flows tend to be more constrained at certain times of the day and of the year, and these need to be
identified.

Figure 15. The LMPS application tasks time distributions.

I. Sadooghi, Dissertation Proposal Pages 20 of 74

The power flow simulation application under study analyzes historical conditions in the Illinois grid to
simulate instant power prices on an hourly basis. The application runs linear programming solvers invoked
via an AMPL (A Mathematical Programming Language) representation and collects flow, generation, and
price data with attached geographical coordinates [42]. A typical application consists of running the model
in 8760 independent executions corresponding to each hour of the year. Each application task execution
spans in the range between 25 and 80 seconds as shown in the application tasks time distribution graph in
Figure 15. A snapshot of one such result prices plotted over the map of Illinois is shown in Figure 16. The
prices are in US dollars per Megawatt-hour shown as interpolated contour plots across the areas connected
by transmission lines and generation stations shown as lines and circles respectively. A series of such plots
could be post processed to give an animated visualization for further analysis in trends etc.

Figure 16. A contour plot snapshot of the power prices in $/MWh across the state of Illinois for an

instance in July 2000

The execution of the application was performed on an increasing number of m1.large instances (see
Figure 17).

I. Sadooghi, Dissertation Proposal Pages 21 of 74

Figure 17. The runtime of LMPS on m1.large instances in different scales.

For data storage, we use S3. Given that the application scales well to 80 instances, but not beyond that.
The performance saturation is a salient point that comes out of Figure 17. With S3 object store being
remote, at 100 VMs it takes long enough to fetch the data that it is dominating execution time. More
scalable distributed storage subsystem should be investigated that is geared towards scientific computing,
such as PVFS, Lustre, or GPFS.

2.2.4! Performance Comparison of EC2 vs. FermiCloud
In this section we compare the performance of the EC2 as a public cloud with FermiCloud as a private

cloud on HPL benchmark which is a real HPC application. Before comparing the performance of Amazon
on real Applications, we need to compare the raw performance of the two resources.

a.! Raw performance comparison

Before comparing the performance of the two infrastructures on real applications like HPL, we need to
compare their raw performance on the essential metrics in order to find the root causes of their performance
differences. The most effective factors on HPL performance are compute power, and Network latency and
bandwidth. We need to compare these factors on the instances with similar functionalities.

On both of the Clouds, we chose the instances that can achieve the highest performance on HPL
applications. On EC2, we use c3.8xlarge instances that are enabled with Intel Xeon E5-2680 v2 (Ivy Bridge)
Processors and a 10 Gigabits network adapter with SRIOV technology. On FermiCloud, each server
machine is enabled with 2 quad core 2.66 GHz Intel processors, and 8 port RAID Controller. On
FermiCloud machines are backed by (16 Gigabits effective) Infiniband network adapters.

The CPU efficiency is defined as the performance of the VM running HPL on a single VM with no
network connectivity, divided by the theoretical peak performance of the CPU. Figure 18 compares the
raw performance of the Amazon EC2 with FermiCloud on CPU and network performance. The results
show that the virtualization overhead on FermiCloud instances are slightly lower than the EC2 instances.

I. Sadooghi, Dissertation Proposal Pages 22 of 74

Figure 18. Raw performance comparison overview of EC2 vs. FermiCloud

The significant difference of the two infrastructures is on the network adapters. The FermiCloud
instances are enabled with InfiniBand network adapters and are able to provide higher performance
compared to the EC2 instances that have 10 Gigabit network cards. The efficiency of both of the systems
on network throughput is high. The network throughput efficiency is defined as the VM network
performance divided by the theoretical peak of the device. FermiCloud and EC2 network adapters
respectively achieve 97.9% and 97.4% efficiency. We used MPIbench to calculate the network latency.
There is a 6x difference between the network latency of the two clouds. The latency of the FermiCloud
instance is 2.2 us as compared to the latency of EC2 instance which is 13 us. Another important factor is
the latency variance. The latency variance on both systems is within 20% which is stable. HPL application
uses MPI for communication among the nodes. The network latency can decrease the performance of the
application by affecting the MPI performance.

b.! HPL performance comparison

In this section we evaluate the performance of HPL application on both on a virtual cluster on both
FermiCloud and EC2. The main difference on the two infrastructures is on their virtualization layer and the
network performance. FermiCloud uses KVM and is enabled with InfiniBand network adapters. EC2 uses
its own type of virtualization which is based on Xen hypervisor and has 10 Gigabit network adapters.

The best way to measure the efficiency of a virtual cluster on a cloud environment is defining it as the
performance of the VM which include the virtualization overhead divided by the host performance that
doesn’t include virtualization overhead. We can measure the efficiency as defined for FermiCloud since we
have access to the host machines. But that is not possible for EC2 since we do not have access to the
physical host machines. Therefore we compare the scalability efficiency of the two clouds which is defined
as the overhead of the application performance as we scale up the number of cloud instances.

Figure 19 compares the efficiency of EC2 and FermiCloud running HPL application on a virtual cluster.
Due to budget limitations we run the experiment up to 32 instances scale.

I. Sadooghi, Dissertation Proposal Pages 23 of 74

Figure 19. Efficiency comparison of EC2 and FermiCloud running HPL application on a virtual

cluster.

The results show that the efficiency is dependent on the network latency. On the 2 instances scale, both
clouds show good efficiency. They only lose 10% efficiency that is due to the MPI communications latency
added between the instances. Since both of the clouds have relatively powerful network adapters, the
communication overhead is still not a bottleneck on 2 instances scale. As the number of instances increase,
the applications processes make more MPI calls to each other and start saturating the network bandwidth.
Having InfiniBand network, the FermiCloud loses less efficiency than the EC2. The efficiency of EC2
drops to 82% and the efficiency of the FermiCloud drops to 87%. The only major difference between the
instances of private and public cloud is on their network latency. As a result, we can see that they provide
similar efficiency with the private cloud instance being roughly about 5-8% more efficient on different
scales.

2.3! Cost analysis

In this section we analyze the cost of the Amazon EC2 cloud from different aspects. We analyze the
cost of in-stances for compute intensive applications as well as for data intensive applications. Our analysis
provides suggestions to different cloud users to find the instance type that fits best for certain application
with specific requirements. Next section compares the instances based on their memory capacity and
performance.

2.3.1! Memory Cost

This section compares the cost of the memory on Amazon EC2 instances. Figure 20 compares the cost
of instances based on their memory capacity and bandwidth. The GB/Dollar metric on the left hand side
shows the capacity cost effectiveness of the instances. The most cost effective instances for memory
capacity are the high memory (m2.2xlarge & m2.4xlarge) instances. But looking at the cost of the memory
bandwidth, we can observe that these instances do not have the best memory bandwidth efficiency. The
most cost effective instances based on the memory bandwidth efficiency are the m1.small and m1.medium
instances.

I. Sadooghi, Dissertation Proposal Pages 24 of 74

Figure 20. Memory capacity and memory bandwidth cost.

2.3.2! CPU Cost

In this section we analyze the cost-effectiveness of in-stances based on the performance of the instances
while running compute intensive applications. The metric for our analysis is GFLOPS/Dollar.

Figure 21 compares the ideal performance cost of the in-stances based on Amazon claims with their
actual performance while running HPL benchmark. The results show that the most cost-effective instance is
c3.8xlarge.

Figure 21. CPU performance cost of instances

2.3.3! Cluster Cost

I. Sadooghi, Dissertation Proposal Pages 25 of 74

We analyze the cost of the virtual clusters set up by m1.medium and cc1.4xlarge instances in different
sizes. Figure 22 compares the cost of the virtual clusters based on their compute performance.

Figure 22. Cost of virtual cluster of m1.medium and cc1.4xlarge.

2.3.4! DynamoDB Cost

Finally in this section we evaluate the cost of DynamoDB. In order to better understand the value of
offered service, we compare the cost with the cost of running ZHT on EC2 on different instance types.

Figure 23 shows the hourly cost of 1000 ops/s capacity offered by DynamoDB compared to the equal
capacity provided by ZHT from the user point of view.

Figure 23. Cost Comparison of DynamoDB with ZHT

We are comparing the two different scenarios of cost of using a free application on rented EC2
instances versus getting the service from DynamoDB. In case of DynamoDB, since the users pays for the
capacity that they get, the number of instances doesn’t affect the cost. That’s why the cost of DynamoDB is
always constant. For ZHT, the system efficiency and performance varies on different scales hence the

I. Sadooghi, Dissertation Proposal Pages 26 of 74

variation in costs for ZHT at different scales. Since the cc2.8xlarge instances provide much better
performance per money spent, the cost per operation is as good as 65X lower than DynamoDB. However,
the better costs come at the complexity of managing a virtual cluster of machines to operate ZHT. It is
likely that for low loads including sporadic requirements for DynamoDB, it makes financial sense to run on
Amazon AWS services, but for higher performance requirements it is much more beneficial to simply
operate a dedicated ZHT system over EC2 resources.

2.3.5! Performance and Cost Summary

This section summarizes the performance and the cost efficiency of Amazon EC2 and other services of
AWS. Table 1 shows the performance overview of the different instance types on EC2. The performance
results of the instances mostly match with the prediction based on the claims of Amazon. There have been
anomalies in some of the specific instance types. Instances like m1.xlarge have average performance while
m1.medium instance has shown a performance that was higher than expected.

Table 1: Performance summary of EC2 instances

!
CPU!
bw!

Mem.!
bw!

Net.!
bw!

Disk!
I/O!

m1.small! Low! Low! Low! Low!
m1.med! Low! Avg! Avg! Low!
m1.lrg! Avg! Avg! Avg! Avg!
m1.xlrg! Avg! Avg! Avg! Avg!
c1.med! Avg! Avg! Avg! Low!
c1.xlrg! Avg! High! Avg! Avg!
m2.2xlrg! High! High! Avg! Avg!
cc1.4xlrg! High! High! High! Avg!
cc2.8xlrg! High! High! High! Avg!
c3.8xlrg! High! High! High! High!
hi1.lrg! High! Avg! High! High!

Table 2 summarizes the cost-efficiency of instance types of EC2. The compute optimized instances
show better cost efficiency. Finally table 3 summarizes the performance of S3 and DynamoDB.

Table 2: Cost-efficiency summary of EC2 instances

!
CPU!
bw!

Mem.!
Cap.!

Mem.!
bw!

Net.!
bw!

m1.small! Avg! Avg! High! High!
m1.med! Avg! Avg! High! High!
m1.lrg! Avg! Avg! Avg! Avg!
m1.xlrg! Avg! Avg! Low! Low!
c1.med! High! Low! High! Low!
c1.xlrg! High! Low! Low! Low!
m2.2xlrg! Avg! High! Low! Low!
cc1.4xlrg! Avg! Avg! Low! Low!
cc2.8xlrg! High! Avg! Low! Avg!
c3.8xlrg! High! Avg! Low! Avg!
hi1.lrg! Low! Low! Low! Low!

!

I. Sadooghi, Dissertation Proposal Pages 27 of 74

Table 3: Performance and Cost-efficiency summary of AWS services

! Scalability!
CostI

efficiency!
Data!Granularity!

S3! High! High! Large!data!
DynamoDB! High! Low! Small!data!

2.4! Summary

In this chapter, we present a comprehensive, quantitative study to evaluate the performance of the
Amazon EC2 for the goal of running scientific applications. We first evaluate the performance of various
instance types by running micro benchmarks on memory, compute, network and storage. In most of the
cases, the actual performance of the instances is lower than the expected performance that is claimed by
Amazon. The network bandwidth is relatively stable. The network latency is higher and less stable than
what is available on the supercomputers. Next, based on the performance of instances on micro-
benchmarks, we run scientific applications on certain instances. We finally compare the performance of
EC2 as a commonly used public cloud with FermiCloud, which is a higher-end private cloud that is tailored
for scientific for scientific computing.

We compare the raw performance as well as the performance of the real applications on virtual clusters
with multiple HPC instances. The performance and efficiency of the two infrastructures is quite similar.
Their only difference that affects their efficiency on scientific applications is the network bandwidth and
latency which is higher on FermiCloud. FermiCloud achieves higher performance and efficiency due to
having InfiniBand network cards. We can conclude that there is need for cloud infrastructures with more
powerful network capacity that are more suitable to run scientific applications.

We evaluated the I/O performance of Amazon instances and storage services like EBS and S3. The I/O
performance of the instances is lower than performance of dedicated resources. The only instance type that
shows promising results is the high-IO instances that have SSD drives on them. The performance of
different parallel file systems is lower than performance of them on dedicated clusters. The read and write
throughput of S3 is lower than a local storage. Therefore it could not be a suitable option for scientific
applications. However it shows promising scalability that makes it a better option on larger scale
computations. The performance of PVFS2 over EC2 is convincible for using in scientific applications that
require a parallel file system.

Amazon EC2 provides powerful instances that are capable of running HPC applications. However, the
performance a major portion of the HPC applications are heavily dependent on network bandwidth, and the
network performance of Amazon EC2 instances cannot keep up with their compute performance while
running HPC applications and become a major bottleneck. Moreover, having the TCP network protocol as
the main network protocol, all of the MPI calls on HPC applications are made on top of TCP protocol. That
would add a significant overhead to the network performance. Although the new HPC instances have
higher network bandwidth, they are still not on par with the non-virtualized HPC systems with high-end
network topologies. The cloud instances have shown to be performing very well, while running
embarrassingly parallel programs that have minimal interaction between the nodes [19]. The performance
of embarrassingly parallel application with minimal communication on Amazon EC2 instances is reported
to be comparable with non-virtualized environments [37][39]. Armed with both detailed benchmarks to
gauge expected performance and a detailed price/cost analysis, we expect that this chapter will be a recipe
cookbook for scientists to help them decide between dedicated resources, cloud resources, or some
combination, for their particular scientific computing workload.

I. Sadooghi, Dissertation Proposal Pages 28 of 74

3.! Achieving Efficient Distributed Scheduling with Message Queues in the Cloud
for Many-Task Computing and High-Performance Computing

Task scheduling and execution over large scale, distributed systems plays an important role on
achieving good performance and high system utilization. Due to the explosion of parallelism found in
today’s hardware, applications need to perform over-decomposition to deliver good performance; this over-
decomposition is driving job management systems’ requirements to support applications with a growing
number of tasks with finer granularity. In this chapter, we design a compact, light-weight, scalable, and
distributed task execution framework (CloudKon) that builds upon cloud computing building blocks
(Amazon EC2, SQS, and DynamoDB).

3.1! Background and Motivation

The goal of a job scheduling system is to efficiently manage the distributed computing power of
workstations, servers, and supercomputers in order to maximize job throughput and system utilization.
With the dramatic increase of the scales of today’s distributed systems, it is urgent to develop efficient job
schedulers.

The architecture of commonly used schedulers have a centralized manager (e.g. Slurm [4], Condor [6]),
with a central server that is responsible for resource management and the job allocation. This architecture
seems to be working fine with today’s infrastructure scales. However, this trend is less likely to continue
like this. The centralized architecture cannot scale well with the next generation distributed systems. Also,
having a central controller could become a single point of failure. To solve this problem decentralized
architectures have been proposed. Distributed schedulers are normally implemented in either hierarchical
[20] or fully distributed architectures [19] to address the scalability issue. Those solutions can solve the
problem of the single point of failure. But more problems arise in load balancing, resource utilization and
the information synchronization.

The idea of using cloud computing for scientific applications have been explored in other research
works. However, most of these works have approached the cloud as yet another distributed resource with
similar characteristics with traditional resources [21]Error! Reference source not found.[53][15]. Sharing
its physical resources and using virtualization makes public clouds totally different than the traditional HPC
systems. The uniqueness of our work is in proposing a new approach. We offer to utilize public cloud’s
native integrated resources for more efficient performance. Moreover, using cloud services enables
programmers to create fairly complicated systems with a shorter code base and in a shorter period of time.
In this chapter, we design and implement a scalable task execution framework on Amazon cloud using
different AWS cloud services, and aimed it at supporting both many-task computing and high-
performance workloads.

Today’s data analytics are moving towards interactive shorter jobs with higher throughput and shorter
latency [20][69]. More applications are moving towards running higher number of jobs in order to improve
the application throughput and performance. A good example for this type of applications is Many Task
Computing (MTC) [16]. MTC applications often demand a short time to solution and may be
communication intensive or data intensive [71].

As we mentioned above, running jobs in extreme scales is starting to be a challenge for current state of
the art job management systems that have centralized architecture. On the other hand, the distributed job
management systems have the problem of low utilization because of their poor load balancing strategies.
We propose CloudKon as a job management system that achieves good load balancing and high system
utilization at large scales. Instead of using techniques such as random sampling, CloudKon uses
distributed queues to deliver the tasks fairly to the workers without any need for the system to choose
between the nodes. The distributed queue serves as a big pool of tasks that is highly available. The worker

I. Sadooghi, Dissertation Proposal Pages 29 of 74

gets to decide when to pick up a new task from the pool. This approach brings design simplicity and
efficiency. Moreover, taking this approach, the system components are loosely coupled to each other.
Therefore the system will be highly scalable, robust, and easy to upgrade. Although the motivation of this
work is to support MTC tasks, it also provides support for distributed HPC scheduling. This enables
CloudKon to be even more flexible running different type of workloads at the same time.

The main contributions of this work are:

1.! Design and implement a simple light-weight task execution framework using Amazon Cloud
services (EC2, SQS, and DynamoDB) that supports both MTC and HPC workloads

2.! Deliver good performance with <5% codebase: CloudKon is able to perform up to 1.77x better
than MATRIX and Sparrow with less than 5% codebase.

3.! Performance evaluation up to 1024 instance scale comparing against Sparrow and MATRIX:
CloudKon is able to outperform the other two systems after 64 instances scale in terms of
throughput and efficiency.

The remaining sections of this chapter are as follows. Section 3.2 discusses about the design and
implementation details of CloudKon. Section 3.3 evaluates the performance of the CloudKon in different
aspects using different metrics. Finally section 3.4 discusses about the limitations of the current work, and
covers the future directions of this work.

3.2! Design and Implementation of CloudKon

The goal of this work is to implement a job scheduling/management system that satisfies four major
objectives:

•! Scale: Offer increasing throughput with larger scales through distributed services
•! Load Balance: Offer good load balancing at large scale with heterogeneous workloads
•! Light-weight: The system should add minimal overhead even at fine granular workloads
•! Loosely Coupled: Critical towards making the system fault tolerant and easy to maintain

In order the achieve scalability, CloudKon uses SQS which is distributed and highly scalable. As a
building block of CloudKon, SQS can upload and download large number of messages simultaneously. The
independency of the workers and clients makes the framework perform well on larger scales. In order to
provide other functionalities such as monitoring or task execution consistency, CloudKon also uses cloud
services such as DynamoDB that are all fully distributed and highly scalable.

Using SQS as a distributed queue enables us to use pulling for load balancing and task distribution.
Instead of having an administrator component (often times centralized) to decide how to distribute the jobs
between the worker nodes, the worker nodes decide when to pull the jobs and run them. This would
distribute the decision making role from one central node to all of the workers. Moreover, it reduces the
communication overhead. In the pushing approach the decision maker has to communicate with the
workers periodically to update their status and make decisions as well as distributing the jobs to among the
workers. On pulling approach the only communication required is pulling the jobs. Using this approach can
deliver good load balancing on worker nodes.

I. Sadooghi, Dissertation Proposal Pages 30 of 74

Figure 24. CloudKon architecture overview

Due to using cloud services, the CloudKon processing overhead is very low. Many of the program calls
in CloudKon are the calls to the cloud services. Having totally independent workers and clients, CloudKon
does not need to keep any information of its nodes such as the IP address or any other state of its nodes.

CloudKon components can operate independently with the SQS component in the middle to decouple
different parts of the framework from each other. That makes our design compact, robust and easily
extendable.

The scheduler can work in a cross-platform system with ability to serve on a heterogeneous
environment that has systems with various types of nodes with different platforms and configurations.
Using distributed queues also helps reducing the dependency between clients and the workers. The clients
and workers can modify their pushing/pulling rate independently without any change to the system.

All of the advantages mentioned above rely on a distributed queue that could provide good performance
in any scale. Amazon SQS is a highly scalable cloud service that can provide all of the features required to
implement a scalable job scheduling system. Using this service, we can achieve the goal of having a system
that perfectly fits in the public cloud environment and runs on its resources optimally.

The system makes it easy for the users to run their jobs over the cloud resources in a distributed fashion
just using a client front end without the need to know about the details of the underlying resources and need
to set up and configure a cluster.

3.2.1! Architecture

This section explains about the system design of CloudKon. We have used a component based design
on this project for two reasons. (1) A component based design fits better in the cloud environment. It also
helps designing the project in a loosely-coupled fashion. (2) It will be easier to improve the implementation
in the future.

The following sections explain the system architecture for both MTC and HPC workloads. CloudKon
has the ability to run workloads with a mixture of both task types. The first section shows the system
architecture in case of solely running MTC tasks. The second section describes the process in case of
running HPC tasks.

I. Sadooghi, Dissertation Proposal Pages 31 of 74

a.! MTC task management

Figure 24 shows the different components of CloudKon that are only involved with running MTC tasks.
An MTC task is defined to be a task that requires computational resources that can be satisfied by a single
worker (e.g. where the worker manages either a core or a node). The client node works as a front end to the
users to submit their tasks. SQS has a limit of 256 KB for the size of the messages which is sufficient for
CloudKon Task lengths. In order to send tasks via SQS we need to use an efficient serialization protocol
with low processing overhead. We use Google Protocol buffer for this reason. The Task saves the system
log during the process while passing different components. Thus we can have a complete understanding of
the different components using the detailed logs.

The main components of the CloudKon for running MTC jobs are Client, Worker, Global Request
Queue and the Client Response Queues. The system also has a Dynamic Provisioner to handle the resource
management. It also uses DynamoDB to provide monitoring. There is a monitoring thread running on each
worker that periodically reports utilization of each worker to the DynamoDB key value store.

The Client component is independent of other parts of the system. It can start running and submitting
tasks without the need to register itself into the system. Having the Global Queue address is sufficient for a
Client component to join the system. The Client program is multithreaded. So it can submit multiple tasks
in parallel. Before sending any tasks, the Client creates a response queue for itself. All of the submitted
tasks carry the address of the Client response queue. The Client has also the ability to use task bundling to
reduce the communication overhead.

In order to improve the system performance and efficiency, we decided to put two modes. If the system
is running MTC tasks, all of the workers work as normal task running workers. But in case of running HPC
workloads or workloads with the combination of HPC and MTC tasks, other than the normal workers the
workers could also become either worker managers that manage the HPC jobs or sub-workers that run the
HPC tasks.

Similar to the Client component, the Worker component runs independently in the system. For MTC
support, the worker functionality is relatively simple and straight forward. Having the Global request queue,
the Workers can join and leave the system any time during the execution. The Global Request Queue acts
as a big pool of Tasks. Clients can submit their Tasks to this queue and Workers can pull Tasks from it.
Using this approach, the scalability of the system is only dependent on the scalability of the Global Queue
and it will not put extra load on workers on larger scales. Worker code is also multithreaded and is able to
receive multiple tasks in parallel. Each thread can pull up to 10 bundled tasks together. Again, this feature
is enabled to reduce the large communication overhead. After receiving a task, the worker thread verifies
the task duplication and then checks for the task type. In case of running MTC tasks, it will run it right
away. Then it puts the results into the task and using the pre-specified address inside the task, it sends back
the task to the Client respond queue. As soon as response queue receives a task, the corresponding client
thread pulls the results. The process ends when the Client receives all of its task results.

b.! HPC task management

Figure 25 shows the extra components to run HPC jobs. As mentioned above, in case of running
combination of HPC and MTC jobs, each worker can have different roles. In case of receiving a MTC task
the worker proceeds with doing the task by itself. DynamoDB is used to maintain the status of the system
so that the workers can decide on the viability of executing a HPC task. In essence, in DynamoDB, we
store the current number of running managers and the sub workers that are busy executing HPC tasks,
which gives other workers insight about how many available resources exist.

If worker receives a HPC job, DynamoDB is checked to make sure that there are enough available
nodes running in the system for the HPC task execution. If this is satisfied, the worker (now called as
worker manager) puts n messages in a second SQS (HPC Task Queue). n is the number of workers needed
by the worker manager to execute the task. If there are no enough available resources, the node is not

I. Sadooghi, Dissertation Proposal Pages 32 of 74

allowed to carry on as worker manager; instead this node will check the HPC Task Queue and act as a sub
worker. If there are messages in the HPC queue, the sub-worker will notify the manager using the worker
managers IP address. The worker manager and sub-worker use RMI for communication. Worker Manager
holds onto all of its sub-workers until it has enough to start the execution. After the execution, the worker
manager sends the result to the response queue to be picked up by the client.

Figure 25. CloudKon-HPC architecture overview

3.2.2! Task Execution Consistency Issues

A major limitation of SQS is that it does not guarantee delivering the messages exactly once. It
guarantees delivery of the message at least once. That means there might be duplicate messages delivered
to the workers. The existence of the duplicate messages comes from the fact that these messages are copied
to multiple servers in order to provide high availability and increase the ability of parallel access. We need
to provide a technique to prevent running the duplicate tasks delivered by SQS. In many types of workloads
running a task more than once is not acceptable. In order to be compatible for these types of applications
CloudKon needs to guarantee the exactly once execution of the tasks.

In order to be able to verify the duplication we use DynamoDB. DynamoDB is a fast and scalable key-
value store. After receiving a task, the worker thread verifies that if this is the first time that the task is
going to run. The worker thread makes a conditional write to the DynamoDB table adding the unique
identifier of the task which is a combination of the Task ID and the Client ID. The operation succeeds if the
Identifier has not been written before. Otherwise the service throws an exception to the worker and the
worker drops the duplicate task without running it. This operation is an atomic operation. Using this
technique we have minimized the number of communications between the worker and DynamoDB.

As we mentioned above, exactly once delivery is necessary for many type of applications such as
scientific applications. But there are some applications that have more relaxed consistency requirements
and can still function without this requirement. Our program has ability to disable this feature for these
applications to reduce the latency and increase the total performance. We will study the overhead of this
feature on the total performance of the system in the evaluation section.

3.2.3! Dynamic Provisioning

One of the main goals in the public cloud environment is the cost-effectiveness. The affordable cost of
the resources is one of the major features of the public cloud to attract users. It is very important for a
Cloud-enabled system like this to keep the costs at the lowest possible rate. In order to achieve the cost-

I. Sadooghi, Dissertation Proposal Pages 33 of 74

effectiveness we have implemented the dynamic provisioning system [77]. Dynamic provisioner is
responsible for assigning and launching new workers to the system in order to keep up with the incoming
workload.

The dynamic provisioner component is responsible for launching new worker instances in case of
resource shortage. The application checks the queue length of the global request queue periodically and
compares the queue length with its previous size. If the increase rate is more than the allowed threshold, it
launches a new Worker. As soon as being launched, the Worker automatically joins the system. Both
checking interval and the size threshold are configurable by the user.

In order to provide a solution for dynamically decreasing the system scale to keep the costs low, we
have added a program to the workers that is able to terminate the instance if two conditions hold. That only
happens if the worker goes to the idle state for a while and also if the instance is getting close to its lease
renewal. The instances in Amazon EC2 are charged on hourly basis and will get renewed every hour of the
user don’t shut them down. This mechanism helps our system scale down automatically without the need to
get any request from a component. Using these mechanisms, the system is able to dynamically scale up and
down.

Figure 26. Communication Cost

3.2.4! Communication Costs

The network latency between the instances in the public Cloud is relatively high compared to HPC
systems[70][71]. In order to achieve reasonable throughput and latency we need to minimize the
communication overhead between the different components of the system. Figure 26 shows the number of
communications required to finish a complete cycle of running a task. There are 5 steps of communication
to execute a task. CloudKon also provides task bundling during the communication steps. Client can send
multiple tasks together. The maximum message batch size in SQS is 256 KB or 10 messages.

3.2.5! Security and Reliability

For the system security of CloudKon, we rely on the security of the SQS. SQS provides a highly secure
system using authentication mechanism. Only authorized users can access to the contents of the Queues. In
order to keep the latency low, we don’t add any encryption to the messages. SQS provides reliability by
storing the messages redundantly on multiple servers and in multiple data centers [56].

3.2.6! Implementation Details

I. Sadooghi, Dissertation Proposal Pages 34 of 74

We have implemented all of the CloudKon components in Java. Our implementation is multithreaded in
both Client and Worker component codes. Many of the features in both of these systems such as
Monitoring, Consistency, number of threads and the Task bundling size is configurable as a program input
argument.

Taking advantage of AWS service building blocks, our system has a short and simple code base. The
code base of CloudKon is significantly shorter than other common task execution systems like Sparrow or
MATRIX. CloudKon code has about 1000 lines of code, while Sparrow has 24000+ lines of code, and
MATRIX has 10500+ lines of code. This can highlight the potential benefits of the public cloud services.
We were able to create a fairly complicated and scalable system by re-using scalable building blocks in the
cloud.

3.3! Performance Evaluation

We evaluate the performance of the CloudKon and compare it with two other distributed job
management systems, namely Sparrow and MATRIX. First we discuss their high level features and major
differences. Then we compare their performance in terms of throughput and efficiency. We also evaluate
the latency of CloudKon.

3.3.1! CloudKon vs. Other Scheduling Systems

We sufficed to compare our system with Sparrow and MATRIX as these two systems represent the
best-of-breed open source distributed task management systems.

Sparrow was designed to achieve the goal of managing milliseconds jobs on a large scale distributed
system. It uses a decentralized, randomized sampling approach to schedule jobs on worker nodes. The
system has multiple schedulers that each have a list of workers and distributed the jobs among the workers
deciding based on the worker’s job queue length. Sparrow was tested on up to hundred nodes on the
original paper.

MATRIX is a fully distributed MTC task execution fabric that applies work stealing technique to
achieve distributed load balancing, and a DKVS, ZHT, to keep task metadata [106]. In MATRIX, each
computer node runs a scheduler, an executor and a ZHT server. The executor could be a separate thread in
the scheduler. All the schedulers are fully-connected with each one knowing all of others. The client is a
bench marking tool that issues request to generate a set of tasks, and submits the tasks to any scheduler.
The executor keeps executing tasks of a scheduler. Whenever a scheduler has no more tasks to be executed,
it initials the adaptive work stealing algorithm to steal tasks from candidate neighbor schedulers. ZHT is a
DKVS that is used to keep the task meta-data in a distributed, scalable, and fault tolerant way.

One of the main differences between Sparrow and CloudKon or MATRIX is that Sparrow distributes
the tasks by pushing them to the workers, while CloudKon and MATRIX use pulling approach. Also, in
CloudKon, the system sends back the task execution results to the clients. But in both Sparrow and
MATRIX, the system doesn’t send any type of notifications back to the clients. That could allow Sparrow
and MATRIX to perform faster, since it is avoiding one more communication step, but it also makes it
harder for clients to find out if their tasks were successfully executed.

3.3.2! Testbed

We deploy and run all of the three systems on Amazon EC2. We have used m1.medium instances on
Amazon EC2. We have run all of our experiments on us.east.1 datacenter of Amazon. We have scaled the
experiments up to 1024 nodes. In order to make the experiments efficient, client and worker nodes both run
on each node. All of the instances had Linux Operating Systems. Our framework should work on any OS
that has a JRE 1.7, including Windows and Mac OSX.

3.3.3! Throughput

I. Sadooghi, Dissertation Proposal Pages 35 of 74

MTC Tasks
In order to measure the throughput of our system we run sleep 0 tasks. We have also compared the

throughput of CloudKon with Sparrow and MATRIX. There are 2 client threads and 4 worker threads
running on each instance. Each instance submits 16000 tasks. Figure 27 compares the throughput of
CloudKon with Sparrow and MATRIX on different scales. Each instance submits 16000 tasks aggregating
to 16.38 million tasks on the largest scale.

The throughput of MATRIX is significantly higher than the CloudKon and Sparrow on 1 instances
scale. The reason is that MATRIX runs locally without adding any scheduling or network overhead. But on
CloudKon the tasks go through the network even if there is one node running on the system. The gap
between the throughputs of the systems gets smaller as the network overhead adds up to the other two
systems. MATRIX schedulers synchronize with each other using all-to-all synchronization method. Having
too many open TCP connections by workers and schedulers on 256 instances scale leads MATRIX to crash.
We were not able to run MATRIX on 256 instances. The network performance on EC2 cloud is
significantly lower than that of HPC systems, where MATRIX has successfully been run at 1024-node
scales.

Figure 27. Throughput of CloudKon, Sparrow and MATRIX (MTC tasks)

Sparrow is the slowest among the three systems in terms of throughput. It shows a stable throughput
with almost linear speedup up to 64 instances. As the number of instances increases more than 64, the list
of instances to choose from for each scheduler on Sparrow increases. Therefore many workers remain idle
and the throughput will not increase as expected. We were not able to run Sparrow on 128 or 256 instances
scale as there were too many sockets open on schedulers resulting into system crash.

CloudKon achieves good 500X speedup starting from 238 tasks per second on 1 instance to 119K tasks
per second on 1024 instances. Unlike the other two systems, the scheduling process on CloudKon is not
done by the instances. Since the job management is handled by SQS, the performance of the system is
mainly dependent of this service. We predict that the throughput would continue to scale until it reaches the

I. Sadooghi, Dissertation Proposal Pages 36 of 74

SQS performance limits (which we were not able to reach up to 1024 instances). Due to the budget
limitations, we were not able to expand our scale beyond 1024 instances, although we plan to apply for
additional Amazon AWS credits and to push our evaluation to 10K instance scales, the largest allowable
number of instances per user without advanced reservation.

HPC Tasks

In This section we show the throughput of the CloudKon running HPC tasks workloads. Running HPC
tasks adds more overhead to the system as there will be more steps to run the tasks. Instead of running the
job right away, the worker manager needs to go over a few steps and wait to get enough resources to run
the job. This would slow down the system and lowers the system efficiency. But it doesn’t affect the
scalability. Using CloudKon can majorly improve the run time of HPC workloads by parallelizing the task
execution that is normally done in a sequential fashion. We have chosen jobs with 4, 8 and 16 tasks. There
are 4 worker threads running on each instance. The number of executed tasks on each scale for different
workers is equal.

Figure 28 compares the system throughput in case of running HPC jobs with different number of tasks
per job. The results show that the throughput of running jobs with more number of tasks per job is lower.
The jobs with more tasks need to wait for more sub-workers to start the process. That adds more latency
and slows down the system. We can see that CloudKon is able to achieve a high throughput of 205 jobs per
second which is already much higher than what Slurm can achieve. The results also show good scalability
as we add more instances.

Figure 28. Throughput of CloudKon (HPC tasks)

3.3.4! Latency

In order to measure latency accurately, the system has to record the request and respond timestamps of
each task. The problem with Sparrow and MATRIX is that on their execution process workers don’t send
notifications to the clients. Therefore it is not possible to measure the latency of each task comparing
timestamps from different nodes. In this section we have measured the latency of CloudKon and analyzed
the latency of different steps of the process.

I. Sadooghi, Dissertation Proposal Pages 37 of 74

Figure 29 shows the latency of CloudKon for sleep 0 ms scaling from 1 to 1024 instances. Each
instance is running 1 client thread and 2 worker threads and sending 16000 tasks per instance.

Figure 29. Latency of CloudKon sleep 0 ms tasks

The latency of the system at 1 node is relatively high showing 95 ms overhead added by the system. But
this will be acceptable on larger scales. The fact that the latency doesn’t increase more than 10 ms while
increasing the number of instances from 1 instance to 1024 instance shows that CloudKon is stable. SQS as
the task pool is a highly scalable service being backed up with multiple servers keeping the service very
scalable. Thus scaling up the system by adding threads and increasing the number of tasks doesn’t affect
the SQS performance. The client and worker nodes always handle the same number of tasks on different
scales. Therefore scaling up doesn’t affect the instances. CloudKon includes multiple components and its
performance and latency depends on its different components. The latency result on Figure 29 does not
show us any details about the system performance. In order to analyze the performance of the different
components we measure the time that each task spends on different components of the system by recording
the time during the execution process.

Figure 30, Figure 31, and Figure 32 respectively show the cumulative distribution of deliver-task stage,
deliver-result stage, and the execute-task stage of the tasks on CloudKon. Each communication stage has
three steps: sending, Queuing and receiving. The latency of the SQS API calls including send-task and
receive-task on both are quite high compared to the execution time of the tasks on CloudKon. The reason
for that is the expensive Web Service API call cost that uses XML format for communication. The worker
takes 16ms on more than 50% of the times. This includes the DynamoDB that takes 8ms on more than 50%
of the times. This shows us that hypothetically CloudKon latency can improve significantly if we use a low
overhead distributed message queue that could guarantee the exactly once delivery of the tasks. We will
cover this more in the future work section.

I. Sadooghi, Dissertation Proposal Pages 38 of 74

Figure 30. Cumulative Distribution of the latency on the task execution step

Figure 31. Cumulative Distribution of the latency on the task submit step

Another notable point is the difference between the deliver-task and deliver-result time in both Queuing
and receiving back, even though they have the same API calls. The time that the tasks spend on the
response-queue is much longer than the time it spends on request-queue. The reason for that is there are
two worker threads and only one client thread on each instance. Therefore the frequency of pulling tasks is
higher when the tasks are pulled by the worker threads.

I. Sadooghi, Dissertation Proposal Pages 39 of 74

Figure 32. Cumulative Distribution of the latency on the result delivery step

3.3.5! Efficiency of CloudKon

It is very important for the system to manage the systems efficiently. Achieving high efficiency on
distributed job scheduling systems is not trivial. It is hard to fairly distribute the workload on all of the
workers and keep all of the nodes busy during the execution on larger scales.

In order to show the system efficiency we have designed two sets of experiments. We test the system
efficiency in case of homogeneous and heterogeneous tasks. The homogeneous tasks have a certain task
duration length. Therefore it is easier to distribute them since the scheduler assumes it takes the same time
to run them. This could give us a good feedback about the efficiency of the system in case of running
different task types with different granularity. We can also assess the ability of the system to run the very
shot length tasks. A problem with the first experiment is that not all of the tasks take the same amount of
time to run. This can hugely affect the system efficiency if the scheduler is not taking the tasks length into
the consideration. Having a random workload can show how a scheduler will work in case of running real
applications.

Homogeneous Workloads

In this section we compare the efficiency of CloudKon with Sparrow and MATRIX on sub second tasks.
Figure 33 shows the efficiency of 1, 16 and 128ms tasks on the systems. The efficiency of CloudKon is on
1ms tasks is lower than then other two systems. As we mentioned before, the latency of CloudKon is large
for very short tasks because of the significant network latency overhead added on the execution cycle.
Matrix has a better efficiency on smaller scales but as the trend shows, the efficiency drops tremendously
until the system crashes because of too many TCP connections on scales of 128 instances or more. On sleep
16ms tasks, the efficiency of CloudKon is around 40% which is low (compared to the other systems). The
efficiency of MATRIX starts with more than 93% on one instance but again it drops to a lower efficiency
than the CloudKon on larger number of instances. We can notice that the efficiency of CloudKon is very
stable compared to the other two systems on different scales. That shows that CloudKon achieves a better
scalability. On sleep 128 ms tasks, the efficiency of CloudKon is as high as 88%. Again, the results show
that the efficiency of MATRIX drops on larger scales.

Sparrow shows very good and stable efficiency running homogenous tasks up to 64 instances. The
efficiency drops after this scale for shorter tasks. Having too many workers for task distribution, the
scheduler cannot have a perfect load balance and some workers remain idle. Therefore the system will be

I. Sadooghi, Dissertation Proposal Pages 40 of 74

under-utilized and the efficiency drops. The system crashes on scales of 128 scales or larger because of
maintaining too many sockets in schedulers.

Figure 33. Efficiency of CloudKon, Sparrow and MATRIX running homogenous workloads of

different task lengths (1, 16, 128ms tasks)

Heterogeneous Workloads

In order to measure efficiency, we investigated the largest available trace of real MTC workloads [72],
and filtered out the logs to isolate only the sub-second tasks, which netted about 2.07M tasks with the
runtime range of 1 milliseconds to 1 seconds. The tasks were submitted in a random fashion. The average
task lengths of different instances are different from each other.

Each instance runs 2K tasks on average. The efficiency comparison on Figure 34 shows similar trends
for CloudKon and MATRIX. On both systems the worker pulls a task only when it has available resources
to run the task. Therefore the fact that the execution duration of the tasks is different does not affect the
efficiency of the system. On the other hand on Sparrow, the scheduler distributes the tasks by pushing them
to the workers that have less number of tasks to be executed in their queue. The fact that the tasks have
different run time is going to affect the system efficiency. Some of the workers may have multiple long
tasks and many other workers may have short tasks to run. Thus there will be a big imbalance among the
workers with some of the being loaded with big tasks and the rest being under-utilized and the system run
time will be bound to the run time of the workers with longer jobs to run.

Being under-utilized, the efficiency of Sparrow has the largest drop from 1 instance to 64 instances. The
system was not functional on 128 instances or more. Similarly, the efficiency of MATRIX started with a
high efficiency, but started to drop significantly because of too many open sockets on TCP connections.
The efficiency of CloudKon is not as high as the other two systems, but it is more stable as it only drops 6%
from 1 to 64 instances compared to MATRIX that drops 19% and Sparrow that drops 23%. Again,
CloudKon was the only functional system on 256 instances with 77% efficiency.

I. Sadooghi, Dissertation Proposal Pages 41 of 74

Figure 34. Efficiency of the systems running heterogeneous workloads.

3.3.6! The Overhead of Consistency

In this section we evaluate effect of tasks execution consistency on CloudKon. Figure 35 shows the
system run-time for sleep 16ms with the duplication controller enabled and disabled. The overhead for
other sleep tasks were similar to this experiment. So we have only included one of the experiments in this
chapter.

Figure 35. The overhead of task execution consistency on CloudKon

I. Sadooghi, Dissertation Proposal Pages 42 of 74

The consistency overhead increases with the scale. The inconsistency on different scales is the result of
the variable number of duplicate messages on each run. That results in more random system performance
on different experiments. In general the overhead on scale of less than 10 is less than 15%. This overhead is
mostly for the successful write operations on DynamoDB. The probability of getting duplicate tasks
increases on larger scales. Therefore there will be more exceptions. That leads to a higher overhead. The
overhead on larger scales goes up to 35%. However, the overhead rate is stable and does not pass this rate.
Using a distributed message queue that guarantees exactly-once delivery can improve the performance
significantly.

3.4! Summary

Large scale distributed systems require efficient job scheduling system to achieve high throughput and
system utilization. It is important for the scheduling system to provide high throughput and low latency on
the larger scales and add minimal overhead to the workflow. CloudKon is a Cloud enabled distributed task
execution framework that runs on Amazon AWS cloud. It is a unique system in terms of running both HPC
and MTC workloads on public cloud environment. Using SQS service gives CloudKon the benefit of
scalability. The evaluation of the CloudKon proves that it is highly scalable and achieves a stable
performance over different scales. We have tested our system up to 1024 instances. CloudKon was able to
outperform other systems like Sparrow and MATRIX on scales of 128 instances or more in terms of
throughput. CloudKon achieves up to 87% efficiency running homogeneous and heterogeneous fine
granular sub-second tasks. Compared to the other systems like Sparrow, it provides lower efficiency on
smaller scales. But on larger scales, it achieves a significantly higher efficiency.

There are many directions for the future work. One direction is to make the system fully independent
and test it on different public and private clouds. We are going to implement a SQS like service with high
throughput at the larger access scales. With help from other systems such as ZHT distributed hash table
[22], we will be able implement such a service. Another future direction of this work is to implement a
more tightly coupled version of CloudKon and test it on supercomputers and HPC environments while
running HPC jobs in a distributed fashion, and to compare it directly with Slurm and Slurm++ in the same
environment. We also plan to explore porting some real programming frameworks, such as the Swift
parallel programming system or the Hadoop MapReduce framework, which could both benefit from a
distributed scheduling run-time system. This work could also expand to run on heterogeneous
environments including different public and private clouds. In that case, the system can choose among
different resources based on the resource cost and performance and provide optimized performance with
the minimum cost.

4.! FaBRiQ: Leveraging Distributed Hash Tables towards Distributed Publish-
Subscribe Message Queues

CloudKon was able to achieve good performance scalability compared to other state of the art works.
However it has its own limitations. CloudKon uses SQS as its building block. Therefore, it is not possible
to use CloudKon in other distributed resources. That has driven us to design and implement a fully
distributed message queuing service. That enables us to run CloudKon in other environments including
private clouds, other public clouds, and even HPC resources. Moreover, we can integrate this queue within
the CloudKon and achieve significant improvement over latency and efficiency. In this chapter, we propose
Fabriq, a distributed message queue that runs on top of a Distributed Hash Table. The design goal of Fabriq
is to achieve lower latency and higher efficiency while being able to handle large scales.

I. Sadooghi, Dissertation Proposal Pages 43 of 74

4.1! Background and Motivation

With the growth of the data at the current rate, it is unlikely for the traditional data processing systems
that usually tend to structure the data, to be able to handle the requirement of Big Data processing. There is
a need to reinvent the wheel instead of using the traditional systems. Traditional data processing
middleware and tools such as SQL databases and file system are being replaced by No-SQL data-stores and
key-value storage systems in order to be able to handle the data processing at the current scale. Another key
tool that is getting more attention from the industry is distributed queuing service [104][108][109].

A Distributed Message Queue could play an important role as a middleware for today’s Big Data
requirements. A message queue could be a key part of a loosely coupled distributed application. Over the
past few years, distributed queuing services have been used in both industrial and scientific applications
and frameworks [75][46][2][88][92]. SQS is a distributed queue service by Amazon AWS, which is being
leveraged by various commercial applications. Some systems have used SQS as a buffer for their server to
handle massive number of requests. Other applications have used SQS in monitoring, workflow
applications, big data analytics, log processing and many other distributed systems scenarios [105][75][89].

The large scale log generation and processing is another example that has become a major challenge on
companies that have to deal with the big data. Many companies have chosen to use distributed queue
services to address this challenge. Companies like LinkedIn, Facebook [79], Cloudera [77]!and Yahoo have
developed similar queuing solutions to handle gathering and processing of terabytes of log data on their
servers [78]. For example LinkedIn’s Kafka [76] feeds hundreds of gigabytes of data into Hadoop [91]
clusters and other servers every day.

Distributed Queues can play an important role in Many Task Computing (MTC) [53] and High
Performance Computing (HPC). Modern Distributed Queues can handle data movement on HPC and MTC
workloads in larger scales without adding significant overhead to the execution [80].

CloudKon is a Distributed Job Scheduling system that is optimized to handle MTC and HPC jobs. It
leverages SQS as a task delivery fabric that could be accessed simultaneously and achieve load balancing at
scale [46]. CloudKon has proved to outperform other state-of-the-art schedulers like Sparrow [14] by more
than 2X in throughput. One of the main motivations of this work is to provide a DMQ that can replace SQS
in future versions of the CloudKon. There are a few limitations with SQS including having duplicate
messages, and getting the system tied to AWS cloud environment. CloudKon uses DynamoDB [75] to filter
out the duplicate messages.

There are various commercial and open sourced queuing services available [81][82][83][84]. However,
they have many limitations. Traditional queue services usually have centralized architecture and cannot
scale well to handle today’s big data requirements. Providing features such as transactional support or
consumption acknowledgement makes it almost impossible for these queues to achieve low latency.
Another important feature is persistence. Many of the currently available options are in memory queues and
cannot guarantee persistence. There are only a few DMQs that can scale to today’s data analytics
requirement. Kafka is one of those that provides large scale message delivery with high throughput.
However, as it is shown in Figure 31 and Figure 32, Kafka has a long message delivery latency range.
Moreover, as we have shown in Figure 29, Kafka cannot provide a good load balance among its nodes.
That could cause Kafka to perform inefficiently in larger scales.

Today’s data analytics applications have moved from coarse granular tasks to fine granular tasks which
are shorter in duration and much more in number [14]. Such applications cannot tolerate a data delivery
middleware with an overhead in the order of seconds. It is necessary for a DMQ to be as efficient as
possible without adding substantial overhead to the workflow.

We propose Fast, Balanced and Reliable Distributed Message Queue (Fabriq), a persistent reliable
message queue that aims to achieve high throughput and low latency while keeping the near perfect load

I. Sadooghi, Dissertation Proposal Pages 44 of 74

balance even on large scales. Fabriq uses ZHT as its building block. ZHT is a persistent distributed hash
table that allows low latency operations and is able to scale up to more than 8k-nodes [23]. Fabriq leverages
ZHT components to support persistence, consistency and reliable messaging. Message delivery guarantee
is a necessity for a DMQ. This requirement becomes a challenge for the systems that aim to support large
scale delivery. A common practice is to keep multiple copies of the message on multiple servers of a DMQ.
Once the message gets delivered by a server, it will asynchronously inform other servers to remove their
local copies. However, since the informing process is asynchronous, there is a change of having a message
delivered to multiple clients before getting removed from the servers. Hence, the systems with such
procedure can generate duplicate messages.

The fact that Fabriq provides low latency makes it a good fit for HPC and MTC workloads that are
sensitive to latency and require high performance. Also, unlike the other compared systems (Figure 31 and
Figure 32), Fabriq provides a very stable delivery in terms of latency variance. Providing a stable latency
could be substantial for MTC applications, as well as towards having predictable performance. Finally,
Fabriq supports dynamic scale up/down during the operation. In summary, the contributions of Fabriq are:

•! It uses ZHT as its building block to implement a scalable DMQ.
•! Leveraging ZHT components, it supports persistence, consistency, reliable messaging and

dynamic scalability.
•! It guarantees the at least once delivery of the messages.
•! It achieves a near perfect load balance among its servers.
•! It provides high throughput and low latency outperforming Kafka and SQS. It also provides a

shorter latency variance than the other two systems.
•! It could be used on HPC environments that do not support Java (e.g. Blue Gene L/P

supercomputers).

The rest of this chapter is organized as follows. Section 4.2 discusses the Fabriq’s architecture. We first
briefly go over the architecture of ZHT and explain how Fabriq leverages ZHT to provide an efficient and
scalable DMQ. Later on section 4.3, we analyze the communication costs on Fabriq. Section 4.4 evaluates
the performance of the Fabriq in different metrics. Finally, section 4.5 summarizes this chapter and
discusses about the future work.

4.2! Fabriq Architecture and Design Principles

This section discusses the Fabriq design goals and demonstrates its architecture. As we discussed in the
previous section, many of the available alternative solutions do not guarantee persistence and reliability.
There are many ways to implement a distributed queue. A distributed queue should be able to guarantee
message delivery. It should also be reliable. Finally, a distributed queue has to be highly scalable. Most of
the straight forward design options include centralized manager component that limit the scalability.
Depending on the architecture, a Distributed Hash Table (DHT) could achieve high scalability as well as
maintaining other benefits. Fabriq uses a DHT as its building block of our queuing services. The simple put
and get methods of a DHT could be similar to the push and pop methods on a DMQ. We chose to use ZHT
which is a low overhead and low latency DHT, and has a constant routing time. It also supports persistence.
Before discussing the design details of Fabriq, we briefly review the architecture and the key features of
ZHT.

4.2.1! ZHT Overview

ZHT has a simple API with 4 major methods: 1. insert(key, value); 2. lookup(key); 3. remove(key), and
4. append(key,value). The key in ZHT is a simple ASCII character string, and the value can be a complex
object. A key look up in ZHT can take from 0 (if the key exists in the local server) to 2 network

I. Sadooghi, Dissertation Proposal Pages 45 of 74

communications. This helps providing the fastest possible look up in a scalable DHT. The following
sections discuss main features of ZHT.

a.! Network Communication

ZHT supports both TCP and UDP protocols. In order to optimize the communication speed, the TCP
connections will be cached by a LRU cache. That will make TCP connections almost as fast as UDP. In
Fabriq, we rely on the ZHT for the network communications. Having optimized TCP communications
enables Fabriq to achieve low latency on its operations.

b.! Consistency

ZHT supports replication to provide a reliable service. In order to achieve high throughput ZHT follows
a weak consistency model. The first two replications for each dataset are strongly consistent. That means
the data will be written to the primary and the secondary replicas. After completion of the write on the
secondary replica, the replication to the following replicas happens in an asynchronous fashion.

c.! Fault Tolerance

ZHT supports fault tolerance by lazily tagging the servers that are not being responsive. In case of
failure, the secondary replica will take the place of the primary replica. Since each ZHT server operates
independently from the other servers, the failure of a single server does not affect the system performance.
Every change to the in-memory DHT data is also written to the disk. Therefore, in case of system shut
down (e.g. reboot, power outage, maintenance, etc.) the entire data could be retrieved from the local disk of
the servers.

d.! Persistence

ZHT is an in-memory data-structure. In order to provide persistence, ZHT uses its own Non-Volatile
Hash Table (NoVoHT). NoVoHT uses a log based persistence mechanism with periodic check-pointing.

e.! Dynamic Scalability (membership)

ZHT supports dynamic membership. That means server nodes can join or leave the system any time
during the operation. Hence, the system scale can be dynamically changed on ZHT (and also Fabriq) during
the operation. Although dynamic scalability of Fabriq is supported, due to space limitation, we will explore
the evaluation of dynamic membership in Fabriq in future work.

4.2.2! Fabriq Design and Architecture

The main design goal of Fabriq is achieving high scalability, efficiency and perfect load balance. Since
Fabriq is using ZHT as its building block for saving messages and the communication purposes, and ZHT
has proven to be able to scale more than 8k-nodes, we can expect Fabriq to also scale as much as ZHT [23].

Fabriq distributes the queue load of each of the user queue among all of its servers. That means user
queues can co-exist on multiple servers. When a single server is down due to any reason such as failure or
maintenance, the system can continue serving all of the users with other servers. That enables the system to
provide a very high availability and reliability. Figure 36 depicts the message delivery of multiple user
queues in Fabriq.

I. Sadooghi, Dissertation Proposal Pages 46 of 74

Figure 36. Fabriq servers and clients with many user queues.

Like any other message queue, Fabriq has the simple push and pop functions. In addition to those,
Fabriq also supports peek method which is reading the contents of a message without removing it. In order
to implement the queue functionalities, we have used ZHT as our system building block and extended the
queue functionalities to it. Figure 37 shows the structure of a single Fabriq server. Besides the local
NoVoHT hash table, there are two different data structures on each server.

MessageId Queue: it is a local in-memory queue, used to keep the message IDs of a user queue that are
saved on the local NoVoHT on this server. The purpose of having this queue is to be able to get messages
of a user queue from the local hash table without having the message Ids, and also to distinguish the
messages of different user queues from each other. This way, each Fabriq server can independently serve
the clients without having the get the message Ids of a user queue from a central server.

Metadata List: each user queue has a unique Metadata list in the whole system which keeps the address
of the servers which have messages of this certain queue. The Metadata list only exists in one server. The
purpose of having this list is to reduce the chance of accesses to the servers that don’t have messages for a
user queue.

I. Sadooghi, Dissertation Proposal Pages 47 of 74

Figure 37. Structure of a Fabriq server.

Next, we discuss about the process of delivering messages by explaining the major methods on Fabriq.
Besides the below mentioned methods, Fabriq has peek and deleteQueue.

1)! createQueue
This method lets users define their own queue. The method gets a unique name for the queue (assume it

is “Qx”), and hashes the name. Based on the hashing value, the client sends a createQueue request to the
destination server. Then it will define a unique Metadata List for “Qx”. The Metadata List is supposed to
keep the address of the servers that keep the messages of “Qx”. It will also create a MessageId queue for
“Qx” for the future incoming messages to this server. A user queue can have more than one MessageId
queue in the whole system, but it has only one Metadata List. The Metadata List of a user queue resides on
the server with the same address as the hash value of that user queue name.

2)! push
Once a user queue has been defined, the client can push messages to it. The method has two inputs: the

queue name and the message contents. Fabriq uses Google Protocol Buffer for message serialization and
encoding. Therefore, the message contents input supports both string or user defined objects. Once the
push method is called, the client first generates a message Id using its IP Address, port, and a counter. The
message Id is unique on the whole system. Then, the client hashes the message Id and chooses the
destination server based on the hash value. Since the hashing function in Fabriq distributes the signature
uniformly among all of the servers, the message could land on any of the collaborating servers. Figure 38
depicts the push procedure on Fabriq. After receiving the push request, the destination server performs one
of the following based on the queue name:

I. Sadooghi, Dissertation Proposal Pages 48 of 74

Figure 38. Push operation.

a) If the MessageId queue exists in this server, it will add the new MessageId to the queue and then it
will make a put request to the underlying ZHT server. Since the hashing function used to hash the message
Id on the client side is the same as the ZHT server’s hashing function, the hash value will again determine
the local server itself as the destination. Thus the ZHT server will add the message to its local NoVoHT
server and there will be no additional network communications involved.

b) If the destination server does not have a MessageId queue with the name of this user queue, the
server first creates a new MessageId queue for the user queue on this server, and then it will push the
message to the MessageId queue and the local NoVoHT. Meanwhile, the Metadata List of this user queue
has to be updated with the information of the new server that keeps its messages. The server makes a
request to the server that keeps Metadata List of the user queue and adds its own address to that list. The
address of the destination server that keeps the Metadata list will be retrieved by hashing the name of the
user queue.

3)! pop
The pop method requests a message from a user queue on a local or remote Fabriq server. We want to

make sure to retrieve a message from a Fabriq server with the lowest latency and the minimum network
communication overhead.

A message of a certain queue may reside in any of the servers. The client can always refer to the
Metadata list of a certain queue to get the address of a server that keeps messages of that queue. However,
referring to the owner of the Metadata list in order to find a destination server adds network communication

I. Sadooghi, Dissertation Proposal Pages 49 of 74

overhead and degrades the performance. Moreover, on larger scales, accessing the single metadata list
owner could become a bottleneck for the whole system. In order to avoid the communication overhead, the
client first tries the following ways before directly going to the metadata List owner:

(1) When a client starts to run, it first checks if there is a local Fabriq server running on the current
node. The pop method first gets all of the messages on the local Fabriq server. The method sends the pop
request to the local server and keeps getting messages until the mId queue is empty. After that the server
returns a null value meaning that there is nothing left for this user queue on this server.

(2) After getting the null value, the client uses the second approach. It generates a random string and
makes a pop request to a random server based on its hash value. Please note that the random string is not
used as the message Id to be retrieved and it is only used to choose a remote server. If the destination server
has messages, the client saves the random string as the last known server for the later accesses of this user
queue. The client keeps popping messages from the last known server until it runs out of the messages for
this user queue and returns null value.

(3) Finally, after client finds out that the last know server has returned null, using the hash value of the
user queue name, it sends a request to the metadata list and gets the address of a server that has messages
for this queue. Once a server returns null, the client again goes back to the metadata list owner and asks for
a new server address.

Figure 39 shows a remote pop operation that only takes 1 hop. On the server side, the pop method looks
for the MessageId queue of the requested user queue: a) If the mId queue does not exist in this server or if
it is empty, the pop method returns a null value to the client. b) If the mId queue exists and has at least one
message Id, it will retrieve a mId from the queue and makes a ZHT get request. Since the message Ids on
the local queue have the same hash value as the local server’s Id, the get request which is supposed to hash
the message Id to find the server’s address will get the value from the local ZHT server. Then the pop
method will return that message to the client. If the retrieved mId was last one on the mId queue, the server
calls a thread to asynchronously update the Metadata List of this user queue and remove the server Id from
it.

4.2.3! Features

In this section, we discuss about some of the important features of Fabriq that makes it superior to other
state-of-the-art message queues.

Figure 39. A remote pop operation with a single hop cost.

I. Sadooghi, Dissertation Proposal Pages 50 of 74

a)! Load Balancing

One of the design goals of Fabriq is to achieve a near perfect load balance. We want to make sure that
the load from multiple queues gets distributed on all of the servers.

The load balancing of a system can highly depend on its message routing strategy. The systems with
deterministic message routing usually have a static load distribution. That means the messages of multiple
queues are statically split among all of the servers. This design is more convenient for the centralized and
hierarchical architectures. However, there are many limitations with such design. In these architectures, the
load balance on the system can fluctuate depending on the submission rate on different queues. On the
other hand, the systems with non-deterministic routing have a more dynamic load on the servers. In order to
have a dynamic load distribution, Fabriq Client generates a randomly generated key for each message.
Based on the hash value of the key, the message will be sent to a Fabriq server. Fabriq uses a uniformly
distributed hash function.

b)! Order of messages

Like many other distributed message queues, Fabriq cannot guarantee to keep the order of messages in
the whole queue [46][23]. However, it can guarantee the order of the messages in a single server. The
messages of a user queue are written in a local message queue on each server and the order of the messages
is kept in that queue. Therefore the order of messages delivery in the server will be kept.

The message delivery order can be important for some workflows in scientific applications or HPC, we
have provided a specific mode to define queues in a way that it keeps the message order. In this mode the
messages of the user queue are only submitted to a single server. Since the order is kept in the single server,
the order of the delivery will be kept as submitted.

c)! Message delivery guarantee

When it comes to large scale distributed systems, the delivery of the content becomes a real challenge.
Distributed systems cannot easily deal with this problem. On most of the loosely coupled systems where
each node controls its own state, the delivery is not guaranteed. In distributed Message Queues, the delivery
of the messages is an inevitable requirement. Therefore, most of the state of the art systems guarantee of
the delivery. It is hard for the independent servers to synchronize with each other at large scales. Therefore
they guarantee the delivery at the cost of producing duplicate messages. Thus, they guarantee at least once
delivery. Similarly in Fabriq, we guarantee at least once delivery.

Fabriq benefits from using a persistent DHT as its backbone. The push method in Fabriq makes a put
request on the ZHT. The data in each server is persistent. ZHT also provides replication. Replication can
prevent the loss of data in case of losing the hard disk on a node. The push and pop functions are both
blocking functions. The client only removes the message from the memory after the server returns a
success notification. There are two possible scenarios in case of the network or the server failure. If the
message somehow does not get delivered, the server will not send a success notification. Therefore the
push function times out and the message will be sent again. However, there is a possibility that the message
gets delivered and the notification signal gets lost. In such scenario, the client will again send the message.
This behavior could lead to duplicate messages on the system. However, the message destination is
determined by the hash value of its message Id (mId). That means a message with a certain mId will always
deliver to the same destination server. In case of the duplicate delivery, the ZHT destination server will
notice a rewrite on the same Id and throws an exception. Therefore the messages are pushed with no
duplicate messages.

Likewise, on the pop operation, the server only removes the message from ZHT when the client returns
a success notification. The pop method first performs a ZHT get on the server side. It only performs a ZHT
remove after it gets a notification from the client. If the client fails to receive the message or if it fails to
notify the server, the message will remain at the server. Obviously, if the delivery happens with an

I. Sadooghi, Dissertation Proposal Pages 51 of 74

unsuccessful server acknowledgement, the server will keep the message. The same message which is now a
duplicate message will be delivered on a later pop. Therefore Fabriq can only guarantee at least once
delivery. But the difference of Fabriq with Kafka and SQS is the fact that it may only generate duplicate
messages at the message pick up. The delivery of the message to the servers will not cause generating any
duplicates.

d)! Persistence

Fabriq extends the ZHT’s persistence strategy to provide persistence. In ZHT, a background thread
periodically writes the hash table data into the disk. Using ZHT, we can make sure the messages are safe in
the hash table. But Fabriq still needs to keep its own data structure persistent in the disk. Otherwise, in case
of system shut down of memory fail, Fabriq will not be able to retrieve messages from the hash table. In
order to save the MessageId Queues and the Metadata List on each server, we have defined a few key-value
pairs in the local NoVoHT table of each server. We save the list of the Metadata Lists and the MessageId
Queues in two key-value pairs. We also save the contents of each single queue or list on an object and save
those separately in the hash table. The background thread periodically updates the values of the data
structures on the hash table. In case of failure, the data structures could be rebuilt using the key for the list
of queues and lists in the hash table.

e)! consistency and fault tolerance

Fabriq extends the ZHT strategies for its fault tolerance and consistency. It supports a strong
consistency model on the first two replicas. The consistency is weak after the second replica. Fabriq also
implements the lazy tagging of failed servers. In case of failure the secondary replica will take over the
delivery. The metadata lists and the MessageId queues of each Fabriq server are locally saved on its ZHT.
Therefore they are automatically replicated on different servers. In case of the failure of a server, they can
be easily regenerated from the replica server.

Another strategy which helps Fabriq provide better fault tolerance is spreading each user queue over all
of the servers. In case of the failure of a server, without any need to link the client, the client will randomly
choose any other server and continue pushing/retrieving messages from the system. Meanwhile, the
secondary replica takes over and fills the gap.

f)! Multithreading

Fabriq supports multithreading on the client side. The client can do push or pop using multiple threads.
On the server side, Fabriq can handle simultaneous requests. But it does not use multithreading. The Fabriq
server uses an event-driven model based on epoll which is able to outperform the multithreaded model by
3x. The event-driven model also achieves a much better scalability compared to the multithreading
approach [23].

4.3! Network Communication Cost

In order to achieve low latency and high efficiency, it is important to keep the number of network
communications low. In Fabriq, we design our push and pop operation with the minimum possible number
of network communications. In this work, we consider each network communication as one hop.

Push cost: As shown in Figure 38, the push operation takes only one hop to complete. Since the update
of the metadata list is executed by a separate thread in a non-blacking fashion, we don’t count it as an extra
hop. Moreover, it only happens in the first push of each server. Therefore it does not count as an extra hop
for the push operation.

Pop cost: A pop operation communication cost varies depending on the situation of both the client and
the server. In order to be able to model the cost, we make a few assumptions and simplify our model. We
assume that the uniform hash function works perfectly, and evenly distributes the messages among all of
the servers. We analyze this assumption in practice in a later section.

I. Sadooghi, Dissertation Proposal Pages 52 of 74

We model the total cost of the pop operation in a system with a single consumer and multiple servers. s
shows the number of servers and m shows the total number of messages that was produced by the clients.
We model the cost in two situations: (a) when the total number of messages is more than the number of
servers (m>s); and (b) when the number of messages is less than the number of servers (m<s). The total
cost when m>s is shown below:

!"#$%&'"(#(*+,) =
/
(×0 +

/
(− 1 (− 1 ×1 + 5×3 + ((− 5)×1

(

,78

9:8

Based on the assumption of having perfect uniform distribution, we can assume that each server has m/s
messages at the beginning of the consumption. Since the consumer first consumes all of the messages on its
local server, the cost of the first m/s messages is going to be zero hop. After that, the consumer randomly
chooses a server among the s-1 that are left. The cost of finding a server with messages can be either 1 or 3.
The client saves the id of the last known server and only makes a random call when the last known server
has no messages left. After finding a new server, the client fetches all of the messages on the last known
server until the server is empty. The cost of all of these messages ((m/s)-1) is 1 hop. This process continues
until all of the messages of each server are consumed. We can conclude that on each of the s-1 remote
servers there will be a single message that is going to be retrieved with the cost of 1 or 3 hops and (m/s)-1
messages that are retrieved with the cost of exactly 1 hop. Having the total cost of the retrieval, we can
calculate the average cost of each pop operation by dividing the total cost by the number of total messages:

;<=>$?=&'"(#(*+,) = 1 − 1(+
(− 1
2/ &

We can induce the range of the cost from the average cost formula. The average cost ranges from <1 to
<1.5 hops. In the second scenario where the total number of messages is less than the number of servers, the
total cost is:

!"#$%&'"(#(*A,) =
((+ 5 − (/ + 1))×3 + ((/ + 1) − 5)×1

(

*

9:8

In this case, since each server gets one message at most, the cost of retrieving each message can be either
1 or 3. The average cost analysis is provided below:

;<=>$?=&'"(#(*A,) = 3 − / + 1
(

Again, we can induce that the average cost of pop in this case ranges from 2 to 3 hops.
In order to confirm our analysis, we ran an experiment with a single consumer and counted the average

number of hops on each pop operation. 0 shows the hop count in an experiment with 1 client and 64 servers.
The total number of messages in this run was 64,000 messages. The results show that there were 1,079
messages on the local queue with the cost of 0 hops. Based on the cost model the average cost of hops in this
experiment is 0.984 and the actual average cost is 1.053 hops, which means the model is fairly accurate.

The maximum communication cost in a system with multiple clients could be more than 3 hops. Since
multiple clients can request a queue metadata owner for a message server at the same time, there is a
chance that they both receive the same message server address from the metadata owner. Assuming the
message server has only 1 message for this queue, the first client can get that last message, and the second
client gets a null return value. In that case the client has to request the owner server again for another
message server. This process can be repeated for s times until the client gets a message. However the
chances of this occasion are very low. In fact, we have ran experiments in up to 128 instances scale and
have not experienced a pop operation with more than 5 hops.

I. Sadooghi, Dissertation Proposal Pages 53 of 74

Figure 40. Cumulative Distribution of 1 client and 64 servers.

4.4! Performance Evaluation

This section analyzes the performance of Fabriq in different scenarios, compared with the other state of
the two art Message Queue systems. But first, we summarize different features of Fabriq, compared with
Kafka and SQS. We compare the performance of the three systems in terms of throughput and latency. We
also compare the load balancing of the Kafka and Fabriq.

4.4.1! Fabriq, Kafka, and SQS

All three of the compared systems are fully distributed and are able to scale very well. However, they
use different techniques in their architecture. Fabriq uses a DHT as its building block, while Kafka uses
ZooKeeper [86] to handle the metadata management. SQS is closed source and there is minimal
information available about its architecture.

One of the important features of a distributed queue is its message retrieval policy. All of the Fabriq
servers act as a shared pool of messages together. That means all of the clients have equal chance of
accessing a message at the same time. This feature enables the system to provide better load balancing.
Moreover, having this feature, the producer can make sure that its messages are not going only to a specific
consumer, but all of the consumers. SQS provides this feature as well. In Kafka, messages that reside in a
broker (server) are only consumed by a single consumer at a time. The messages of that broker will only be
available when the consumer gets the number of messages it requires. This can cause load imbalance when
there is not enough messages in all of the brokers and degrade the system performance. This design goal in
Kafka was a tradeoff to provide the rewind feature. Unlike other conventional queue systems including
Fabriq and SQS, Fabriq provides message rewind feature that lets consumers to re-consume a message that
was already consumed. However, s mentioned before, having this feature means only one consumer can
access a broker at a time.

TABLE 4. summarizes the features of the three queuing services. Unlike the other two systems, Fabriq
does not support message batching yet. However this feature is currently supported in the latest version of
ZHT and can be easily integrated with Fabriq. We expect that batching is going to improve the throughput
significantly.

In Kafka brokers, messages are written as a continuous record and are only separated by the offset
number. This feature helps Kafka provides better throughput for continues log writing and reading from

I. Sadooghi, Dissertation Proposal Pages 54 of 74

producers and consumers. However, as mentioned before, this makes it impossible for multiple consumers
to access the same broker at the same time. SQS and Fabriq save messages as separate blocks of data that
enables those to provide simultaneous access on a single broker. All three of the systems provide the queue
abstraction for multiple clients. In Fabriq and SQS, the client can achieve this by creating new queues. In
Kafka, the client achieves this by defining new topics. Another important feature of Fabriq is the fact that it
is able to run on different types of supercomputers including Blue Gene series that don’t support Java.
Kafka is written in Java, and SQS is closed source. Scientists are unable to use those two systems for HPC
applications that run on such supercomputers.

TABLE 4. COMPARISON OF FABRIQ, SQS AND KAFKA

Feature Fabriq Kafka SQS
Persistence Yes Yes Yes

Delivery
Guarantee At least Once At least Once At least Once

Message
Order Inside Node Inside Node -

Replication Customizable Mirroring 3x

Shared Pool Yes No Yes

Batching
No

(Future
work)

Yes Yes

4.4.2! Testbed and Configurations

Since SQS runs on AWS, in order to keep our comparisons fair, we chose Amazon EC2 as our testbed.
The experiments scale from 1 to 128 instances. We chose m3.medium instances. Each instance has a single
CPU core, a 1 Gigabit network card, and 16 GB of SSD storage.

4.4.3! Load Balance

As discussed before, we believe that Fabriq provides a very good load balance. In this section we
compare the load balancing of Fabriq with Kafka by checking the message distribution on the server of
both systems. Since we don’t have access to the servers on SQS, we cannot include this system on this
experiment.

Figure 41 shows the number of messages received on each server of the two systems. In this
experiment, each producer has sent 1000 messages. The total number of messages is 64000. The results
show a very good load balance on Fabriq. The number of messages range from 940 to 1088 messages on 64
servers. We ran the experiment 5 times and found out that the error rate is less than 5% for at least 89% of
the servers, and is less than 9.5% in worst case. In Kafka, we observe a major load imbalance. The number
of messages per server ranged from 0 to 6352. More than half of the servers got less than 350 messages.

Considering the fact that each server can only be accessed by one consumer at a time, we can notice
that there will be a major load imbalance in the system. In a system with a 1 to 1 mapping between the
servers and the consumers, more than half of the consumers go idle after finishing the messages of the
underutilized servers and will wait for the rest of consumers to finish consuming their messages. Only after
that, they can consume the rest of the messages and finish the workload.

I. Sadooghi, Dissertation Proposal Pages 55 of 74

Figure 41. Load Balance of Fabriq vs. Kafka on 64 instances.

4.4.4! Latency

The latency of the message delivery is a very important metric for a distributed message queue. It is
important for a DMQ to provide low latency on larger scales in order to be able to achieve high efficiency.
Nowadays, many of the modern scientific and data analytics applications run tasks with the granularity of
sub-seconds [14]. Therefore, such systems will not be able to exploit a message queue service that delivers
messages in the order of seconds.

We measured latency by sending and receiving 1000, 50 bytes messages. Each instance ran 1 client and
1 server. Figure 42 shows the average latency of the three systems in push and pop operations.

I. Sadooghi, Dissertation Proposal Pages 56 of 74

Figure 42. Average latency of push and pop operations

All the three systems show stable latency in larger scale. Fabriq provides the best latency among the
three systems. Since the communications are local at the scale of 1 for Kafka and Fabriq, they both show
significantly lower latency than the other scales. We can notice that there is almost an order of magnitude
difference between the average latency of Fabriq and the other two systems. In order to find out the reason
behind this difference, we have generated the cumulative distribution on both push and pop operations for
the scales of 64 and 128 instances. According to Figure 43, at the 50 percentile, the push latency of Fabriq,
Kafka, and SQS are respectively 0.42ms, 1.03ms, and 11ms. However, the problem with the Kafka is
having a long tail on latency. At the 90 percentile, the push latency of Fabriq, Kafka, and SQS are
respectively 0.89ms, 10.4ms, and 10.8ms. We can notice that the range of latency on Fabriq significantly
shorter than the Kafka. At the 99.9 percentile, the push latency of Fabriq, Kafka, and SQS are respectively
11.98ms, 543ms, and 202ms.

I. Sadooghi, Dissertation Proposal Pages 57 of 74

Figure 43. Cumulative distribution of the push latency.

Similarly, Figure 44 shows a long range on the pop operations for Kafka and SQS. The maximum pop
operation time on the on Fabriq, Kafka, and SQS were respectively 25.5ms, 3221ms, and 512ms.

I. Sadooghi, Dissertation Proposal Pages 58 of 74

Figure 44. Cumulative distribution of the pop latency.

As we observed on from the plots, Fabriq provides a more stable latency with a shorter range than the
other two systems. Among the three systems, Kafka has the longest range of latency. There could be many
reasons for the poor performance of Kafka. Before starting to produce or consume, each node needs to get
the broker information from a centralized ZooKeeper. In larger scales, this could cause a long wait for
some of the nodes. Another reason for the long range of message delivery is the load imbalance. We have
already discussed about it on the previous sections.

4.4.5! Throughput

It is substantial for a DMQ to provide high throughput in different scales. In this section, we compare
the throughput of the three systems. We have chosen three different message sizes to cover small, medium
and large messages. All of the experiments were run on 1 to 128 instances with a 1 to 1 mapping between
the clients and servers in Fabriq and Kafka. In SQS, since the server is handled by AWS, we only run the
client that includes producer and consumer on each instance. !

Figure 45 shows the throughput of both push and pop operations for the short messages. Each client
sends and receives 1000 messages that are each 50 bytes long. Among the three systems, Fabriq provides
the best throughput on both push and pop operations. As mentioned before, due to problems such as bad
load distribution, and the problem of single access to the broker by the consumers, the throughput of Kafka
is almost an order of magnitude lower than the Fabriq.

I. Sadooghi, Dissertation Proposal Pages 59 of 74

Figure 45. Throughput for short (50 bytes) messages (msgs/sec).

All of the three systems are scaling almost nearly up to the scale of 128 instances. We can also notice
that the throughput of pop operation is higher than the push operation. The reason for that in Fabriq is that
the consumers first try to fetch the local messages. Also, in general we know that in a local system, the read
operation is usually faster than the write operation. Figure 46 compares the throughput of push and pop
operations for medium (256KB) and large (1MB) messages. At the largest scale, Fabriq could achieve 1091
MB/sec on push operation and 1793 MB/sec on pop operation. We notice that the throughput of the Kafka
for push and pop operations is respectively 759 MB/sec and 1433 MB/sec which is relatively close to what
Fabriq can achieve. The reason for that is the continuous writing and reading on the same block of file
instead of having separate files for different messages. This way, Kafka is able to deliver large messages
with the minimum overhead. Therefore it performs well while delivering larger messages.

Figure 46. Push and pop throughput for large messages (MB/sec).

I. Sadooghi, Dissertation Proposal Pages 60 of 74

4.5! Summary

A Distributed Message Queue can be an essential building block for distributed systems. A DMQ can
be used as a middleware in a large scale distributed system that decouples different components from each
other. It is essential for a DMQ to reduce the complexity of the workflow and to provide low overhead
message delivery. We proposed Fabriq, a distributed message queue that runs on top a Distributed Hash
Table. Fabriq was designed with the goal of achieving low latency and high throughput while maintaining
the perfect load balance among its nodes. Servers in Fabriq are fully independent. The load of each queue is
shared among all of the nodes of the Fabriq. This makes Fabriq achieve good load balance and high
availability. The network communication protocol in Fabriq is tuned to provide low latency. A push
operation could take 0 to 1 roundtrip communication between the servers. A pop operation takes 0, 1 or 3
operations for more than 99% of the operations.

The results show that Fabriq achieve higher efficiency and lower overhead than Kafka and SQS. The
message delivery latency on SQS and Kafka is orders of magnitude larger than Fabriq. Moreover, they
have a long range of push and pop latency which makes them unsuitable for applications that are sensitive
to operations with long tails. Fabriq provides a very stable latency throughout the delivery. Results show
that more than 90% of the operations take less than 0.9ms and more than 99% percent of the operations
take less than 8.3ms in Fabriq. Fabriq also achieves high throughput is large scales for both small and large
messages. At the scale of 128, Fabriq was able to achieve more than 90000 msgs/sec for small messages.
At the same scale, Fabriq was able to deliver large messages at the speed of 1.8 GB/sec.

There are many directions for the future work of Fabriq. One of the directions is to provide message
batching support in Fabriq. The latest version of ZHT which is under development supports message
batching. We are going to integrate Fabriq with the latest version of ZHT and enable the batching support.
Another future direction of this work is to enable our network protocol to support two modes for different
workflow scenarios. In this feature, the user will be able to choose between the two modes of heavy
workflows with lots of messages, and a moderate workflow with less number of messages. We are going to
optimize Fabriq for task scheduling purposes and leverage it in CloudKon [46] and MATRIX! [92] which
are both task scheduling and execution systems optimized for different environments and workflows.
Finally, inspired by the work stealing technique used in MATRIX [92], we are planning to implement
message-stealing on the servers in order to support pro-active dynamic load balancing of messages. Pro-
active load balancing of the messages helps balancing the server loads when the message consumption is
uneven.

5.! Related Work

This section introduces the related work of our proposal, which covers a wide range of research topics
and areas. The related work could be divided into several aspects, namely, the evaluation of the
performance of the cloud for scientific computing, distributed job scheduling systems, and the distributed
message queues.

5.1! The Evaluation of the Performance of the Cloud for Scientific Computing

There have been many researches that have tried to evaluate the performance of Amazon EC2 cloud
[34][21]Error! Reference source not found.[35]. However the experiments were mostly run on limited
types and number of instances. Therefore they lack the generality in their results and conclusions, as they
have not covered all instance types.

Ostermann et al. have evaluated Amazon EC2 using micro-benchmarks in different performance
metrics. However their experiments do not include the more high-end instances that are more competitive
to HPC systems. Moreover, the Amazon performance has improved since then and more features have been

I. Sadooghi, Dissertation Proposal Pages 61 of 74

added to make it useful for HPC applications [34]. In addition to the experiments scope of that paper, our
work provides the evaluations of the raw performance of a variety of the instances including the high-end
instances, as well as the performance of the real applications.

He et al. have deployed a NASA climate prediction application into major public clouds, and compared
the results with dedicated HPC systems results. They have run micro-benchmarks and real applications [20].
How-ever they only run their experiments on small number of VMs. We have evaluated the performance of
EC2 on larger scales.

Jackson has deployed a full application that performs massive file operations and data transfer on
Amazon EC2 [36]. The research mostly focuses on different storage options on Amazon. Walker evaluates
the performance of EC2 on NPB benchmarks and compares their performance on EC2 versus NCSA ABE
supercomputer on limited scale of 1 and 4 instances [23]. The paper suffices to bring the results without
detailed analysis and does not identify what this gap contributes to. Other papers have run the same
benchmark on different infrastructures and provided better analysis of the results [20][50].

Only a few of the researches that measure the applicability of clouds for scientific applications have
used the new Amazon EC2 cluster instances that we have tested [19][38][41]. Mehrotra compares the
performances of Amazon EC2 HPC instances to that of NASA’s Pleiades supercomputer [19]. However the
performance metrics in that paper is very limited. They have not evaluated different performance metrics of
the HPC instances. Ramakrishnan have measured the performance of the HPCC benchmarks [38]. They
have also applied two real applications of PARATEC and MILC.

Juve investigates different options of data manage-ment of the workflows on EC2 [41]. The paper
evaluates the runtime of different workflows with different under-lying storage options. The
aforementioned works have not provided a comprehensive evaluation of the HPC instances. Their
experiments are limited to a few metrics. Among the works that have looked at the new HPC instances, our
work is the only one that has evaluated all of the critical performance metrics such as memory, compute,
and network performance.

Jackson compares the conventional HPC platforms to EC2 using real applications on small scales. The
evaluation results show poor performance from EC2 virtual cluster running scientific applications.
However they haven’t used HPC instances, and have used instances with slower interconnects. Apart from
the virtualization overhead, the instances are not quite comparable to highly tuned nodes on the super
computers [39].

Many works have covered the performance of public clouds without having an idea about the host
performance of the nodes without virtualization overhead [34][20][21]. Younge has evaluated the
performance of different virtualization techniques on FutureGrid private cloud [31]. The focus of that work
is on the virtualization layer rather than the cloud infrastructure. Gupta in identifies the best fit for the cloud
among the HPC applications [50]. He investigates the co-existence of the cloud with super computers and
suggests a hybrid infrastructure run for HPC applications that fit into the cloud environment. The paper also
provides the cost analysis of running cloud on different HPC applications and shows where it is beneficial
to use cloud.

Many papers have analyzed the cost of the cloud as an alternative resource to dedicated HPC resources
[36][37][42]. Our work covers the storage services performance both on micro-benchmarks as well as the
performance while being used by data-intensive applications.

Our work is unique in a sense that it provides comprehensive evaluation of EC2 cloud in different
aspects. We first evaluate the performance of all instance types in order to better identify their potentials
and enable users to choose the best instances for different use case scenarios. After identifying the
potentials, we compare the performance of the public cloud and a private cloud on different aspects,
running both microbenchmarks and real scientific applications. Being able to measure the virtualization

I. Sadooghi, Dissertation Proposal Pages 62 of 74

overhead on the FermiCloud as a private cloud, we could provide a more realistic evaluation of EC2 by
comparing it to the FermiCloud.

Another important feature of the Cloud is having different services. We provide a broader view of EC2
by analyzing the performance of cloud services that could be used in modern scientific applications. More
scientific frameworks and applications have turned into using cloud services to better utilize the potential of
Cloud [37][46]. We evaluate the performance of the ser-vices such Amazon S3 and DynamoDB as well as
their open source alternatives running on cloud. Finally, this work is unique in comparing the cost of
different instances based on major performance factors in order to find the best use case for different
instances of Amazon EC2.

5.2! Distributed Job Scheduling Systems

The job schedulers could be centralized, where a single dispatcher manages the job submission, and
execution state updates; or hierarchical, where several dispatchers are organized in a tree-based topology;
or distributed, where each computing node maintains its own job execution framework.

Condor [6] was implemented to harness the unused CPU cycles on workstations for long-running batch
jobs. Slurm [5] is a resource manager designed for Linux clusters of all sizes. It allocates exclusive and/or
non-exclusive access to resources to users for some duration of time so they can perform work, and
provides a framework for starting, executing, and monitoring work on a set of allocated nodes. Portable
Batch System (PBS) [7] was originally developed to address the needs of HPC. It can manage batch and
inter-active jobs, and add the ability to signal, rerun and alter jobs. LSF Batch [57] is the load-sharing and
batch-queuing component of a set of workload management tools.

All these systems target as the HPC or HTC applications, and lack the granularity of scheduling jobs at
finer levels making them hard to be applied to the MTC applications. What’s more, the centralized
dispatcher in these systems suffers scalability and reliability issues. In 2007, a light-weight task execution
framework, called Falkon [18] was developed. Falkon also has a centralized architecture, and although it
scaled and performed magnitude orders better than the state of the art, its centralized architecture will not
even scale to petascale systems [12]. A hierarchical implementation of Falkon was shown to scale to a
petascale system in [12], the approach taken by Falkon suffered from poor load balancing under failures or
unpredictable task execution times. Although distributed load balancing at extreme scales is likely a more
scalable and resilient solution, there are many challenges that must be addressed (e.g. utilization,
partitioning). Fully distributed strategies have been proposed, including neighborhood averaging scheme
(ACWN) [56][57][58][59]. In [59], several distributed and hierarchical load balancing strategies are studied,
such as Sender/Receiver Initiated Diffusion (SID/RID), Gradient Model and a Hierarchical Balancing
Method. Other hierarchical strategies are explored in [58]. Charm++ [60] supports centralized, hierarchical
and distributed load balancing. In [60], the authors present an automatic dynamic hierarchical load
balancing method for Charm++, which scales up to 16K-cores on a Sun Constellation supercomputer for a
synthetic benchmark.

Sparrow is another scheduling system that focuses on scheduling very short jobs that complete within
hundreds of milliseconds [14]. It has a decentralized architecture that makes it highly scalable. It also
claims to have a good load balancing strategy with near optimal performance using a randomized sampling
approach. It has been used as a building block of other systems.

Omega presents a scheduling solution for scalable cluster using parallelism, shared-state and lock-free
optimistic concurrency control [61]. The difference of this work with ours is that it optimized for course-
grained scheduling of dedicated resources. CloudKon uses elastic resources. It is optimized for scheduling
of both HPC and MTC tasks.

Work stealing is another approach that has been used at small scales successfully in parallel languages
such as Cilk [60], to load balance threads on shared memory parallel machines [63][64][13]. However, the

I. Sadooghi, Dissertation Proposal Pages 63 of 74

scalability of work stealing has not been well explored on modern large-scale systems. In particular,
concerns exist that the randomized nature of work stealing can lead to long idle times and poor scalability
on large-scale clusters [13]. The largest studies to date of work stealing have been at thousands of cores
scales, showing good to excellent efficiency depending on the workloads [13]. MATRIX is an execution
fabric that focuses on running Many Task Computing (MTC) jobs [23]. It uses an adaptive work stealing
approach that makes it highly scalable and dynamic. It also supports the execution of complex large-scale
workflows. Most of these existing light-weight task execution frameworks have been developed from
scratch, resulting in code-bases of tens of thousands of lines of code. This leads to systems which are hard
and expensive to maintain, and potentially much harder to evolve once initial prototypes have been
completed. This work aims to leverage existing distributed and scalable building blocks to deliver an
extremely compact distributed task execution framework while maintaining the same level of performance
as the best of breed systems.

To our knowledge CloudKon is the only job management system to support both distributed MTC and
HPC scheduling. We have been prototyping distributed job launch in the Slurm job resource manager under
a system called Slurm++ [22] , but that work is not mature enough yet to be included in this study.
Moreover, CloudKon is the only distributed task scheduler that is designed and optimized to run on public
cloud environment. Finally, CloudKon has an extremely compact code base, at 5% of the code base of the
other state-of-the-art systems.

5.3! Distributed Message Queues

Enterprise queue systems are not new in the distributed computing area. They have been around for
quite a long time and have played a major role in asynchronous data movement. Systems like JMS [84] and
IBM Websphere MQ [83] have been used in distributed applications. However, these systems have some
limitations that make them unusable for today’s big data computing systems. First, these systems usually
add significant overhead to the message flow that makes them incapable of handling large scale data flows.
JMS supports delivery acknowledgement for each message. IBM Websphere MQ provides atomic
transaction support that lets the publisher submit a message to all of the clients. These features can add
significant overhead to the process. It is not trivial to handle these features for the larger scale systems. In
general, traditional queuing services have many assumptions that prevent them from scaling well. Also,
many of these traditional services do not support persistence.

ActiveMQ [82] is a message broker in Java that supports AMQP protocol. It also provides a JMS client.
ActiveMQ provides many configurations and features. But it does not support any message delivery
guarantee. Messages could be delivered twice or even get lost. Other researches have shown that it cannot
scale very well in larger scales [76].

RabbitMQ [81] is a robust enterprise queuing system with a centralized manager. The platform provides
option to choose between performance and reliability. That means enabling persistence would highly
degrade the performance. Other than the persistence, the platform also provides options like delivery
acknowledgement and mirroring of the servers. The message latency on RabbitMQ is large and not
tolerable for any application that is sensitive to the efficiency. Being centralized makes RabbitMQ not scale
very well. It also makes it unreliable because of having a single point of failure. Other researches have
shown that it cannot perform well in larger scales as compared to scalable systems like Kafka [3].

Besides the traditional queuing systems, there are two modern queuing services that have got quite
popular among commercial and open source user community. Those two are Apache Kafka [2] and
Amazon Simple Queue Service (SQS) [16]. Kafka is an open source, distributed publish and consume
service which is introduced by LinkedIn. The design goal of Kafka is to provide a system that gathers the
logs from a large number of servers, and feeds it into HDFS [85] or other analysis clusters. Other log
management systems that were provided by other big companies are usually saving data to offline file
systems and data warehouses. That means they do not have to provide low latency. However, Kafka can

I. Sadooghi, Dissertation Proposal Pages 64 of 74

deliver data to both offline and online systems. Therefore, it needs to provide low latency on message
delivery. Kafka is fully distributed and provides high throughput. We discuss more about Kafka later in a
separate section.

Amazon SQS is a well-known commercial service which provides reliable message delivery in large
scales. SQS is persistent. Like many other Amazon AWS services [15], SQS is reliable and highly available.
It is fully distributed and highly scalable. We discuss more about SQS and compare its features to Fabriq in
another section.

6.! Accomplishments and Conclusions

We highlight the current state of the proposed work towards developing next-generation job
management system for extreme-scale computing. The papers that have been published are an important
metric to measure the progress and to highlight the accomplishments achieved so far. We then draw the
conclusions achieved so far.

6.1! Accomplishments

So far, we have achieved several accomplishments. We have achieved the following goals in this work:

(1)! A comprehensive study on scientific applications characteristics and evaluation of their
performance on clouds. The study analyzes the potentials of the cloud as an alternative
environment for scientific computing [102].

(2)! A distributed job scheduling system (CloudKon) design that suites the cloud’s characteristics. A
system that is able to support HPC and MTC workloads. We conduct a performance evaluation up
to 1024 instances scale. [46]

(3)! A distributed message queuing (Fabriq) system that is scalable and provides ultra low latency.
Fabriq exploits distributed hash tables as a building block to deliver a highly scalable solution.
The proposed system is able to achieve near perfect load balancing and sub-milliseconds
distribution latency. Fabriq offers support for substantial features such as persistence, consistency,
reliability, dynamic scalability, and message delivery guarantees. [103]

The papers and documents that have been published based on our working progress are listed as follows:

Conference Papers:
(1)! Iman Sadooghi, Ke Wang, Shiva Srivastava, Dharmit Patel, Dongfang Zhao, Tonglin Li, Ioan

Raicu . “FaBRiQ: Leveraging Distributed Hash Tables towards Distributed Publish-Subscribe
Message Queues “, 2nd IEEE/ACM International Symposium on Big Data Computing (BDC)
2015.

(2)! Iman Sadooghi, Sandeep Palur, Ajay Anthony, Isha Kapur, Karthik Belagodu, Pankaj Purandare,
Kiran Ramamurty, Ke Wang, Ioan Raicu. “Achieving Efficient Distributed Scheduling with
Message Queues in the Cloud for Many-Task Computing and High-Performance Computing”,
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2014.

(3)! Ke Wang, Ning Liu, Iman Sadooghi, Xi Yang, Xi Zhou, Tonglin Li, Michael Lang, Xian-He Sun,
Ioan Raicu, "Overcoming Hadoop Scaling Limitations through Distributed Task Execution," in
Proceedings of the IEEE International Conference on Cluster Computing 2015.

(4)! Tonglin Li, Ke Wang, Shiva Srivastava, Dongfang Zhao, Kan Qiao, Iman Sadooghi, Xiaobing
Zhou, Ioan Raicu “A Flexible QoS Fortified Distributed Key-Value Storage System for the Cloud”
in IEEE International Conference on Big Data 2015.

I. Sadooghi, Dissertation Proposal Pages 65 of 74

Journal Papers:
(5)! Iman Sadooghi, Jesus Hernandez Martin, Tonglin Li, Kevin Brandstatter, Yong Zhao, Ketan

Maheshwari, Tiago Pais Pitta de Lacerda Ruivo, Steven Timm, Gabriel Garzoglio, Ioan Raicu.
“Understanding the performance and potential of cloud computing for scientific applications”
IEEE Transactions on Cloud Computing PP (99), (2015).

(6)! Tonglin Li, Xi Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi, Zhe Zhang, Ioan Raicu, "A
Convergence of KeyValue Storage Systems from Clouds to Supercomputers", Journal of
Concurrency and Computation: Practice and Experience (CCPE), 2015.

(7)! Ke Wang, Ke Qiao, Iman Sadooghi, Xi Zhou, Tonglin Li, Michael Lang, Ioan Raicu. “Load-
balanced and locality-aware scheduling for data-intensive workloads at extreme scales.”, Journal
of Concurrency and Computation: Practice and Experience (CCPE), 2015.

Workshop Papers:
(8)! Dongfang Zhao, Xu Yang, Iman Sadooghi, Gabriele Garzoglio, Steven Timm, Ioan Raicu.

"High-Performance Storage Support for Scientific Applications on the Cloud", Invited Paper,
ACM ScienceCloud 2015.

(9)! Dharmit Patel, Faraj Khasib, Iman Sadooghi, Ioan Raicu. "Towards In-Order and Exactly-Once
Delivery using Hierarchical Distributed Message Queues", 1st International Workshop on Scalable
Computing For Real-Time Big Data Applications (SCRAMBL'14) at IEEE/ACM CCGrid 2014.

Extended Abstracts and Posters:
(10)! Iman Sadooghi, Ioan Raicu. "Understanding the Cost of the Cloud for Scientific Applications",

2nd Greater Chicago Area System Research Workshop (GCASR), 2013.
(11)! Iman Sadooghi, Ioan Raicu. “Towards Scalable and Efficient Scientific Cloud Computing”,

Doctoral Showcase, IEEE/ACM Supercomputing/SC 2012.
(12)! Iman Sadooghi, Dongfang Zhao, Tonglin Li, Ioan Raicu. “Understanding the Cost of Cloud

Computing and Storage”, 1st Greater Chicago Area System Research Workshop, 2012.
(13)! Tonglin Li, Chaoqi Ma, Jiabao Li, Xiaobing Zhou, Ke Wang, Dongfang Zhao, Iman Sadooghi,

Ioan Raicu “GRAPH/Z: A Key-Value Store Based Scalable Graph Processing System” 2015.
(14)!
(15)! Dongfang Zhao, Chen Shou, Zhao Zhang, Iman Sadooghi, Xiaobing Zhou, Tonglin Li, Ioan

Raicu. "FusionFS: a distributed file system for large scale data-intensive computing", 2nd Greater
Chicago Area System Research Workshop (GCASR), 2013.

Journal Papers under Review:
(16)! Dongfang Zhao, Ke Wang, Kan Qiao, Tonglin Li, Iman Sadooghi, Ioan Raicu,! “Toward High-

performance Key-value Stores through GPU Encoding and Locality-aware Scheduling”!Journal of
Parallel and Distributed Computing.

(17)! Ke Wang, Anupam Rajendran, Xiaobing Zhou, Kiran Ramamurthy, Iman Sadooghi, Michael
Lang, Ioan Raicu. “Distributed Load-Balancing with Adaptive Work Stealing for Many-Task
Computing on Billion-Core Systems”, Journal of ACM Transactions on Parallel Computing.

Also, there are some technical reports ([93][94][95][96][97]) that we have published online.

6.2! Conclusions

According to our achievements and the findings on our papers, we are able to make the following
conclusions.

I. Sadooghi, Dissertation Proposal Pages 66 of 74

Cloud Computing has potentials to run Scientific Applications: We showed that certain series of
compute instances and other type of resources have the ability to perform closely to the HPC clusters and
Supercomputers. Therefore there is a potential to provide tools, such as scheduling systems to run scientific
workloads and applications.

We present a comprehensive, quantitative study to evaluate the performance of the Amazon EC2 for the
goal of running scientific applications. Our study first covers the performance evaluation of different
compute instances in terms of compute, network, memory and storage. In terms of compute performance,
only a few of the instances that are from a certain group were able to meet the requirements of the scientific
workloads. We also noticed that there is need for improvements on network performance. Moreover, we
compared the performance of the real distributed applications on the cloud and observed that their
performance is close to each other. We also have to state that the new generation of the AWS instances
which were released after this research was conducted can possibly satisfy the needs of the scientific and
HPC applications [reference needed].

Distributed Message Queues can be used as building blocks for distributed scheduling: We
designed and implemented CloudKon, a distributed job scheduling system using SQS as its building block.
We assessed the throughput, latency and the scalability of SQS to make sure that it could be used as a
building block for our scheduling system. Using SQS gave us the ability to design a powerful and scalable
scheduling system with loosely coupled components. We were able to prove that it is a good idea to use
cloud services within distributed applications that run inside the cloud. It is not trivial to create complex
distributed applications that could perform well on cloud. Using cloud services will make it significantly
easier and faster to implement these applications and guarantees the optimal performance and utilization.
We were able to support both HPC and MTC workloads on CloudKon by using SQS.

The evaluation of the CloudKon proves that it is highly scalable and achieves a stable performance over
different scales. We have tested our system up to 1024 instances. CloudKon was able to outperform other
systems like Sparrow and MATRIX on scales of 128 instances or more in terms of throughput. CloudKon
achieves up to 87% efficiency running homogeneous and heterogeneous fine granular sub-second tasks.
Compared to the other systems like Sparrow, it provides lower efficiency on smaller scales. But on larger
scales, it achieves a significantly higher efficiency.

Distributed Hash Tables are a building block for large scale system services: We motivated that
Distributed Hash Tables (DHT) are a viable building block for large scale distributed applications and tools.
This statement lays the foundations for developing distributed system services that are highly available,
scalable and reliable at larger scales. We implemented Fabriq, a distributed message queue that runs on top
of ZHT. ZHT is a scalable DHT that is proven to perform well at larger scales and achieve sub-
milliseconds latency. It is also reliable and persistent. That makes it a perfect match to be used as a building
block of a distributed application. The design goal of Fabriq was to achieve low latency and high
throughput while maintaining the perfect load balance among its nodes at larger scales. We used ZHT as a
building block for Fabriq.

The results show that Fabriq outperforms Kafka and SQS in different metrics. Fabriq has shown to have
low overhead on the data movement process. Thus it achieves a higher efficiency than the other two
systems. It also has a faster message delivery. Message delivery latency on SQS and Kafka is orders of
magnitude more than Fabriq. Moreover, they have a long range of push and pop latency which makes them
unsuitable for applications that are sensitive to operations with long tails. Fabriq provides a very stable
latency throughout the delivery. Results show that more than 90% of the operations take less than 0.9ms
and more than 99% percent of the operations take less than 8.3ms in Fabriq. Fabriq also achieves high
throughput is large scales for both small and large messages. At the scale of 128, Fabriq was able to
achieve more than 90000 msgs/sec for small messages. At the same scale, Fabriq was able to deliver large
messages at the speed of 1.8 GB/sec.

I. Sadooghi, Dissertation Proposal Pages 67 of 74

7.! Future Work

The achievements we have accomplished to data have laid the foundations for a broad yet clear sort of
future work. So far we were able to: (1) Assess the ability of the cloud for running scientific applications. (2)
Design and implement a distributed job scheduling system that runs on Amazon AWS using SQS. (3)
Design and implemented a distributed and scalable message queue service that could potentially replace SQS.
All the future work aims to push our resource management system to scalable production systems that could
run a variety of applications on the cloud environment efficiently. We first list all the future directions of our
work. Then we present our plans for the future publications, which are followed by a rough timeline of our
work towards the final dissertation.

7.1! Future Directions
The future directions of our work are listed as follows:

Improve the Efficiency and Flexibility via a new Scheduling System: In order to further improve the
efficiency of CloudKon, we need to replace SQS with a new DMQ that works more efficiently. We have
designed and implemented Fabriq with the goal of achieving a better efficiency than the available DMQs.
We plan to integrate the Fabriq with an all new distributed job scheduling system. The design of the new
scheduling system is based on the CloudKon design. It uses Fabriq as its building block to distribute the jobs
to different workers. Fabriq’s latency is orders of magnitude lower than the SQS. Moreover, having access to
the source code, we will be able to implement a tightly coupled, integrated system. Using Fabriq, the new
system will be able to distribute the jobs much more efficiently with a significantly lower latency. Since the
Fabriq is written in C++, we will implement the new scheduler system using C++ in order to further improve
the performance.

The new scheduling system will not be tied down the Amazon AWS cloud. It is a more flexible system
that can be deployed on any platform with supports C++ compiler. That includes Amazon AWS and many
other cloud environments. We are also planning to run our system on new environments including
OpenStack private cloud and even supercomputers and compare our achievements with the old CloudKon
and the other state of the art scheduling and resource management systems.

Enhancing Flexibility of the Fabriq by Enabling Priority Queues: modern applications could have
complex data delivery requirement. Supporting priority queues could help these applications with their
complex requirements. We are planning to provide support for built-in priority queues in Fabriq. The new
Fabriq will be able to support messages with different priorities. That means the user can make sure that at
each time on each server, the messages with the higher priority will be delivered earlier. Our priority queues
will provide the inside sorting time of O(log n). Priority queue support opens up new usage directions for
Fabriq. Many applications can benefit from this feature.

Efficient Scheduling of Task dependency in Direct Acyclic Graphs (DAG): The first version of
CloudKon supports both loosely coupled MTC jobs and the HPC jobs with dependencies. However, the
current architecture in CloudKon is not able to achieve an optimum performance and efficiency on HPC jobs.
One of our main directions for the new job scheduling design is improve the efficiency of the HPC jobs by
providing built-in support for Directed Acyclic Graph (DAG) based tasks and task with dependency on each
other. In order to support tasks with dependency, we will make use of the priority queue support of Fabriq.
We will redefine the DAG tasks with more sections within themselves. Each task will have a priority and a
list of children. The priority of the children tasks of each task will increase after its execution. The DAG
support feature can be very useful for different MTC and HPC workloads.

Solving a new set of problems with CloudKon: The ultimate goal of this work is to efficiently schedule
and execute modern data-intensive MTC workloads with finer grained tasks. It is important for our
scheduling system to be able to run data-intensive applications. For the future directions of our scheduler, we
will focus on Hadoop Map-Reduce jobs and Spark in-memory jobs Error! Reference source not found..

I. Sadooghi, Dissertation Proposal Pages 68 of 74

-! Hadoop Map-Reduce Workloads: Hadoop is one of the most useful applications that has been able
to improve the data analytics significantly. Supporting Hadoop workloads could be essential for our
resource management system. On Hadoop jobs, each Reduce task is dependent on one or more Map
tasks. Using the task dependency and DAG support could help us extend the design to support Map-
Reduce tasks. We will be able to test our scheduler against Map-Reduce workload trends and compare
the results with the Hadoop Yarn scheduler [reference needed]. We expect to provide a significant
speed-up in terms of throughput and latency.

-! Spark In-memory Workloads: Spark is another useful data analytics application that proposes
improving the performance by orders of magnitudes via keeping the data in memory. We are planning
to extend the design of CloudKon to enable the support of Spark workloads.

Reducing the Scheduling and Distribution overhead per Task: Another future direction of this work
is to improve the efficiency and performance of the scheduling by minimizing the scheduling overhead per
task. We can achieve this by providing task batching on our DMQ. We are planning to extend the Fabriq
design to provide support for batch tasks. The distribution and delivery process of each batch will take the
same time as it does for a single message. This could significantly improve the throughput of Fabriq, and
therefore improve the throughput of the new scheduler.

 Optimum Load Balancing on different Scenarios: As we stated on the section 4.3 of chapter 4, Fabriq
provides near optimum load balancing among its servers while distributing and delivering the messages. It
achieves the perfect load balancing by making use of the static hashing over its servers. However, that is
only true when Fabriq has a static set of servers running from the beginning of its bootstrap. Fabriq supports
dynamic membership. That means it is possible to add or remove servers in the middle of the process
without crashing the system. The perfect load balancing is not guaranteed anymore if one makes use of the
dynamic membership. That means if a server is added or removed from the Fabriq dynamically, it will not be
able to achieve a perfect load balance any more. One of the future directions of Fabriq is to provide perfect
load balance under this corner case situation.

Distributed Monitoring Via Distributed Message Queues: Monitoring has proven to be essential for
distributed systems. It is very important to understand how the resources of a distributed system are utilized
by applications. Monitoring resources of a large scale distributed system is not trivial with a centralized
traditional monitoring solution. Distributed Message Queues could play an essential part to provide a
distributed solution for large scale system monitoring [101]. One of the future directions of this work is to
design and implement a distributed monitoring system using Fabriq. Providing an efficient system, Fabriq
will be able to serve a distributed monitoring solution well.

7.2! Plans for future publications

We have clear plans to submit for publications during the period of the next year; the goal is to publish at
least 1 more journal paper (extending the CloudKon and Fabriq conference papers), as well as at least one
more conference paper. The list of the venues that we are planning to submit our work on along with their
submission deadlines are as follows.

(1)! IEEE International Conference on Distributed Computing Systems (ICDCS 2016), December 15
(2)! IEEE International Conference on Cloud Computing (ClOUD 2016), January 2016
(3)! ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC’16), January
2016

(4)! IEEE/ACM International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC’16), April 2016

(5)! IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2016),
July 2016

(6)! IEEE/ACM International Symposium on Big Data Computing (BDC 2016), July 2016
(7)! IEEE Transaction on Parallel and Distributed Systems Journal (TPDS), Anytime

I. Sadooghi, Dissertation Proposal Pages 69 of 74

(8)! IEEE Transaction on Cloud Computing Journal (TCC), Anytime

7.3! Timeline

The timeline of my future work of the next year is roughly based on the publication plans. I will take my
Ph.D comprehensive exam in September 2015. I plan to do my Ph.D final dissertation defense within a year
from that date. The steps are listed in Table 5

Table 5: Tasks toward the final Ph.D dissertation defense

Date Description
September 2015 Comprehensive exam
July 2016 Dissertation Draft sent to committee
September 2016 Dissertation Defense
Fall 2016 Graduation

8.! References

[1]! M. Wall, “Big Data: Are you ready for blast-off”, BBC Business News, March 2014
[2]! I. Raicu, P. Beckman, I. Foster. “Making a Case for Distributed File Systems at Exascale”, Invited

Paper, LSAP, 2011
[3]! V. Sarkar, S. Amarasinghe, et al. “ExaScale Software Study: Software Challenges in Extreme Scale

Systems”, ExaScale Computing Study, DARPA IPTO, 2009.
[4]! M. A. Jette et. al, “Slurm: Simple linux utility for resource management”. In Lecture Notes in

Computer Sicence: Proceedings of Job Scheduling Strategies for Prarallel Procesing (JSSPP) 2003
(2002), Springer-Verlag, pp. 44-60.

[5]! D. Thain, T. Tannenbaum, M. Livny, “Distributed Computing in Practice: The Condor Experience”
Concurrency and Computation: Practice and Experience 17 (2-4), pp. 323-356, 2005.

[6]! J. Frey, T. Tannenbaum, I. Foster, M. Frey, S. Tuecke. “Condor-G: A Computation Management
Agent for Multi-Institutional Grids,” Cluster Computing, 2002.

[7]! B. Bode et. al. “The Portable Batch Scheduler and the Maui Scheduler on Linux Clusters,” Usenix, 4th
Annual Linux Showcase & Conference, 2000.

[8]! W. Gentzsch, et. al. “Sun Grid Engine: Towards Creating a Compute Power Grid,” 1st International
Symposium on Cluster Computing and the Grid (CCGRID’01), 2001.

[9]! C. Dumitrescu, I. Raicu, I. Foster. “Experiences in Running Workloads over Grid3”, The 4th
International Conference on Grid and Cooperative Computing (GCC 2005), 2005

[10]!I. Raicu, et. al. “Toward Loosely Coupled Programming on Petascale Systems,” IEEE/ACM Super
Computing Conference (SC’08), 2008.

[11]!I. Raicu, et. al. “Falkon: A Fast and Light-weight tasK executiON Framework,” IEEE/ACM SC 2007.
[12]!S. Melnik, A. Gubarev, J. J. Long, G. Romer,S. Shivakumar, M. Tolton, and T. Vassilakis. “Dremel:

Interactive Analysis of Web-Scale Datasets. Proc.” VLDB Endow., 2010
[13]!A. Rajendran, Ioan Raicu. "MATRIX: Many-Task Computing Execution Fabric for Extreme Scales",

Department of Computer Science, Illinois Institute of Technology, MS Thesis, 2013
[14]!K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. “Sparrow: distributed, low latency scheduling”.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP '13).
ACM, New York, NY, USA, 69-84.

I. Sadooghi, Dissertation Proposal Pages 70 of 74

[15]!Amazon Elastic Compute Cloud (Amazon EC2), Amazon Web Services, [online] 2013,
http://aws.amazon.com/ec2/

[16]!Amazon SQS, [online] 2014, http://aws.amazon.com/sqs/
[17]!W. Voegels. “Amazon DynamoDB, a fast and scalable NoSQL database service designed for Internet-

scale applications.” http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html, January 18,
2012

[18]!L. Ramakrishnan, et. al. “Evaluating Interconnect and virtualization performance for high performance
computing”, ACM Performance Evaluation Review, 40(2), 2012.

[19]!P. Mehrotra, et. al. “Performance evaluation of Amazon EC2 for NASA HPC applications”. In
Proceedings of the 3rd workshop on Scientific Cloud Computing (ScienceCloud '12). ACM, NY, USA,
pp. 41-50, 2012.

[20]!Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. “Case study for running HPC applications in
public clouds,” In Proc. of ACM Symposium on High Performance Distributed Computing, 2010.

[21]!G. Wang and T. S. Eugene. “The Impact of Virtualization on Network Performance of Amazon EC2
Data Center”. In IEEE INFOCOM, 2010.

[22]!P. Mell and T. Grance. “NIST definition of cloud computing.” National Institute of Standards and
Technology. October 7, 2009.

[23]!T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran, Z. Zhang, I. Raicu. “ZHT: A Light-
weight Reliable Persistent Dynamic Scalable Zero-hop Distributed Hash Table”, IEEE International
Parallel & Distributed Processing Symposium (IPDPS) 2013.

[24]!Amazon EC2 Instance Types, Amazon Web Services, [online] 2013,
http://aws.amazon.com/ec2/instance-types/ (Accessed: 2 November 2013)

[25]!Amazon Simple Storage Service (Amazon S3), Amazon Web Services, [online] 2013,
http://aws.amazon.com/s3/ (Accessed: 2 November 2013)

[26]!Iperf, Souceforge, [online] June 2011, http://sourceforge.net/projects/iperf/ (Accessed: 2 November
2013)

[27]!A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. “HPL”, (netlib.org), [online] September 2008,
http://www.netlib.org/benchmark/hpl/ (Accessed: 2 November 2013)

[28]!J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the MPI standard," Tech. Rep.
CS-95-274, University of Tennessee, Jan. 1995

[29]!Release: Amazon EC2 on 2007-07-12, Amazon Web Services, [online] 2013,
http://aws.amazon.com/releasenotes/Amazon-EC2/3964 (Accessed: 1 November 2013)

[30]!K. Yelick, S. Coghlan, B. Draney, and R. S. Canon, “The Magellan report on cloud computing for
science,” U.S. Department of Energy, Washington DC, USA, Tech. Rep., 2011. Available:
http://www.nersc.gov/assets/StaffPublications/2012/MagellanFinalReport.pdf

[31]!A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C. Fox, “Analysis of
virtualization technologies for high performance computing environments,” International Conference
on Cloud Computing, 2011

[32]!Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu, T. Stef-Praun, and M. Wilde.
“Swift: Fast, reliable, loosely coupled parallel computation”, IEEE Int. Workshop on Scientific
Workflows, pages 199–206, 2007

[33]!I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford. “Towards Loosely-Coupled
Programming on Petascale Systems”, IEEE/ACM Supercomputing, pages 1-12, 2008

[34]!S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. “A Performance
Analysis of EC2 Cloud Computing Services for Scientific Computing”. In Cloudcomp, 2009

[35]!S. L. Garfinkel, “An evaluation of amazon's grid computing services: EC2, S3 and SQS,” Computer
Science Group, Harvard University, Technical Report, 2007, tR-08-07

I. Sadooghi, Dissertation Proposal Pages 71 of 74

[36]!K. R. Jackson, K. Muriki, L. Ramakrishnan, K. J. Runge, and R. C. Thomas. “Performance and cost
analysis of the supernova factory on the amazon aws cloud”. Scientific Programming, 19(2-3):107-119,
2011

[37]!J.-S. Vockler, G. Juve, E. Deelman, M. Rynge, and G.B. Berriman, “Experiences Using Cloud
Computing for A Scientific Workflow Application,” 2nd Workshop on Scientific Cloud Computing
(ScienceCloud), 2011

[38]!L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. Bradshaw, R. S. Canon, S. Coghlan, I. Sakrejda, N.
Desai, T. Declerck, and A. Liu. “Magellan: experiences from a science cloud”. In Proceedings of the
2nd international workshop on Scientific cloud computing, pages 49–58, San Jose, USA, 2011

[39]!K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman, and N. Wright,
“Performance Analysis of High Performance Computing Applications on the Amazon Web Services
Cloud,” in 2nd IEEE International Conference on Cloud Computing Technology and Science. IEEE,
2010, pp. 159–168

[40]!J. Lange, K. Pedretti, P. Dinda, P. Bridges, C. Bae, P. Soltero, A. Merritt, “Minimal Overhead
Virtualization of a Large Scale Supercomputer,” In Proceedings of the 2011 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2011), 2011.

[41]!G. Juve, E. Deelman, G.B. Berriman, B.P. Berman, and P. Maechling, 2012, “An Evaluation of the
Cost and Performance of Scientific Workflows on Amazon EC2”, Journal of Grid Computing, v. 10, n.
1 (mar.), p. 5–21

[42]!R. Fourer, D. M. Gay, and B. Kernighan, “AMPL: a mathematical programming language” in
Algorithms and model formulations in mathematical programming, 1st Ed. New York, NY: Springer-
Verlag New York, Inc., 1989, ch., pp. 150–151.

[43]!FermiCloud, Fermilab Computing Sector, [online], http://fclweb.fnal.gov/ (Accessed: 25 April 2014)
[44]!R.Moreno-vozmendiano, S. Montero, I. Llorente.” IaaS Cloud Architecture: From Virtualized

Datacenters to Federated Cloud Infrastructures: Digital Forensics”, Computer (Long Beach, CA)
[45]!K. Hwang, J. Dongarra, and G. C. Fox,” Distributed and Cloud Computing: From Parallel Processing

to the Internet of Things”. Morgan Kaufmann, 2011
[46]!I. Sadooghi, S. Palur, A. Anthony, I. Kapur, K. Ramamurty, K. Wang, and I. Raicu. “Achieving

Efficient Distributed Scheduling with Message Queues in the Cloud for Many-Task Computing and
High-Performance Computing.” In Proc. 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid’14). 2014

[47]!T. L. Ruivo, G. B. Altayo, G. Garzoglio, S. Timm, K. Hyun, N. Seo-Young, and I. Raicu. “Exploring
Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing.”
CCGrid’14. 2014

[48]!Macleod, D. (2013). OpenNebula KVM SR-IOV driver.
[49]!K. Maheshwari, K. Birman, J. Wozniak, and D.V. Zandt. “Evaluating Cloud Computing Techniques

for Smart Power Grid Design using Parallel Scripting” CCGrid’13, pages 319-326, 2013
[50]!A. Gupta, L. Kale, F. Gioachin, V. March, C. Suen, P. Faraboschi, R. Kaufmann, and D. Milojicic.

“The Who, What, Why and How of High Performance Computing Applications in the Cloud,” HP
Labs, Tech. Rep. HPL-2013-49, July 2013.

[51]!E. Walker, “Benchmarking amazon ec2 for high-performance scientific computing,” in USENIX; login:
magzine, Oct. 2008.

[52]!P. Kogge, et. al., “Exascale computing study: Technology challenges in achieving exascale systems,”
2008.

[53]!I. Raicu, Y. Zhao, I. Foster, “Many-Task Computing for Grids and Supercomputers,” 1st IEEE
Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS) 2008.

[54]!I. Raicu. "Many-Task Computing: Bridging the Gap between High Throughput Computing and High
Performance Computing", Computer Science Dept., University of Chicago, Doctorate Dissertation,
March 2009

I. Sadooghi, Dissertation Proposal Pages 72 of 74

[55]!LSF: http://platform.com/Products/TheLSFSuite/Batch, 2012.
[56]!L. V. Kal´e et. al. “Comparing the performance of two dynamic load distribution methods,” In

Proceedings of the 1988 International Conference on Parallel Processing, pages 8–11, August 1988.
[57]!W. W. Shu and L. V. Kal´e, “A dynamic load balancing strategy for the Chare Kernel system,” In

Proceedings of Supercomputing ’89, pages 389–398, November 1989.
[58]!A. Sinha and L.V. Kal´e, “A load balancing strategy for prioritized execution of tasks,” In International

Parallel Processing Symposium, pages 230–237, April 1993.
[59]!M.H. Willebeek-LeMair, A.P. Reeves, “Strategies for dynamic load balancing on highly parallel

computers,” In IEEE Transactions on Parallel and Distributed Systems, volume 4, September 1993
[60]!G. Zhang, et. al, “Hierarchical Load Balancing for Charm++ Applications on Large Supercomputers,”

In Proceedings of the 2010 39th International Conference on Parallel Processing Workshops, ICPPW
10, pages 436-444, Washington, DC, USA, 2010.

[61]!M. Schwarzkopf, A Konwinski, M. Abd-el-malek, and J. Wilkes, “Omega: Flexible, scalable
schedulers for large compute clusters.” In Proc. EuroSys (2013).

[62]!Frigo, et. al, “The implementation of the Cilk-5 multithreaded language,” In Proc. Conf. on Prog.
Language Design and Implementation (PLDI), pages 212–223. ACM SIGPLAN, 1998.

[63]!R. D. Blumofe, et. al. “Scheduling multithreaded computations by work stealing,” In Proc. 35th FOCS,
pages 356–368, Nov. 1994.

[64]!V. Kumar, et. al. “Scalable load balancing techniques for parallel computers,” J. Parallel Distrib.
Comput., 22(1):60–79, 1994.

[65]!J. Dinan et. al. “Scalable work stealing,” In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009.

[66]!M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster Computing with
Working Sets,” in Proceedings of the 2nd USENIX Conference on Hot topics in Cloud Computing,
Boston, MA, June 2010.

[67]! I. Sadooghi, et al. “Understanding the cost of cloud computing”. Illinois Institute of Technology,
Technical report. 2013

[68]! I. Raicu, et al. “The Quest for Scalable Support of Data Intensive Workloads in Distributed Systems,”
ACM HPDC 2009

[69]!I. Raicu, et al. "Middleware Support for Many-Task Computing", Cluster Computing, The Journal of
Networks, Software Tools and Applications, 2010

[70]!Y. Zhao, et al. "Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments",
book chapter in Grid Computing Research Progress, Nova Publisher 2008.

[71]!I. Raicu, et al. "Towards Data Intensive Many-Task Computing", book chapter in "Data Intensive
Distributed Computing: Challenges and Solutions for Large-Scale Information Management", IGI
Global Publishers, 2009

[72]! Y. Zhao, et al. "Opportunities and Challenges in Running Scientific Workflows on the Cloud", IEEE
CyberC 2011

[73]! M. Wilde, et al. "Extreme-scale scripting: Opportunities for large task-parallel applications on
petascale computers", SciDAC 2009

[74]! I. Raicu, et al. "Dynamic Resource Provisioning in Grid Environments", TeraGrid Conference 2007
[75]! W. Vogels. “Improving the Cloud - More Efficient Queuing with SQS” [online] 2012,

http://www.allthingsdistributed.com/2012/11/efficient-queueing-sqs.html
[76]!J. Kreps, N. Narkhede, and J. Rao. “Kafka: A distributed messaging system for log processing”.

NetDB, 2011.

I. Sadooghi, Dissertation Proposal Pages 73 of 74

[77]!A. Alten-Lorenz, Apache Flume, [online] 2013, https://cwiki.apache.org/FLUME/
[78]!A. Thusoo, Z. Shao, et al, “Data warehousing and analytics infrastructure at facebook,” in SIGMOD

Conference, 2010, pp. 1013–1020.
[79]!J. Pearce, Scribe, [online] https://github.com/facebookarchive/scribe
[80]!T. J. Hacker and Z. Meglicki, “Using queue structures to improve job reliability,” in Proceedings of the

16th International Symposium on High-Performance Distributed Computing (HPDC), 2007, pp. 43–54.
[81]!A. Videla and J. J. Williams, “RabbitMQ in action”. Manning, 2012.
[82]!B. Snyder, D. Bosanac, And R. Davies, “ActiveMQ in action” Manning, 2011.
[83]!S. Davies, and P. Broadhurst, “WebSphere MQ V6 Fundamentals”, IBM Redbooks, 2005
[84]!Java Message Service Concepts, Oracle, [online] 2013,

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html
[85]!D.Borthakur, HDFS architecture. Tech. rep., Apache Software Foundation, 2008.
[86]!P. Hunt, et. al., “ZooKeeper: wait-free coordination for internet-scale systems,” Proceedings of

USENIXATC’10, 2010.
[87]!J. Lin, D. Ryaboy. “Scaling big data mining infrastructure: The twitter experience.” SIGKDD

Explorations, 14(2), 2012.
[88]!A. Reda, Y. Park, M. Tiwari, C. Posse, S. Shah. “Metaphor: a system for related search

recommendations.” In CIKM, 2012.
[89]!R. Ramesh, L. Hu, and K. Schwan. “Project Hoover: auto-scaling streaming map-reduce applications”.

Proceedings of (MBDS '12). ACM, New York, NY, USA, 7-12. 2012
[90]!H. Liu, “Cutting map-reduce cost with spot market”. 3rd USENIX Workshop on Hot Topics in Cloud

Computing (2011).
[91]!T. White, “Hadoop: The Definitive Guide.” O’Reilly Media, Inc., 2009
[92]!K. Wang, et. al. "Optimizing Load Balancing and Data-Locality with Data-aware Scheduling", IEEE

Big Data 2014.
[93]!I. Kapur, K. Belgodu, P. Purandare, I. Sadooghi, I. Raicu. "Extending CloudKon to Support HPC Job

Scheduling", Illinois Institute of Technology, Department of Computer Science, Technical Report,
2013

[94]!A. Anthony, S. Palur, I. Sadooghi, I. Raicu. "CloudKon Reloaded with efficient Monitoring, Bundled
Response and Dynamic Provisioning", Illinois Institute of Technology, Department of Computer
Science, Technical Report, 2013

[95]!D. Patel, F. Khasib, S. Srivastava, I. Sadooghi, I. Raicu. "HDMQ: Towards In-Order and Exactly-Once
Delivery using Hierarchical Distributed Message Queues", Illinois Institute of Technology,
Department of Computer Science, Technical Report, 2013

[96]!I. Sadooghi, I. Raicu. "CloudKon: a Cloud enabled Distributed tasK executiON framework", Illinois
Institute of Technology, Department of Computer Science, PhD Oral Qualifier, 2013

[97]!D. Zhao, C. Shou, Z. Zhang, I. Sadooghi, X. Zhou, T. Li, I. Raicu. "FusionFS: a distributed file system
for large scale data-intensive computing", 2nd Greater Chicago Area System Research Workshop
(GCASR), 2013.

[98]!I. Sadooghi, I. Raicu. "Understanding the Cost of the Cloud for Scientific Applications", 2nd Greater
Chicago Area System Research Workshop (GCASR), 2013.

[99]!I. Sadooghi, D. Zhao, T. Li, I. Raicu. “Understanding the Cost of Cloud Computing and Storage”, 1st
Greater Chicago Area System Research Workshop, 2012 (poster)

[100]! M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing.” In NSDI, 2012

I. Sadooghi, Dissertation Proposal Pages 74 of 74

[101]! A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk, N.
Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and T. Tucker,
“Lightweight Distributed Metric Service: A Scalable Infrastructure for Continuous Monitoring of
Large Scale Computing Systems and Applications,” in Proc. IEEE/ACM International Conference for
High Performance Storage, Networking, and Analysis (SC14), 2014.

[102]! I. Sadooghi, J. Hernandez Martin, T. Li, K. Brandstatter, Y. Zhao, K. Maheshwari, T. Pais Pitta de
Lacerda Ruivo, S. Timm, G. Garzoglio, I. Raicu. “Understanding the performance and potential of
cloud computing for scientific applications” IEEE Transactions on Cloud Computing PP (99), 2015.

[103]! I. Sadooghi, K. Wang, S. Srivastava, D. Patel, D. Zhao, T. Li, I. Raicu. “FaBRiQ: Leveraging
Distributed Hash Tables towards Distributed Publish-Subscribe Message Queues “, 2nd IEEE/ACM
International Symposium on Big Data Computing (BDC) 2015.

[104]! D. Zhao, I. Raicu. “Distributed File Systems for Exascale Computing”, Doctoral Showcase,
IEEE/ACM Supercomputing/SC 2012

[105]! C. Dumitrescu, I. Raicu, I. Foster. "The Design, Usage, and Performance of GRUBER: A Grid
uSLA-based Brokering Infrastructure", International Journal of Grid Computing, 2007

[106]! K. Wang, K. Brandstatter, I. Raicu. “SimMatrix: Simulator for MAny-Task computing execution
fabRIc at eXascales”, ACM HPC 2013

[107]! T. Li, R. Verma, X. Duan, H. Jin, I. Raicu. “Exploring Distributed Hash Tables in High-End
Computing”, ACM Performance Evaluation Review (PER), 2011

[108]! D. Zhao, N. Liu, D. Kimpe, R. Ross, XH Sun, and I. Raicu. "Towards Exploring Data-Intensive
Scientific Applications at Extreme Scales through Systems and Simulations", IEEE Transaction on
Parallel and Distributed Systems (TPDS) Journal 2015

[109]! D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and I. Raicu.
"FusionFS: Towards Supporting Data-Intensive Scientific Applications on Extreme-Scale High-
Performance Computing Systems", IEEE International Conference on Big Data 2014

[110]! K. Wang, A. Rajendran, K. Brandstatter, Z. Zhang, I. Raicu. “Paving the Road to Exascale with
Many-Task Computing”, Doctoral Showcase, IEEE/ACM Supercomputing/SC 2012

[111]! K. Wang, X. Zhou, H. Chen, M. Lang, I. Raicu. “Next Generation Job Management Systems for
Extreme Scale Ensemble Computing”, ACM HPDC 2014

