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Abstract—One performance bottleneck of distributed systems lies on
the hard disk drive (HDD) whose single read/write head has physical lim-
itations to support concurrent I/Os. Although the solid-state drive (SSD)
has been introduced for years, HDDs are still dominant storage due to
large capacity and low cost. This paper proposes a caching middleware
that manages the underlying heterogeneous storage devices in order
to allow distributed file systems to achieve both high performance and
low cost. Specifically, we design and implement a user-level caching
system that offers SSD-like performance at a cost similar to a HDD.
We demonstrate how such a middleware improves the performance of
distributed file systems, such as the HDFS. Experimental results show
that the caching system delivers up to 7X higher throughput and 76X
higher IOPS than Linux Ext4 file system, and accelerates HDFS by 28%
on 32 nodes.

Index Terms—Distributed File Systems; User Level File Systems; Hy-
brid File Systems; Heterogeneous Storage; SSD.

1 INTRODUCTION

In the era of Big Data, applications’ performance, from a
system’s perspective, is largely throttled by the I/O bot-
tleneck and the storage subsystem. Scalable distributed
filesystems, such as HDFS [1], emerge to meet the
increasing need of I/O bandwidth. Yet, these storage
solutions still assume the underlying device to be spin-
ning hard disk drive (HDD) to keep cost low, as it
is cost-prohibitive to replace inexpensive HDDs by the
memory-class storage such as solid-state drives (SSD).

Modern HDDs usually have their own high-speed
cache built in the device. These on-board caches, how-
ever, have two limitations. First, their size is extremely
small comparing with the disk capacity. Second, the
caching logic is implemented in the device controller and
can be hardly leveraged by the application developers.

This paper proposes to deploy a user-level caching
middleware between the distributed filesystem and local
HDDs to achieve both low cost and high performance.
In particular, we envision a memory-class storage such
as SSD to coexist with HDD on each node. Such a
middleware achieves low cost in the sense that the SSD
size is small yet effective enough to store the “hot” data,
rather than replacing the large-capacity HDDs.

Besides the high throughput offered by the memory-
class storage, the proposed middleware attains two main
objectives. First, file metadata need to be efficiently
tracked. Second, files should be placed in accordance
with applications’ I/O patterns.

The metadata performance is often overlooked in
modern data-intensive applications. As a case in point,
HDFS only optimizes large files as its underlying data
parallelism stems from the default 64MB data chunks.
That is, HDFS splits the supposedly large file into several
64MB chunks, each of which is processed by a dedicated
node; if the file is smaller than 64MB, HDFS does noth-
ing more than a local filesystem such as Ext4. Due to
the design assumption on processing large files, HDFS’
single metadata server meets the needs of infrequent
metadata operations. On the other hand, applications
in high-performance computing (HPC) comprise many
small- and medium-sized files, as Welch and Noer [2]
reported that 25% – 90% of all the 600 million files from
65 Panasas [3] installations are 64KB or smaller. A large
volume of small- or medium-size files call for the storage
support of intensive metadata operations. We thus argue
that the conventional wisdom of centralized metadata
management needs to be revisited.

LRU is widely used as the de facto caching algo-
rithm without a priori knowledge. We believe that in
HPC systems where applications are well understood,
heuristic caching algorithms are superior to LRU if
applications’ I/O patterns are taken into account. That
is, we presume an application’s I/O pattern is known
before its execution. While this assumption is far too
realistic in general, it is a reasonable (if not ubiquitous)
practice in HPC applications. This is because many HPC
applications are not directly executed by end users,
but through workflow systems [4–7] that specify the
task dependency automatically based on the high-level
workflow description including the I/O workload.

In order to justify the effectiveness of our proposed
architecture and design principles, we implement a sys-
tem prototype of the caching middleware, deploy it in
between HDFS and a 32-node Linux cluster, and evaluate
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its performance with both benchmarks and applications.
We also report the I/O performance of the caching
middleware on a leadership-class supercomputer at Los
Alamos National Laboratory. Some preliminary results
were previously presented at [8, 9]; the success of this
caching work leads to another project (FusionFS [10–13])
aiming to build a fully-fledged file system to be deployed
on all the compute nodes in modern supercomputers.

To summarize, this paper makes the following contri-
butions:

• Propose a caching layer to improve the I/O performance
of large-scale HPC applications

• Devise novel metadata management to achieve excellent
scalability for metadata-intensive workloads

• Design a heuristic file-placement algorithm with consid-
eration of workloads’ I/O patterns

• Implement a user-level distributed caching middleware
for manipulating frequently-accessed data in distributed
filesystems

• Evaluate the caching system with both benchmarks and
applications, and report its effectiveness when deployed
with HDFS

The remainder of this paper is structured as follows.
Section 2 introduces more background and detailed mo-
tivation of this work. We describe the overall design of
the caching middleware in Section 3. Section 4 presents
the middleware’s scalable metadata management sub-
system. We discuss the pattern-aware file placement in
Section 5. Section 6 details the implementation of the
caching middleware. We report the experimental results
in Section 7. Section 8 reviews related work on caching
and storage systems. We conclude this paper in Section 9.

2 BACKGROUND AND MOTIVATION

One performance bottleneck of distributed filesystems,
such as the Google File System [14] and the Hadoop
Distributed File System [1], is the underlying mechan-
ical HDD. There are mainly two types of imbalance
associated to HDDs: (1) the imbalance between HDD’s
capacity and its bandwidth, and (2) the imbalance be-
tween HDD’s performance and other components’ per-
formance.

To see the first imbalance within HDD, we observe
much faster growth in HDD’s storage capacity than its
I/O bandwidth. That is, the data to be stored keeps
increasing rapidly while the data transfer rate has barely
improved. The main reason of HDD’s slow improvement
on bandwidth is due to its single physical read/write
head: there is a physical limit on the movement of
this component. On the other hand, HDD’s areal den-
sity follows Moore’s Law—roughly doubling every 18
months—making HDD capacity to increase exponen-
tially. Therefore unless the conventional HDD design is
fundamentally changed, the chance for its bandwidth to
catch up the capacity increase is vanishing small. The
consequence of this imbalance is that applications spend
more time on I/O: more data but same transfer rate.

Recall that I/O had been the performance bottleneck of
many applications before the Big Data era, and this im-
balance caused by HDD itself—in spite of its increasing
capacity—makes it even worse.

The increasing imbalance between HDD and other
system components is as challenging as, if not more
challenging than, the one within HDD. For instance, the
performance gap between HDD and main memory is
in multiple orders of magnitude. High-end HDDs have
100–200MB/s peak bandwidth, while memory band-
width ranges in order of 10GB/s. Making things worse,
there is a growing disparity of speed between the CPU
and memory—the so-called memory wall. CPU speed
improves exponentially, and memory speed has largely
fallen behind. Thus CPU and HDD are even more im-
balanced due to the memory wall.

SSD has the potential to bridge the performance gap
between memory and HDD, except that replacing all
HDDs with SSDs is cost-prohibitive. In Table 1 we list
that the per-GB cost of the high-end SSD OCZ RevoDrive
is 41X higher than HDD (Hitachi Deskstar).

As a compromised solution, the industry recently
introduces hybrid hard drives (HHD) where a small
embedded SSD transparently buffers the hot data stored
in the mechanical hard drive. For example, Seagate
releases Momentus XT [15] that encapsulates both a 4GB
SSD and a 500GB HDD into a single physical device. The
advantage for such a HHD is the drop-in replacement
to HDD. But its small fixed SSD cache (e.g. less than
1% of the overall capacity) limits its ability to accelerate
a large number of workloads. Furthermore, the small
SSD cache typically has inexpensive and relatively slow
controllers in order to keep the costs low. Compounding
the limitations, often time these HHD only use the SSD
cache to accelerate read operations, missing a significant
opportunity to accelerate write operations.

So we ask: how to boost a large variety of HPC appli-
cations’ I/O performance with affordable cost? In fact,
this cost-performance dilemma has been long existing in
computer systems; and the conventional wisdom proves
to be a viable solution—caching. For example there is a
small built-in cache in HDD hardware to buffer the data
from/to the memory; there are also 2 to 3 levels of caches
on the CPU chip or the motherboard to buffer the data
between CPU and the memory. Because these caches
are all built in the hardware and transparent to the
applications, and because they are all extremely small
compared to the base medium, developers can hardly
manipulate these caches to optimize their applications.
Therefore one objective of this work is to build a user-
level and highly-programmable SSD caching middle-
ware to bridge the performance gap between memory
and HDDs in distributed systems.

3 DESIGN OVERVIEW

Fig. 1 shows the architectural overview of the storage
hierarchy with the proposed middleware. Instead of
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Table 1
Key specifications of some hard drives on the market

Hard Drive Unit Price (per GB) Capacity (GB) Read (MB/s) Write (MB/s) IOPS
OCZ RevoDrive 3 X2 $2.81 960 1,500 1,300 230,000

OCZ Octane $1.76 512 480 330 26,000
Seagate Momentus XT $0.16 504 131 101 238

Hitachi Deskstar $0.068 4,096 144 142 360

being mounted directly on the local file systems (HDD or
SSD mount point), distributed file systems are deployed
on top of the middleware.

Figure 1. The storage hierarchy with a middleware be-
tween distributed file systems and local disks

One of our design principles is to make the middle-
ware POSIX-compliant. This allows it to be integrated
to other layers seamlessly, as most applications assume
POSIX interfaces. The POSIX support, however, should
not be confused with, or assumed in, its associated
layers. For example, the native HDFS does not provide
the POSIX interface to its applications, but it assumes the
local filesystem on each node to comply with POSIX (e.g.
Ext4). We leverage FUSE [16] to implement the POSIX
interface, which will be discussed in Section 6.

Fig. 2 describes the middleware’s three major com-
ponents: request handler, file dispatcher and data ma-
nipulator. Request handler interacts with distributed file
systems and passes the requests to the file dispatcher.
File dispatcher takes file requests from request handler
and decides where and how to fetch the data based on
the replacement algorithm. Data manipulator manipu-
lates data between two access points of fast- and regular-
speed devices, respectively.

3.1 Request Handler

The request handler is the first component of the whole
middleware system that interacts with distributed file
systems. The Virtual Root Path can be any direc-
tory in a UNIX-like system as long as the end user has
sufficient permissions on that directory. The virtual path
is monitored by the FUSE kernel module, so any file
operations on this mount point is passed to the FUSE
kernel module. Then the FUSE kernel module imports
the FUSE library and tries to transfer the request to FUSE
API in the file dispatcher.

3.2 File Dispatcher

File dispatcher is the core component, as it redirects user-
provided POSIX requests into customized handlers of
file operations. FUSE only provides POSIX interfaces,
and it is file dispatcher where these interfaces are im-
plemented. Some of the most important file operations
include fopen(), fwrite(), fread(), and fclose().
File dispatcher manages the file metadata, e.g. determin-
ing the file is manipulated on which physical node (inter-
node metadata) and which disk (intra-node metadata).
Metadata management detail will be discussed in Sec-
tion 4.

Some replacement policies, i.e. cache algorithms, need
to be provided to guide the file dispatcher for file
placement. When the cache is full, the algorithm must
choose which items to discard to make room for the
new ones. For instance, cache algorithm determines
which file(s) in SSD are swapped to HDD when the
SSD space is intensive. Different cache algorithms have
been extensively studied in the past decades. There is
no one single algorithm that suppresses others in all
scenarios. In addition to implementing the conventional
LRU (Least Recently Used) and LFU (Least Frequently
Used) [17], we design a heuristic caching mechanism
crafted for HPC applications, which we will discuss in
more detail in Section 5. It should be noted that the
system is implemented in a loosely coupled fashion
so that users are free to plug in their own favorable
algorithms.

3.3 Data Manipulator

Data manipulator manipulates data between two logical
access points: one for fast speed access (e.g. on SSD),
and the other is for regular access (e.g. on HDD). An
access point is not necessarily a mount point of a device
in the local operating system, but a logical view of
any combination of these mount points. In the simplest
case, Access Point A could be the SSD mount point
whereas Access Point B is set to the HDD mount
point. In this scenario, A is always the preferred point
for any data request as long as it has enough space.
For example, data need to be swapped back and forth
between A and B once the space usage in A exceeds
the threshold. Due to limited space, we only show
two access points in the figure; there is nothing that
architecturally prohibits us from leveraging more than
two levels of access points.
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Figure 2. Three major components of the middleware: request handler, file dispatcher, and data manipulator

4 TWO-DIMENSIONAL METADATA MANAGE-
MENT

There are two types of metadata communication in
the distributed caching system. As shown in Fig. 3,
a “horizontal” interaction is achieved by a distributed
hash table, while a “vertical” file swap is mapped by
a symbolic link. The hash table deals with the global
namespace of all the cached data, and is agnostic about
the internal file swap within the local node. Similarly, the
symbolic link manages the local file placement according
to the caching algorithm and has nothing to do with the
hash table.

Figure 3. Two-dimensional metadata management

4.1 Inter-Node Metadata through Distributed Hash
Table
Each participating node has a coherent view of all
the files no matter if the file is stored in the local
node or a remote node. The coherent view, or global
namespace, is maintained by a distributed hash table
(DHT [18, 19]), which disperses partial metadata on
each node. As shown in Fig. 4, in this example Node
1 and Node 2 store two subgraphs (the top-left and
top-right portions of the figure) of the entire metadata
graph. The client could interact with the DHT to inquiry
any file on any node, as shown in the bottom portion
of the figure. Because the global namespace is just a
logical view for clients, and it does not physically exist

in any data structure, the global namespace does not
need to be aggregated or flushed when changes occur
to the subgraph on local compute nodes. The changes
to the local metadata storage is exposed to the global
namespace when the client queries the DHT.

Figure 4. Metadata in the local nodes and the global
namespace

Regular files and directories are managed by different
data structures. For a regular file, the field addr stores
the node where this file resides. For a directory, there
is a field filelist to record all the entries under this
directory. This filelist field is particularly useful for
providing an in-memory speed for directory read, e.g.
“ls /mnt/fusionfs”. Nevertheless, both regular files and
directories share some common fields, such as times-
tamps and permissions, which are commonly found in
traditional i-nodes.

To make matters more concrete, Fig. 5 shows the dis-
tributed hash table according to the example metadata
shown in Fig. 4. Note that the DHT is only a logical
view of the aggregation of multiple partial metadata on
local nodes (in this case, Node 1 and Node 2). Five
entries (three directories, two regular files) are stored in
the DHT, with their file names as keys. The value is a list
of properties delimited by semicolons. For example, the
first and second portions of the values are permission
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flag and file size, respectively. The third portion for
a directory value is a list of its entries delimited by
commas, while for regular files it is just the physical
location of the file, e.g. the IP address of the node on
which the file is stored. Upon a client request, this value
structure is serialized by Google Protocol Buffers [20]
before sending over the network to the metadata server,
which is just another compute node. Similarly, when
the metadata blob is received by a node, we deserialize
the blob back into the C structure with Google Protocol
Buffers.

Figure 5. The global namespace abstracted by key-value
pairs in a DHT

The metadata and data on a local node are com-
pletely decoupled: a regular file’s location is indepen-
dent of its metadata location. From Fig. 4, we know
the index.html metadata is stored on Node 2, and
the cv.pdf metadata is on Node 1. Nevertheless, it is
perfectly fine for index.html to reside on Node 1, and
for cv.pdf to reside on Node 2, as shown in Fig. 5.

Besides the conventional metadata information for
regular files, there is a special flag (no shown in the
figure) in the value indicating whether this file is being
written. Specifically, any client who requests to write a
file needs to sets this flag before opening the file, and will
not reset it until the file is closed. The atomic compare-
swap operation supported by DHT [18] guarantees the
file consistency for concurrent writes.

Another challenge on inter-node metadata manage-
ment is on the large directory. When a large number
of clients write many small files on the same directory
concurrently, the value of this directory in the key-value
pair gets incredibly long, which causes its responsive-
ness extremely slow. This is because a client needs to
update the entire old long string with the new one, even
though the majority of the old string is unchanged. To
address that, we employ an atomic append operation
that asynchronously appends the incremental change
to the value. This approach is similar to Google File
System [14], where files are immutable and can only be
appended. This gives us excellent concurrent metadata
modification in large directories, at the expense of po-

tentially slower directory metadata read operations.

4.2 Local Metadata through Symbolic Links
Fig. 6 shows a typical scenario of file mappings when
the space of SSD cache is intensive so some files need to
be swapped into the HDD. End users are only aware of
the middleware’s virtual root path and every single file
in the virtual directory is mapped to the underlying SSD
physical directory. SSD has a limited space so when the
usage is beyond a threshold the middleware needs to
move some files from SSD to HDD and keeps symbolic
links to the migrated files.

Figure 6. File movement within the local node: when
free space of SSD cache is limited, based on the caching
algorithm file2 is evicted out of the SSD after which its
symbolic link is created and kept in the SSD.

As an example, Algorithm 1 illustrates how a file is
opened. The first thing is to check if the requested file
is located in HDD in Line 1. If so the system needs
to reserve enough space in SSD for the requested file.
This is done in a loop from Line 2 to Line 5 where stale
files are moved from SSD to HDD and the cache queue
is updated accordingly. Then the symbolic link of the
requested file is removed and the physical file is moved
from HDD to SSD in Line 6 and Line 7. We also need to
update the cache queue in Line 8 and Line 10 for two
scenarios, respectively. Finally the file is opened in Line
12.

Another important file operation that is worth men-
tioning is file removal. We explain how the middleware
removes a file in Algorithm 2. Line 4 and Line 5 are



6

Algorithm 1 Open a file in the local cache
Input: F is the file requested by the end user; Q is the

cache queue used for the replacement policy; SSD is
the mount point of SSD drive; HDD is the mount
point of HDD drive

Output: F is appropriately opened
1: if F is a symbolic link in SSD then
2: while SSD space is intensive and Q is not empty

do
3: move some file(s) from SSD to HDD
4: remove these files from the Q
5: end while
6: remove symbolic link of F in SSD
7: move F from HDD to SSD
8: insert F to Q
9: else

10: adjust the position of F in Q
11: end if
12: open F in SSD

standard instructions used in file removal: update the
cache queue and remove the file. Lines 1-3 check if the
file to be removed is stored in HDD. If so, this regular
file needs to be removed as well.

Algorithm 2 Remove a file in the local cache
Input: F is the file requested by the end user for re-

moval; Q is the cache queue used for the replacement
policy; SSD is the mount point of SSD drive; HDD
is the mount point of HDD drive

Output: F is appropriately removed
1: if F is a symbolic link in SSD then
2: remove F from HDD
3: end if
4: remove F from Q
5: remove F from SSD

Other POSIX implementations share a similar idea in
Algorithm 1 and Algorithm 2: manipulate files in SSD
and HDD back and forth to make users antagonistic
about the underlying heterogeneous storage devices.
Due to limited space, we will only present one more
algorithm for file rename in Algorithm 3.

If the file to be renamed is a symbolic in SSD, the
corresponding file in HDD needs to be renamed as
shown in Line 2. Then the symbolic link in SSD is
outdated and needs to be updated in Lines 3-4. On the
other hand if the file to be renamed is only stored in
SSD then the renaming occurs only in SSD and the cache
queue, as shown in Lines 6-7. In either case the position
of the newly accessed file F’ in the cache queue needs to
be updated in Line 9.

Algorithm 3 Rename a file in the local cache
Input: F is the file requested by the end user to rename;

F’ is the new file name; Q is the queue used for the
replacement policy; SSD is the mount point of SSD
drive; HDD is the mount point of HDD drive

Output: F is renamed to F’
1: if F is a symbolic link in SSD then
2: rename F to F’ in HDD
3: remove F in SSD
4: create the symbolic link F’ in SSD
5: else
6: rename F to F’ in SSD
7: rename F to F’ in Q
8: end if
9: update F’ position in Q

5 PATTERN-AWARE HEURISTIC FILE PLACE-
MENT

5.1 Problem Statement

The problem of finding optimal caching on multiple-
disk is proved to be NP-hard [21]. A simpler problem
on a single-disk setup has a polynomial solution [22],
which is, unfortunately, too complex to be applied in real
applications. An approximation algorithm was proposed
in [23] with the restriction that each file size should be
the same, which limits its use in practice.

In fact, at small scale (e.g. each node has O(10) files
to access), a brute-force solution with dynamic pro-
gramming is viable, with the same idea of the classical
problem of traveling salesman problem (TSP) [24] with
exponential time complexity. Nevertheless, in real appli-
cations the number of accessed files could be 10,000 or
more, which makes the dynamic programming approach
unfeasible. Therefore we propose a heuristic algorithm
of O(n lg n) (n is the number of distinct files on the
local node) for each job, which is efficient enough for
an arbitrarily large number of files in practice, especially
when compared to the I/O time on the disk.

5.2 Assumptions and Notations

We assume a queue of jobs, and their requested files
are known on each node in a given period of time,
which could be derived from the job scheduler and the
metadata information. This assumption is based on our
observation of many workflow systems [4, 5], which
implicitly make a similar assumption: users are familiar
with the applications they are to run and they are able to
specify the task dependency (often times automatically
based on the high-level parallel workflow description).
Note that the referenced files are only for the jobs
deployed on the local node, because there is no need to
cache the files that will be accessed by the jobs deployed
on remote nodes.

The access pattern of a job is represented by a sequence
R = (r1, r2, . . . , rm), where each ri indicates one access to
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a particular file. Note that the files referenced by different
ri’s are possibly the same, and could be on the cache,
or the disk. We use File(ri) to indicate the file object
which ri references to. The size of the referenced file by
ri is denoted by Size(File(ri)). The cost is defined as the
to-be-evicted file size multiplied by its access frequency
after the current processing position in the reference
sequence. The gain is defined as the to-be-cached file
size multiplied by its access frequency after the current
fetch position in the reference sequence. Since cache
bandwidth is significantly higher than disk bandwidth,
in our analysis we ignore the time of transferring data
between the processor and the cache. Similarly, when the
file is swapped between cache and disks, only the disk
throughput is counted. The cache size on the local node
is denoted by C, and the current set of files in the cache
is denoted by S. Our goal is to minimize the total I/O
cost of the disk by determining whether the accessed
files should be placed in the cache.

5.3 Methodology

There are 3 rules to be followed in the proposed caching
algorithms.

1) Every fetch should bring into the cache the very
next file in the reference sequence if it is not yet in
the cache.

2) Never fetch a file to the cache if the total cost of
the to-be-evicted files is greater than the gain of
fetching this file.

3) Every fetch should discard the files in the increas-
ing order of their cost until there is enough space
for the newly fetched file. If the cache has enough
space for the new file, no eviction is needed.

We elucidate the above 3 rules with a concrete ex-
ample. Assume we have a random reference sequence
R = (r1, r2, r3, r4, r5, r6, r7, r8, r9). Let File(r1) = F1,
File(r2) = F2, File(r3) = F3, File(r4) = F4, File(r5) =
F3, File(r6) = F1, File(r7) = F2, File(r8) = F4,
File(r9) = F3, and Size(F1) = 20, Size(F2) = 40,
Size(F3) = 9, Size(F4) = 40. Let the cache capacity
be 100. According to Rule 1, the first three files to be
fetched to cache are (F1, F2, F3). Then we need to decide
if we want to fetch F4. Let Cost(Fi) be the cost of
evicting Fi. Then we have Cost(F1) = 20 × 1 = 20,
Cost(F2) = 40 × 1 = 40, and Cost(F3) = 9 × 2 = 18.
According to Rule 3, we sort the costs in the increasing
order (F3, F1, F2). Then we evict the files in the sorted
list, until there is enough room for the newly fetched
file F4 of size 40. In this case, we only need to evict F3,
so that the free cache space is 100 − 20 − 40 = 40, just
big enough for F4. Before replacing F3 by F4, Rule 2 is
referred to ensure that the cost is smaller than the gain,
which is true in this case by observing that the gain of
prefetching F4 is 40, larger than Cost(F3) = 18.

5.4 Procedures

The caching procedure is presented in Algorithm 4,
which is called when the ith reference is accessed and
File(ri+1) is not in the cache. If File(ri+1) is already
in the cache, then it is trivial to keep processing the
next reference, which is not explicitly mentioned in the
algorithm. File(ri+1) will not be cached if it is accessed
only once (Line 2). Subroutine GetF ilesToDiscard() tries
to find a set of files to be discarded in order to make
more room to (possibly) accommodate the newly fetched
file in the cache (Line 3). Based on the decision made
by Algorithm 4, File(ri+1) could possibly replace the
files in D in the cache (Line 4 - 7). File(ri+1) is finally
read into the processor from the cache or from the disk,
depending on whether File(ri+1) is already fetched to
the cache (Line 9).

Algorithm 4 Fetch a file to cache or processor
Input: i is the reference index being processed

1: procedure FETCH(i)
2: if {rj |File(rj) = File(ri+1) ∧ j > i+ 1} �= ∅ then
3: flag,D ← GetF ilesToDiscard(i, i+ 1)
4: if flag = successful then
5: Evict D out of the cache
6: Fetch File(ri+1) to the cache
7: end if
8: end if
9: Access File(ri+1) (either from the cache or the

disk)
10: end procedure

The time complexity of Algorithm 4 is as follows. Line
2 takes O(1) since it can be precomputed using dynamic
programming in advance. GetF ilesToDiscard() takes
O(n lg n) that will be explained when discussing Algo-
rithm 5. Thus the overall time complexity of Algorithm 4
is O(n lg n).

The GetF ilesToDiscard() subroutine (Algorithm 5)
first checks if the summation of current cache usage and
the to-be-fetched file size is within the limit of cache. If
so, then there is nothing to be discarded (Line 2 - 4). We
sort the files by their increasing order of cost at Line 9,
because we hope to evict out the file of the smallest cost.
Then for each file in the cache, Lines 11 - 18 check if the
gain of prefetching the file outweighs the associated cost.
If the new cache usage is still within the limit, then we
have successfully found the right swap (Lines 19 - 21).

We will show that the time complexity of Algorithm 5
is O(n lg n). Line 5 takes O(1) to get the total number of
occurrences of the referenced file. Line 9 takes O(n lg n)
to sort, and Lines 10 - 22 take O(n) because there would
be no more than n files in the cache (Line 10) and Line
11 takes O(1) to collect the file occurrences. Both Line 5
and Line 11 only need O(1) because we can precompute
those values by dynamic programming in advance. Thus
the total time complexity is O(n lg n).
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Algorithm 5 Get set of files to be discarded
Input: i is the reference index being processed; j is the

reference index to be (possibly) fetched to cache
Output: successful – File(rj) will be fetched to the

cache and D will be evicted; failed – File(rj) will
not be fetched to the cache

1: function GETFILESTODISCARD(i, j)
2: if Size(S) + Size(File(rj)) ≤ C then
3: return successful, ∅
4: end if
5: num ← Number of occurrences of File(rj) from

j + 1
6: gain← num · Size(File(rj))
7: cost← 0
8: D ← ∅
9: Sort the files in S in the increasing order of the

cost
10: for F ∈ S do
11: tot← Number of references of F from i+ 1
12: cost← cost+ tot · Size(F )
13: if cost < gain then
14: D ← D ∪ {F}
15: else
16: D ← ∅
17: return failed,D
18: end if
19: if Size(S \D) + Size(File(rj)) ≤ C then
20: break
21: end if
22: end for
23: return successful, D
24: end function

6 IMPLEMENTATION

6.1 FUSE Framework
FUSE [16] is a framework to develop customized file
system. FUSE module has been officially merged into
the Linux kernel tree since kernel version 2.6.14 [25].
FUSE provides 35 interfaces to fully comply with POSIX
file operations. The middleware thus implements each
interface to support POSIX. Some of POSIX APIs are
called more frequently e.g. those essential file operations
such as open(), read(), write() and unlink();
others might be less popular or even remain optional
in particular Linux distributions (e.g. getxattr() and
setxattr() are to get and set extra file attributes,
respectively).

6.2 User Interface
The local mount point of the middleware is not only
a single local directory but a virtual entry point of
two mount points for the SSD and HDD partitions,
respectively. Fig. 7 shows how to mount the middleware
in a UNIX-like system.

Suppose the middleware was mounted on a local
directory called cache_mount, and another local direc-

Figure 7. How to mount the caching middleware in a
UNIX-like machine

tory (e.g. cache_root) was created and had two sub-
directories: the mount point of the SSD partition and the
mount point of the HDD partition. Users would execute
./cache_bin <root> <mount> where cache_bin
is the binary executable of the middleware, root is the
physical directory, and mount is the virtual directory.

6.3 Strong Consistency

We keep one single copy of any file at any time to
achieve strong consistency. For manipulating files across
multiple storage devices we use symbolic links to track
file locations. There are two advantages to choose sym-
bolic links for the local file swapping. First, symbolic is
persistent, which means we need not spend extra cost
to flush the files from memory to the hard disk. Second,
symbolic link is natively supported by both the Linux
kernel and the FUSE framework.

6.4 Data Granularity

The caching middleware manipulates data at the file
level rather than the block level because it is the job
of the upper-level distributed file system to chop the
big files into smaller chunks. For example in HDFS,
an arbitrarily large file is often split into 64MB chunks.
Thus what the middleware deals with on the local node
is a few 64MB chunks, which can be perfectly fit in a
mainstream SSD device.

6.5 Multithread Support

The middleware implementation supports multithread-
ing to leverage the many-core architecture in most high
performance computers. Users, however, have the option
to disable this feature to run applications in the single-
thread mode. Although there are cases where multi-
threading does not help and only introduces overheads
from switching contexts, by default multithreading is
enabled because in most cases this would improve the
overall performance by keeping the CPU busy. We will
see in the evaluation section how the aggregate through-
put is significantly elevated with the help of concurrency.
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7 EVALUATION

7.1 Experiment Setup
Single-node experiments are carried out on a system
comprised of an AMD Phenom II X6 1100T Processor (6
cores at 3.3 GHz) and 16 GB memory. The HDD is Sea-
gate Barracuda 1 TB, the SSD is OCZ RevoDrive 100 GB
(peak performance 676 MB/s), and the HHD is Seagate
Momentus XT 500 GB (with 4 GB built-in SSD cache).
The operating system is 64-bit Fedora 16 with Linux
kernel version 3.3.1. The native file system is Ext4 with
default configurations (i.e. mkfs.ext4 /dev/device).

For the experiments on Hadoop the testbed is a 32-
node cluster, each of which has two Quad-Core AMD
Opteron 2.3GHz processors with 8GB memory. The SSD
and HDD are the same as in the single node workstation.

Some of the large-scale experiments are conducted
on Kodiak [26], which is a 1024-node cluster at Los
Alamos National Laboratory. Each Kodiak node has an
AMD Opteron 252 CPU (2.6GHz), 4GB memory, and two
7200rpm 1TB hard disk drives.

In the remainder of this paper we will use terms
throughput and bandwidth interchangeably, which ba-
sically means the rate of data transferring. Unless oth-
erwise specified all bandwidths are with respect to se-
quential read and write operations. All the results are
averages of at least 3 stable (i.e. within 5% difference)
numbers.

7.2 FUSE overhead
In order to quantify the overhead introduced by
FUSE, we compare the I/O performance between raw
RAMDISK (i.e. tmpfs [27]) and a simple FUSE file system
mounted on RAMDISK. By experimenting on RAMDISK
we completely eliminate all factors affecting perfor-
mance particularly from the HDD and disk controller.
Since all the I/O tests are essentially done in the memory,
any noticeable performance differences between the two
setups are solely from FUSE itself.

We mount FUSE on /dev/shm, which is a built-in
RAMDISK in UNIX-like systems. The read and write
bandwidth on both raw RAMDISK and FUSE-based
virtual file system are reported in Fig. 8. Moreover, the
performance of concurrent FUSE processes are plotted,
which shows that FUSE has a good scalability with
respect to the number of concurrent processes.

In the case of single-process I/O, there is a signifi-
cant performance gap. The read and write bandwidth
on RAMDISK are in the order of gigabytes, whereas
when mounting FUSE we could only achieve bandwidth
below 500 MB/s. These results suggest that FUSE could
not compete with the kernel-level file systems in raw
bandwidth, primarily due to the overheads incurred by
having the file system in user-space, the extra memory
copies, and the additional context switching. Neverthe-
less, we will see in the following subsections that even
with FUSE overhead on SSD, the caching middleware
still significantly outperforms traditional HDD (Fig. 14).

(a) Read Bandwidth

(b) Write Bandwidth

Figure 8. Bandwidth of raw RAMDISK and a FUSE file
system mounted on RAMDISK. Px means x number of
concurrent processes, e.g. FUSE RAMDISK P2 stands
for 2 concurrent FUSE processes on RAMDISK.

7.3 Caching Efficiency

This experiment explores that the caching middleware
achieves a high efficiency of the underlying SSD hard-
ware. Meanwhile, we compare the caching throughput
with a pure HDD solution and demonstrate the superior
performance of the proposed caching mechanism.

Figure 9. The I/O throughput and efficiency of the caching
middleware comparing with pure SSD and pure HDD
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Figure 9 shows that the caching middleware could
achieve 580 MB/sec aggregate bandwidth (at 12 concur-
rent processes, the same number of hardware threads
of the test bed) for concurrent data accesses, which is
about 85% of the bandwidth of the raw SSD device
(i.e. SSD Ext4). Therefore, the caching performance, even
though limited by the FUSE overhead to some degree,
is significantly higher than the conventional wisdom of
a pure HDD solution. Note that, with more concurrent
accesses the HDD performance actually degrades due
to the single I/O head (for example, 85 MB/s on 12
processes).

7.4 Metadata
We show how the caching middleware improves HDFS
metadata performance on Kodiak [26]. For both systems
(caching middleware and vanilla HDFS), we have each
node create (i.e. “touch”) a large number of empty files
(with unique names), and we measure the number of
files created per second. In essence, each touched file
incurs a metadata operation.

The aggregate metadata throughput of different scales
is reported in Fig. 10. The performance gap is more than
3 orders of magnitude. Note that, HDFS starts to flatten
out from 128 nodes, while the caching middleware keeps
doubling the throughput all the way to 512 nodes,
ending up with almost 4 orders of magnitude speedup
(509022 vs. 57). HDFS performs poorly for metadata-
intensive workloads mainly because of its centralized
metadata server, whereas the caching middleware em-
ploys a distributed metadata management.

Figure 10. Metadata performance on Kodiak

7.5 Heuristic Caching
We plug the heuristic caching and LRU algorithms into
the middleware, and evaluate their performance at 512-
node scale. We create different sizes of files, randomly
between 6MB and 250MB, and repeatedly read these
data in a round-robin manner. The local cache size is
set to 256MB.

The execution time of both algorithms is reported in
Fig. 11. Heuristic caching clearly outperforms LRU at all
scales, mainly because LRU does not consider the factors

such as file size and cost-gain ratio, which are carefully
taken into account in heuristic caching. In particular,
heuristic caching outperforms LRU by 29X speedup at
I/O size = 64,000GB (3,009 seconds vs. 86,232 seconds).

Figure 11. Comparison between Heuristic Caching and
LRU

7.6 Benchmarks
IOzone [28] is a general filesystem benchmark utility. It
creates a temporary file with arbitrary size provided by
the end user and then conducts a bunch of file operations
like re-write, read, re-read, and so forth. In this paper we
use IOzone to test the read and write bandwidths as well
as IOPS (input/output per second) on the different file
systems.

Fig. 12 shows the throughput with a variety of block
sizes ranging from 4 KB to 16 MB. For each block size
we show five bandwidths from the left to the right: 1)
the theoretical bandwidth upper bound (obtained from
RAMDISK), 2) caching middleware, 3) a simple FUSE
file system accessing a HDD, 4) HDD Ext4 and 5) HHD
Ext4.

Fig. 12(a) shows that the read throughput on the
middleware is about doubled comparing with the native
Ext4 file system for most block sizes. In particular, when
block size is 16 MB the peak read throughput on the
caching middleware is over 300 MB/s, which is 2.2X
higher than Ext4 on HDD as shown in Fig. 13(a).

As for the overhead of FUSE framework compared to
the native Ext4 file system on HDD we see FUSE only
adds little overhead to file reads at all block sizes as
shown in Fig. 13(a): for most block sizes FUSE achieves
nearly 100% performance of the native Ext4. Similar re-
sults are also reported in a review of FUSE performance
in [29]. This implies that even when the SSD cache
usage is intensive and some files need to be swapped
from SSD to HDD, the overall system performance keeps
comparable to raw Ext4.

Fig. 12 also shows that the commercial HHD product
performs at about the same level of the HDD. This
is primarily due to a small and inexpensive SSD. It
confirms our previous conjecture on the effectiveness of
this approach.

We see a similar trend of file writes in Fig 12(b) as
file reads. Again, the caching middleware is about twice
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(a) Read Bandwidth

(b) Write Bandwidth

Figure 12. IOzone bandwidth of five file systems

as fast compared to Ext4 on HDDs for most block sizes.
The peak write bandwidth (almost 250 MB/s) is also
obtained when block size is 16 MB, and it achieves 2.18x
speedup for this block size compared to Ext4 as shown
in Fig. 13(b). Also in this figure, just like the case of file
reads we see little overhead of FUSE framework for the
write operation on HDD except for 4KB block.

Fig. 13 shows that for small block size (e.g. 4 KB) the
caching middleware only achieves about 50% through-
put of the native file system. This is due to the extra
context switches of FUSE between user level and kernel
level, where the context switches of FUSE dominate the
performance. Fortunately in most cases this small block
size is more generally used for random read and write
of small pieces of data (i.e. IOPS) rather than high-
throughput applications.

Table 2 shows that the caching middleware has a far
higher IOPS than other Ext4. In particular, it has about
76X IOPS as traditional HDD. The SSD portion of the
HHD device (e.g. Seagate Momentus XT) is a read-only
cache, which means the SSD cache does not take effect
in this experiment because IOPS only involves random
writes. This also explains why the IOPS of the HHD

(a) Read Speedup

(b) Write Speedup

Figure 13. Caching Middleware and FUSE speedup over
HDD Ext4

lands in the same level of HDD rather than SSD.

Table 2
IOPS of different file systems

Caching Middleware HDD Ext4 HHD Ext4
14,878 195 61

The caching middleware takes advantages of the mul-
ticore’s concurrent tasking that delivers a significantly
higher aggregate throughput. The point is that the
caching middleware avoids reading or writing directly
on the HDD so it handles multiple I/O requests con-
currently. In contrast, traditional HDD only has a single
number of heads for read and write operations.

Fig. 14 shows that the caching middleware has almost
linear scalability with respect to the number of processes
before hitting the physical limit (i.e. 306 MB/s for 4
KB block and 578 MB/s for 64 KB block), while the
traditional Ext4 has degraded performance when dealing
with concurrent I/O requests. The largest gap is when
there are 12 concurrent processes for 64KB block (578
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MB/s for the middleware and 86 MB/s for HDD): the
caching middleware delivers 7X higher throughput than
Ext4 on HDD.

(a) 4KB Block

(b) 64KB Block

Figure 14. Aggregate bandwidth of concurrent processes

The upper bound of aggregate throughput is limited
by the SSD device rather than our middleware imple-
mentation. This can be justified by Fig 15 where the
middleware is deployed on RAMDISK. The performance
of raw RAMDISK are plotted as the baseline. We see that
the bandwidth of 64KB block can be achieved at about 4
GB/s by concurrent processes. This indicates that FUSE
itself is not a bottleneck: it does not limit the I/O speed
unless the device is slow. In other words, the middleware
can be applied to any fast storage devices in future as
long as the workloads have enough concurrency to allow
FUSE to harness multiple computing cores.

7.7 Applications
We install MySQL 5.5.21 with database engine MySIAM,
and deploy TPC-H 2.14.3 databases [30]. By default TPC-
H provides a variety size of databases (e.g. scale 1 for
1 GB, scale 10 for 10 GB, scale 100 for 100GB) each of

Figure 15. Aggregate bandwidth of the FUSE implemen-
tation on RAMDISK

which has eight tables. Furthermore, TPC-H provides 22
queries (i.e. Query #1 to Query #22) that are comparable
to real-world business applications. Fig. 16 shows Query
#1 that will be used in our experiments.

Figure 16. TPC-H: Query #1

To evaluate the write throughput of the middleware,
we load table lineitem at scale 1 (600 MB) and scale
100 (6 GB) in the following three systems: caching mid-
dleware, HDD Ext4 and HHD Ext4. For read throughput,
we run Query #1 at scale 1 and scale 100. Experimental
results are reported in Fig. 17, showing the middleware
speedup the application by more than 15%.

Figure 17. TPC-H: speedup of caching middleware over
Ext4 for MySQL
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For HDFS we measure the bandwidth by concurrently
copying a 1GB file per node from HDFS to the RAMDISK
(i.e. /dev/shm). We use the default replication num-
ber of HDFS since this paper is not focused on fault
tolerance; our prior work [31] detailed a discussion on
HDFS performance under failures though. The results
are reported in Table 3, showing that the caching helps
improve HDFS performance by 28% on 32 nodes.

We also run the built-in ‘sort’ utility in Hadoop. The
‘sort’ application uses MapReduce [32] to sort a 10GB
file. We keep all the default settings in the Hadoop pack-
age except for the temporary directory that is specified
as the caching mount point (and compare it with the
local Ext4 directory). Results are reported in Table 3.

Table 3
HDFS Performance

Item W/O Caching W/ Caching Improvement
Bandwidth 114 MB/sec 146 MB/sec 28%

Sort 2087 sec 1729 sec 16%

8 RELATED WORK

Some recent work [33–35] proposed data caching to
accelerate applications by modifying the applications or
their workflows, rather than at the filesystem level. Other
existing work requires modifying OS kernel, or lacks of
a systematic caching mechanism for manipulating files
across multiple storage devices, or does not support the
POSIX interface. Any of these concerns would limit the
system’s applicability to end users. In contrast, this paper
showcases a practical storage solution at user level.

There are a lot of work on the performance comparison
between SSD and HDD in more perspectives such as
[36, 37]. Of note, Hystor [38] aims to optimize hybrid
storage of SSDs and HDDs. It, however, requires to
modify the kernel that might not be desirable in many
applications. A more general multi-tier scheme was pro-
posed in [39] to decide the needed numbers of SSDs and
HDDs, and to manage the data migration between SSDs
and HDDs by adding a ‘pseudo device driver’, again,
in the kernel. iTransformer [40] considers the SSD as a
traditional transient cache in which case data needs to be
written to the spinning hard disk at some point once the
data is modified in the SSD. iBridge [41] leverages SSD
to serve request fragments and bridge the performance
gap between serving fragments and serving large sub-
requests. HPDA [42] offers a mechanism to plug SSDs
into RAID in order to improve the reliability of the disk
array. SSD was also proposed to be integrated to the
RAM level which makes SSD as the primary holder of
virtual memory [43]. NVMalloc [44] provides a library
to explicitly allow users to allocate virtual memory on
SSD. Also for extending virtual memory with Storage
Class Memory (SCM), SCMFS [45] concentrates more
on the management of a single SCM device. FAST [46]
proposed a caching system to pre-fetch data in order to

quicken the application launch. Yang et al. [47] consider
SSD as a read-only buffer and directly write files on
to HDD. None of the aforementioned work, however,
considers SSD as a persistent caching middleware into the
distributed filesystem, as demonstrated by this work.

Some prior work (e.g. [48], [33]) focused on job
scheduling in order to improve applications’ perfor-
mance; this paper, however, achieves the same objective
from the storage’s perspective. That is, previous work
was a top-down approach to manipulate jobs without
much knowledge of the underlying storage, while this
work shows a bottom-up approach to allow users to
take advantage of storage’s awareness of data locality by
providing the portable POSIX interface. Moreover, in [33]
it discussed different strategies broadly to showcase how
to achieve different criteria such as data locality, load
balance, or both, but this paper concentrates on detailing
the scheduling and caching algorithms to (heuristically)
minimize the overhead of the distributed storage.

There are extensive studies on leveraging data locality
for effective caching. Block Locality Caching (BLC) [49]
captures the backup and always uses the latest local-
ity information to achieve better performance for data
deduplication systems. The File Access corRelation Min-
ing and Evaluation Reference model (FARMER) [50]
optimizes the large scale file system by correlating ac-
cess patterns and semantic attributes. Another research
work proposes an Availability-aware DAta PlacemenT
(ADAPT) [51] strategy to improve the application per-
formance without extra storage cost, reducing network
traffic, improving data locality, and optimizing applica-
tion performance. In contrast, the caching middleware
developed in this work achieves data locality with a
unique mix of two principles: (1) write is always local,
and (2) read locality depends on the job scheduler and
a distributed hash table for load balance.

A thorough review of classical caching algorithms
on large scale data-intensive applications is recently re-
ported in [52]. The caching middleware is different from
the classical cooperative caching [53] in that it assumes
persistent underlying storage and manipulates data at
the file-level. As an example of distributed caching
for distributed file systems, Blue Whale Cooperative
Caching (BWCC) [54] is a read-only caching system
for cluster file systems. In contrast, the caching system
this paper proposes is a POSIX-compliant I/O storage
middleware that transparently interacts with the file
systems.

Although the focus of this paper lies on the 2-layer
hierarchy (i.e. SSD, HDD), the idea and methodology
is applicable to multi-tier caching architecture as well.
Multi-level caching gains much research interest, espe-
cially in the emerging age of cloud computing where
the hierarchy of (distributed) storage is being redefined
with more layers. For example Hint-K [55] caching is
proposed to keep track of the last K steps across all
the cache levels, which generalizes the conventional
LRU-K algorithm concerned only on the single level
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information.
While this work represents a pure software solution

for distributed cache, some orthogonal work focuses
on improving caching from the hardware perspective.
In [56], a hardware design is proposed with low over-
head to support effective shared caches in multicore pro-
cessors. For shared last-level caches, COOP [57] is pro-
posed to only use one bit per cache line for re-reference
prediction and optimize both locality and utilization. The
REDCAP project [58] aims to logically enlarge the disk
cache by using a small portion of main memory, so that
the read time could be reduced. For SSD devices, a new
algorithm called lazy adaptive replacement cache [59] is
proposed to improve the cache hit and prolong the SSD
lifetime.

Power-efficient caching has drawn a lot of research
interests. It is worth mentioning that this work aims to
better meet the need of high I/O performance for HPC
systems, and power consumption is not a major design
criterion at this point. Nevertheless, it should be noted
that power consumption is indeed one of the toughest
challenges to be overcome in future systems. One of the
earliest work [60] tried to minimize the energy consump-
tion by predicting the access mode and allowing cache
accesses to switch between the prediction and the access
modes. Recently, a new caching algorithm [61] is pro-
posed to save up to 27% energy and reduce the memory
temperature up to 5.45◦C with negligible performance
degradation. EEVFS [62] provides energy efficiency at
the filesystem level with an energy-aware data layout
and the prediction on disk idleness.

Caching has been extensively studied in different sub-
jects and fields besides high-performance computing. In
cloud storage, Update-batched Delayed Synchronization
(UDS) [63] reduces the synchronization cost by buffering
the frequent and short updates from the client and syn-
chronizing with the underlying infrastructure in a batch
fashion. For continuous data (e.g. online video), a new
algorithm called Least Waiting Probability (LWP) [64] is
proposed to optimize the newly defined metric called
user waiting rate. In geoinformatics, the method pro-
posed in [65] considers both global and local temporal-
spatial changes to achieve high cache hit rate and short
response time.

9 CONCLUSION
In this paper we address the long-existing issue with
the I/O bottleneck on HDDs for distributed filesystems.
We propose a cost-effective solution to alleviate this
bottleneck, which delivers comparable performance of
an all-SSD solution at a fraction of the cost. We design
and implement a caching middleware between the dis-
tributed filesystem and the underlying local filesystems
to demonstrate the validity of the proposed approach.
Experimental results justify that the caching system
delivers significantly higher throughput for a variety
of benchmarks and applications running on distributed
filesystems.

In future, we will integrate the proposed caching
mechanism to other systems such as file compression [66,
67], data provenance [68, 69] and job scheduling [70].
We plan to further investigate the tradeoff between per-
formance (for example, GPU acceleration [71]) and cost
(for example, scientific applications on EC2 [72]) with
the introduction of memory-class cache, and explore the
viability to extend the current approach into incremental
mechanisms [73–75].
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