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Abstract This work studies the storage subsystem for scientific big data applica-
tions to be running on the cloud. Although cloud computing has become one of
the most popular paradigms for executing data-intensive applications, the storage
subsystem has not been optimized for scientific applications. In particular, many
scientific applications were originally developed assuming a tightly-coupled clus-
ter of compute nodes with network-attached storage allowing massively parallel I/O
accesses—the high-performance computing (HPC) systems. These applications, in
turn, struggle in leveraging cloud platforms whose design goal is fundamentally
different than that of HPC systems. We believe that when executing scientific appli-
cations in the cloud, a node-local distributed storage architecture is a key approach
to overcome the challenges from the storage subsystem. We analyze and evaluate
four representative file systems (S3FS, HDFS, Ceph, and FusionFS) on multiple
platforms (Kodiak cluster, Amazon EC2) with a variety of benchmarks to explore
how well these storage systems can handle metadata-intensive, write-intensive, and
read-intensive workloads. Moreover, we elaborate the design and implementation of
FusionFS that employs a scalable approach to managing both metadata and data in
addition to its unique features on cooperative caching, dynamic compression, GPU-
accelerated data redundancy, lightweight provenance, and parallel serialization.
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1 Introduction

While cloud computing has become one of the most prevailing paradigms for big
data applications, many legacy scientific applications are still struggling to leverage
this new paradigm. One challenge for scientific big data applications to be deployed
on the cloud lies in the storage subsystem. Popular file systems such as HDFS [1]
are designed for many workloads in data centers that are built with commodity hard-
ware. Nevertheless, many scientific applications deal with a large number of small
files [2] — a workload that is not well supported by the data parallelism provided
by HDFS. The root cause to the storage discrepancy between scientific applications
and many commercial applications on cloud computing stems from their original
design goals: Scientific applications assume their data to be stored in remote paral-
lel file systems, and cloud platforms provide node-local storage available on each
virtual machine.

This chapter shares our views on how to design storage systems for scientific
big data applications on the cloud. Based on the literature and our own experience
on big data, cloud computing and high-performance computing (HPC) in the last
decade, we believe that cloud storage would need to provide the following three
essential services for scientific big data applications:

1. Scalable metadata accesses. Conventional centralized mechanisms for man-
aging metadata on cloud computing, such as GFS [3] and HDFS [1], would not
suffice for the extensive metadata accesses of scientific big data applications.

2. Optimized data write. Due to the nature of scientific big data applications,
checkpointing is the de facto approach to achieve fault tolerance. This implies that
the underlying storage system is expected to be highly efficient on data write as
checkpointing itself involves frequent data write.

3. Localized file read. When a failure occurs, some virtual machines (VM) need
to restart. Instead of transferring VM images from remote file systems, it would be
better to keep a local copy of the image and load it from the local disk if at all
possible.

In order to justify the above arguments, we analyze four representative file sys-
tems. Two of them are originated from cloud computing (S3FS [4], HDFS [1]).
S3FS is built on top of the S3 storage offered by Amazon EC2 cloud as a re-
mote shared storage with the added POSIX support with FUSE [5]. HDFS is
an open-source clone of Google File System (GFS [3]) without POSIX support.
The other two file systems were initially designed for high-performance comput-
ing (Ceph [6], FusionFS [7, 8]). Ceph employs distributed metadata management
and the CRUSH [9] algorithm to balance the load. FusionFS is first introduced
in [10] and supports several unique features such as erasure coding [11], prove-
nance [12], caching [13, 14], compression [15, 16], and serialization [17]. This study
involves two test beds: a conventional cluster Kodiak [18] and a public cloud Ama-
zon EC2 [19].

The remainder of this chapter is organized as follows. Section 2 discusses the
scalability of metadata accesses. We present the design and performance of achiev-
ing optimized file write and localized file read in Section 3 and Section 4, respec-
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tively. Section 5 details a real system that employs the proposed design principles
as well as unique features in caching, compression, GPUs, provenance, and seri-
alization. We review important literature in big data systems and HPC systems in
Section 6 and finally conclude this chapter in Section 7.

2 Scalable Metadata Accesses

State-of-the-art distributed file systems on cloud computing, such as HDFS [1], still
embrace the decade-old design of a centralized metadata server. The reason of such
a design is due to the workload characteristic in data centers. More specifically, a
large portion of workloads in data centers involve mostly large files. For instance,
HDFS has a default 64 MB chunk size (typically 128 MB though), which implicitly
implies that the target workload has many files larger than 64 MB; HDFS is not
designed or optimized for files smaller than 64 MB. Because many large files are
expected, the metadata accesses are not intensive and one single metadata server
in many cases is sufficient. In other words, a centralized metadata server in the
conventional workloads of cloud computing is not a performance bottleneck.

The centralized design of metadata service, unfortunately, would not meet the
requirement of many HPC applications that deal with a larger number of concur-
rent metadata accesses. HPC applications are, in nature, highly different than those
conventionally deployed on cloud platforms. One of the key differences is file sizes.
For instance, Welch and Noer [20] report that 25% – 90% of all the 600 million files
from 65 Panasas [21] installations are 64 KB or smaller. Such a huge number of
small files pose a significantly higher pressure to the metadata server than the cloud
applications. A single metadata server would easily become the bottleneck in these
metadata-intensive workloads.

A distributed approach to manage metadata seems to be the natural choice for
scientific applications on the cloud. Fortunately, several systems (for example, [6,
7]) have employed this design principle. In the remainder of this section, we pick
FusionFS and HDFS as two representative file systems to illustrate the importance of
a distributed metadata service under intensive metadata accesses. Before discussing
the experiment details, we provide a brief introduction of the metadata management
of both systems.

HDFS, as a clone of the Google File System [3], has a logically1 single metadata
server (i.e., namenode). The replication of the namenode is for fault tolerance rather
than balancing the I/O pressure. That is, all the metadata requests are directed to the
single namenode—a simple, yet effective design decision for the cloud workloads.
FusionFS is designed to support extremely high concurrency of metadata accesses.
It achieves this goal by dispersing metadata to as many nodes as possible. This
might be overkill for small- to medium-scale applications, but is essential for those
metadata-intensive workloads that are common in scientific applications.

1 because it gets replicated on multiple nodes, physically
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On Amazon EC2, we compare the metadata performance of all four file systems,
i.e. FusionFS, S3, HDFS, and CephFS. The workload we use is asking each client
to write 10,000 empty files to the according file system. Results are reported in
Figure 1.

Fig. 1 Metadata performance comparison

There are a few observations worth further discussing. First, HDFS outperforms
other peers on 4 nodes and scales well toward 16 nodes. And yet, its scalability is not
as good as FusionFS, whose metadata throughput is significantly higher than HDFS
although the former delivers a lower throughput on 4 nodes. Second, S3 scales well
but is hardly competitive compared to other systems because only with 64 nodes its
performance becomes comparable to others on 4 nodes. Third, CephFS’s scalability
is poor even from 4 to 16 nodes. Even worse, its performance is degraded when
scaling from 16 to 64 nodes.

3 Optimized Data Write

Data write is one of the most common I/O workloads in scientific applications due
to their de facto mechanism to achieve fault tolerance—checkpointing. Essentially,
checkpointing asks the system to periodically persist its memory states to the disks,
which involves a larger number of data writes. The persisted data only need to be
loaded (i.e., read) after a failure occurs in a completely nondeterministic manner. As
the system is becoming increasingly larger, the time interval between consecutive
checkpoints is predicted to be dramatically smaller in future systems. [22] From
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storage’s perspective, cloud platform will have to provide highly efficient data write
throughput for scientific applications.

Unfortunately, HDFS could hardly provide optimized data write due to the meta-
data limitation discussed in Section 2. Fig. 2 shows the write throughput of Fu-
sionFS and HDFS on Kodiak. Similarly to the metadata trend, the write throughput
of HDFS also suffers poor scalability beyond 128 nodes.

Fig. 2 Write throughput of FusionFS and HDFS are compared.

Another option in cloud platforms is the remote shared storage. It usually pro-
vides a unified interface and scalable I/O performance for applications. One example
is the S3 storage on Amazon EC2 cloud. S3 does not only provide a set of API but
also leverages FUSE [5] to serve as a fully POSIX-compliant file system named
S3FS. Therefore S3FS is becoming a popular replacement of the conventional re-
mote shared file systems [23, 24] in HPC.

We compare all the file systems in discussion so far on the same testbed, i.e.,
m3.large instance on Amazon EC2. The experiment is in modest scale, from 4 nodes
to 16 nodes, and to 64 nodes in a weak-scaling manner. That is, every node works
on the same amount of data—in this case, writing a hundred of 100 MB files to the
respective file system.

From Figure 3 we observe that all these systems scale well up to 64 nodes.
Note that HDFS and S3 were designed for data centers and cloud computing while
CephFS and FusionFS targeted at scientific applications and high-performance com-
puting. While CephFS is relatively slower than others, FusionFS performs compar-
atively to HDFS and S3 on Amazon EC2 even though FusionFS was not originally
designed for data centers. With FusionFS as an example, we believe in the near
future a gradual convergence, from the perspective of storage and file system, is
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Fig. 3 Scalable write throughput on Amazon EC2

emerging between communities of cloud computing and high-performance com-
puting.

We also compare these systems with respect to different file sizes, as shown in
Figure 4. Our results show that starting from 1 MB, file size affects little to the write
performance on all systems. However, we observe two dramatical extremes on 1 KB
files: HDFS achieves an impressing overall throughput on these small files while S3
is extremely slow. This indicates that for applications where small files dominate
HDFS is in favor with regards to performance.

Fig. 4 Write throughput of different file sizes
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4 Localized File Read

File read throughput is an important metric and is often underestimated since a lot
of effort is put on data write as discussed in Section 3. When a VM is booted or
restarted, the image needs to be loaded into the memory and this is becoming a
challenging problem in many cloud platforms [25, 26]. Therefore a scalable read
throughput is highly desirable for the cloud storage, which urges us to revisit the
conventional architecture where files are typically read from remote shared file sys-
tems. In HPC this means the remote parallel file system such as GPFS and Lustre,
and in cloud platforms such as Amazon EC2 it implies the remote S3 storage, or the
S3FS file system.

We compare the read performance of all the file systems on the m3.large instance
of Amazon EC2. Similarly, we scale the experiment from 4 nodes to 16 nodes, and
to 64 nodes in a weak-scaling manner. Every node read a hundred of 100 MB files
from the respective file system. Figure 5 shows all these systems scale well up to 64
nodes.

Fig. 5 Scalable read throughput on Amazon EC2

We also compare the systems of interest with respect to their block sizes. In
Figure 6, we let each system read different number of files of various sizes, all on
64 Amazon EC2 m3.large instances. For example, “1k-100KB” means the system
writes 1,000 files of 100 KB.

We observe that for all systems, once the file size is 1 MB and beyond, the read
throughput is relatively stable, meaning the I/O bandwidth is saturated. We also note
that S3 performs significantly worse than others for files of size 1 KB, although it
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Fig. 6 Read throughput of various file sizes

quickly catches up others at 10 KB and beyond. This suggests that S3 would not be
an ideal medium for applications where small files dominate.

5 Put It Altogether: the FusionFS Filesystem

In the previous three sections we discuss three main design criteria for the next-
generation HPC storage system on the cloud. This section will present a real sys-
tem, namely FusionFS, that implements all the aforementioned designs as well as
its unique features such as cooperative caching, GPU-acceleration, dynamic com-
pression, lightweight provenance, and parallel serialization.

5.1 Metadata Management

FusionFS has different data structures for managing regular files and directories.
For a regular file, the field addr stores the node where this file resides. For a direc-
tory, there is a field filelist to record all the entries under this directory. This filelist
field is particularly useful for providing an in-memory speed for directory read such
as “ls /mnt/fusionfs”. Nevertheless, both regular files and directories share some
common fields, such as timestamps and permissions, which are commonly found in
traditional i-nodes.

The metadata and data on a local node are completely decoupled: a regular file’s
location is independent of its metadata location. This flexibility allows us to apply
different strategies to metadata and data management, respectively. Moreover, the
separation between metadata and data has the potential to plug in alternative com-
ponents to metadata or data management, making the system more modular.

Besides the conventional metadata information for regular files, there is a special
flag in the value indicating if this file is being written. Specifically, any client who
requests to write a file needs to set this flag before opening the file, and will not
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reset it until the file is closed. The atomic compare-swap operation supported by
DHT [27, 28] guarantees the file consistency for concurrent writes.

Another challenge on the metadata implementation is on the large-directory per-
formance issues. In particular, when a large number of clients write many small files
on the same directory concurrently, the value of this directory in the key-value pair
gets incredibly long and responds extremely slowly. The reason is that a client needs
to update the entire old long string with the new one, even though the majority of the
old string is unchanged. To fix that, we implement an atomic append operation that
asynchronously appends the incremental change to the value. This approach is sim-
ilar to Google File System [3], where files are immutable and can only be appended.
This gives us excellent concurrent metadata modification in large directories, at the
expense of potentially slower directory metadata read operations.

5.2 File Write

Before writing to a file, the process checks if the file is being accessed by another
process. If so, an error number is returned to the caller. Otherwise the process can do
one of the following two things. If the file is originally stored on a remote node, the
file is transferred to the local node in the fopen() procedure, after which the process
writes to the local copy. If the file to be written is right on the local node, or it is a
new file, then the process starts writing the file just like a system call.

The aggregate write throughput is obviously optimal because file writes are as-
sociated with local I/O throughput and avoids the following two types of cost: (1)
the procedure to determine to which node the data will be written, normally ac-
complished by pinging the metadata nodes or some monitoring services, and (2)
transferring the data to a remote node. It should be clear that FusionFS works at
the file level, thus chunking the file is not an option. Nevertheless, we will support
chunk-level data movement in the next release of FusionFS. The downside of this
file write strategy is the poor control on the load balance of compute node storage.
This issue could be addressed by an asynchronous re-balance procedure running in
the background, or by a load-aware task scheduler that steals tasks from the active
nodes to the more idle ones.

When the process finishes writing to a file that is originally stored in another
node, FusionFS does not send the newly modified file back to its original node.
Instead, the metadata of this file is updated. This saves the cost of transferring the
file data over the network.

5.3 File Read

Unlike file write, it is impossible to arbitrarily control where the requested data
reside for file read. The location of the requested data is highly dependent on the
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I/O pattern. However, we could determine which node the job is executed on by the
distributed workflow system such as Swift [29]. That is, when a job on node A needs
to read some data on node B, we reschedule the job on node B. The overhead of
rescheduling the job is typically smaller than transferring the data over the network,
especially for data-intensive applications. In our previous work [30], we detailed this
approach, and justified it with theoretical analysis and experiments on benchmarks
and real applications.

Indeed, remote readings are not always avoidable for some I/O patterns such as
merge sort. In merge sort, the data need to be joined together, and shifting the job
cannot avoid the aggregation. In such cases, we need to transfer the requested data
from the remote node to the requesting node.

5.4 Hybrid and Cooperative Caching

When the node-local storage capacity is limited, remote parallel filesystems should
coexist with FusionFS to store large-sized data. In some sense, FusionFS is regarded
as a caching middleware between the main memory and remote parallel filesystems.
We are interested in what placement policies (i.e., caching strategies) are beneficial
to HPC workloads.

Our first attempt is a user-level caching middlewere on every compute node,
assuming a memory-class device (for example, SSD) is accessible along with a con-
ventional spinning hard drive. That is, each compute node is able to manipulate data
on hybrid storage systems. The middleware, named HyCache [14], speeds up HDFS
by up to 28%.

Our second attempt is a cooperative caching mechanism across all the compute
nodes, called HyCache+ [13]. HyCache+ extends HyCache in terms of network
storage support, higher data reliability, and improved scalability. In particular, a
two-stage scheduling mechanism called 2-Layer Scheduling (2LS) is devised to ex-
plore the data locality of cached data on multiple nodes. HyCache+ delivers two
orders of magnitude higher throughput than the remote parallel filesystems, and
2LS outperforms conventional LRU caching by more than one order of magnitude.

5.5 Accesses to Compressed Data

Conventional data compression embedded in filesystems naively applies the com-
pressor to either the entire file or every block of the file. Both methods have limita-
tions on either inefficient data accesses or degraded compression ratio. We introduce
a new concept called virtual chunks, which enable efficient random accesses to the
compressed files while retaining high compression ratio.

The key idea [16] is to append additional references to the compressed files so
that a decompression request could start at an arbitrary position. Current system
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prototype [15] assumes the references are equidistant, and experiments show that
virtual chunks improve random accesses by 2X speedup.

5.6 Space-Efficient Data Reliability

The reliability of distributed filesystems is typically achieved through data replica-
tion. That is, a primary copy serves most requests, and there are a number of backup
copies (replicas) that would become the primary copy upon a failure.

One concern with the conventional approach is its space efficiency; for example,
two replicas imply poor 33% space efficiency. On the other hand, erasure coding has
been proposed to improve the space efficiency; unfortunately it is criticized on its
computation overhead. We integrated GPU-accelerated erasure coding to FusionFS
and report the performance in [11]. Results showed that erasure coding could im-
prove FusionFS performance by up to 1.82X.

5.7 Distributed Data Provenance

The traditional approach to track application’s provenance is through a centralized
database. To address this performance bottleneck on large-scale systems, in [31] we
propose a lightweight database on every compute node. This allows every partici-
pating node to maintain its own data provenance, and results in highly scalable ag-
gregate I/O throughput. Admittedly, an obvious drawback of this approach is on the
interaction among multiple physical databases: the provenance overhead becomes
unacceptable when there is heavy traffic among peers.

To address the above drawback, we explore the feasibility of tracking data prove-
nance in a completely distributed manner in [12]. We replace the database compo-
nent by a graph-like hashtable data structure, and integrate it into the FusionFS
filesystem. With a hybrid granularity of provenance information on both block- and
file-level, FusionFS achieves over 86% system efficiency on 1,024 nodes. A query
interface is also implemented with small performance overhead as low as 5.4% on
1,024 nodes.

5.8 Parallel Serialization

We have explored how to leverage modern computing systems’ multi-cores to im-
prove the serialization and deserialization speed of large objects. [17] Rather than
proposing new serialization algorithms, we tackle the problem from a system’s per-
spective. Specifically, we propose to leverage multiple CPU cores to split a large
object into smaller sub-objects so to be serialized in parallel. While data paral-
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lelism is not a new idea in general, it has never been applied to data serialization
and poses new problems. For instance, serializing multiple chunks of a large ob-
ject incurs additional overhead such as metadata maintenance, thread and process
synchronization, resource contention. In addition, the granularity (i.e., the number
of sub-objects) is a machine-dependent choice: the optimal number of concurrent
processes and threads might not align with the available CPU cores.

In order to overcome these challenges and better understand whether the pro-
posed approach could improve the performance of data serialization of large objects,
we provide detailed analysis on the system design, for example how to determine
the sub-object’s granularity for optimal performance and how to ensure that the per-
formance gain is larger than the cost. To demonstrate the effectiveness of our pro-
posed approach, we implemented a system prototype called parallel protocol buffers
(PPB) by extending a widely-used open-source serialization utility (Google’s Pro-
tocol Buffers [32]). We have evaluated PPB on a variety of test beds: a conventional
Linux server, the Amazon EC2 cloud, and an IBM Blue Gene/P supercomputer.
Experimental results confirm that the proposed approach could significantly accel-
erate the serialization process. In particular, PPB could accelerate the metadata in-
terchange 3.6x faster for FusionFS.

6 Related Work

Conventional storage in HPC systems for scientific applications are mainly remote
to compute resources. Popular systems include GPFS [23], Lustre [24], PVFS [33].
All these systems are typically deployed on a distinct cluster from compute nodes.
The architecture with separated compute- and storage-resources, which was de-
signed decades ago, has shown its limitation for modern applications that are be-
coming increasingly data-intensive [7].

Cloud computing, on the other hand, is built on the commodity hardware where
local storage is typically available for virtual computing machines. The de facto
node-local file system (Google File System [3], HDFS [1]), however, can be hardly
leveraged by scientific applications out of the box due to the concerns on small
file accesses, POSIX interface, and so forth. Another category of storage in the
cloud is similar to the conventional HPC solution—a remote shared storage such
as Amazon S3. A POSIX-compliant file system built on S3 is also available named
S3FS [4]. Unfortunately its throughput performance usually becomes a bottleneck
of the applications and thus limits its use in practice.

Fortunately, researchers have made a significant amount of effort [34, 35] to
bridge the gap between two extremes (HPC and cloud computing) of storage
paradigms, particularly in terms of scalability [36]. We observe more and more
node-local and POSIX-compliant storage systems (Ceph [6], FusionFS [7]) being
tested on the cloud.

We will briefly review the unique features provided by FusionFS as follows.
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6.1 Filesystem Caching

To the best of our knowledge, HyCache is the first user-level POSIX-compliant
hybrid caching for distributed file systems. Some of our previous work [30, 37] pro-
posed data caching to accelerate applications by modifying the applications and/or
their workflow, rather than the at the filesystem level. Other existing work requires
modifying OS kernel, or lacks of a systematic caching mechanism for manipulating
files across multiple storage devices, or does not support the POSIX interface. Any
of the these concerns would limit the system’s applicability to end users. We will
give a brief review of previous studies on hybrid storage systems.

Some recent work reported the performance comparison between SSD and HDD
in more perspectives ([38, 39]). Hystor [40] aims to optimize of the hybrid stor-
age of SSDs and HDDs. However it requires to modify the kernel which might
cause some issues. A more general multi-tiering scheme was proposed in [41] which
helps decide the needed numbers of SSD/HDDs and manage the data shift between
SSDs and HDDs by adding a ‘pseudo device driver’, again, in the kernel. iTrans-
former [42] considers the SSD as a traditional transient cache in which case data
needs to be written to the spinning hard disk at some point once the data is modi-
fied in the SSD. iBridge [43] leverages SSD to serve request fragments and bridge
the performance gap between serving fragments and serving large sub-requests.
HPDA [44] offers a mechanism to plug SSDs into RAID in order to improve the re-
liability of the disk array. SSD was also proposed to be integrated to the RAM level
which makes SSD as the primary holder of virtual memory [45]. NVMalloc [46]
provides a library to explicitly allow users to allocate virtual memory on SSD. Also
for extending virtual memory with Storage Class Memory (SCM), SCMFS [47] con-
centrates more on the management of a single SCM device. FAST [48] proposed a
caching system to pre-fetch data in order to quicken the application launch. In [49]
SSD is considered as a read-only buffer and migrate those random-writes to HDD.

A thorough review of classical caching algorithms on large scale data-intensive
applications is recently reported in [50]. HyCache+ is different from the classical
cooperative caching [51] in that HyCache+ assumes persistent underlying storage
and manipulates data at the file level. As an example of distributed caching for
distributed file systems, Blue Whale Cooperative Caching (BWCC) [52] is a read-
only caching system for cluster file systems. In contrast, HyCache+ is a POSIX-
compliant I/O storage middleware that transparently interacts with the underlying
parallel file systems. Even though the focus of this chapter lies on the 2-layer hier-
archy of a local cache (e.g. SSD) and a remote parallel file system (e.g. GPFS [23]),
the approach presented in HyCache+ is applicable to multi-tier caching architecture
as well. Multi-level caching gains much research interest, especially in the emerging
age of cloud computing where the hierarchy of (distributed) storage is being rede-
fined with more layers. For example Hint-K [53] caching is proposed to keep track
of the last K steps across all the cache levels, which generalizes the conventional
LRU-K algorithm concerned only on the single level information.

There are extensive studies on leveraging data locality for effective caching.
Block Locality Caching (BLC) [54] captures the backup and always uses the
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latest locality information to achieve better performance for data deduplication
systems. The File Access corRelation Mining and Evaluation Reference model
(FARMER) [55] optimizes the large scale file system by correlating access patterns
and semantic attributes. In contrast, HyCache+ achieves data locality with a unique
mix of two principles: (1) write is always local, and (2) read locality depends on the
novel 2LS mechanism which schedules jobs in a deterministic manner followed by
a local heuristic replacement policy.

While HyCache+ presents a pure software solution for distributed cache, some
orthogonal work focuses on improving caching from the hardware perspective.
In [56], a hardware design is proposed with low overhead to support effective shared
caches in multicore processors. For shared last-level caches, COOP [57] is proposed
to only use one bit per cache line for re-reference prediction and optimize both lo-
cality and utilization. The REDCAP project [58] aims to logically enlarge the disk
cache by using a small portion of main memory, so that the read time could be
reduced. For Solid-State Drive (SSD), a new algorithm called lazy adaptive replace-
ment cache [59] is proposed to improve the cache hit and prolong the SSD lifetime.

Power-efficient caching has drawn a lot of research interests. It is worth men-
tioning that HyCache+ aims to better meet the need of high I/O performance for
HPC systems, and power consumption is not the major consideration at this point.
Nevertheless, it should be noted that power consumption is indeed one of the tough-
est challenges to be overcome in future systems. One of the earliest work [60] tried
to minimize the energy consumption by predicting the access mode and allowing
cache accesses to switch between the prediction and the access modes. Recently,
a new caching algorithm [61] was proposed to save up to 27% energy and reduce
the memory temperature up to 5.45◦C with negligible performance degradation.
EEVFS [62] provides energy efficiency at the file system level with an energy-aware
data layout and the prediction on disk idleness.

While HyCache+ is architected for large scale HPC systems, caching has been
extensively studied in different subjects and fields. In cloud storage, Update-batched
Delayed Synchronization (UDS) [63] reduces the synchronization cost by buffering
the frequent and short updates from the client and synchronizing with the underly-
ing infrastructure in a batch fashion. For continuous data (e.g. online video), a new
algorithm called Least Waiting Probability (LWP) [64] is proposed to optimize the
newly defined metric called user waiting rate. In geoinformatics, the method pro-
posed in [65] considers both global and local temporal-spatial changes to achieve
high cache hit rate and short response time.

The job scheduler proposed in this work takes a greedy strategy to achieve the
optimal solution for the HyCache+ architecture. A more general, and more difficult,
scheduling problem could be solved in a similar heuristic approach [66, 67]. For an
even more general combinatorial optimization problem in a network, both precise
and bound-proved low-degree polynomial approximation algorithms were reported
in [68, 69]. Some incremental approaches [70, 71, 72] were proposed to efficiently
retain the strong connectivity of a network and solve the satisfiability problem with
constraints.
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6.2 Filesystem Compression

While the storage system could be better deigned to handle more data, an orthogo-
nal approach is to address the I/O bottleneck by squeezing the data with compres-
sion techniques. One example where data compression gets particularly popular is
checkpointing, an extremely expensive I/O operation in HPC systems. In [73], it
showed that data compression had the potential to significantly reduce the check-
pointing file sizes. If multiple applications run concurrently, a data-aware compres-
sion scheme [74] was proposed to improve the overall checkpointing efficiency. Re-
cent study [75] shows that combining failure detection and proactive checkpointing
could improve 30% efficiency compared to classical periodical checkpointing. Thus
data compression has the potential to be combined with failure detection and proac-
tive checkpointing to further improve the system efficiency. As another example,
data compression was also used in reducing the MPI trace size, as shown in [76].
A small MPI trace enables an efficient replay and analysis of the communication
patterns in large-scale machines.

It should be noted that a compression method does not necessarily need to re-
store the absolutely original data. In general, compression algorithms could be cat-
egorized into to two groups: lossy algorithms and lossless algorithms. A lossy algo-
rithm might lose some (normally a small) percentage of accuracy, while a lossless
one has to ensure the 100% accuracy. In scientific computing, studies [77, 78] show
that lossy compression could be acceptable, or even quite effective, under certain
circumstances. In fact, lossy compression is also popular in other fields, e.g. the
most widely compatible lossy audio and video format MPEG-1 [79]. This section
presents virtual chunks mostly by going through a delta-compression example based
on XOR, which is a lossless compression. It does not imply that virtual chunks can-
not be used in a lossy compression. Virtual chunk is not a specific compression
algorithm, but a system mechanism that is applicable to any splittable compression,
not matter if it is lossy or lossless.

Some frameworks are proposed as middleware to allow applications call high-
level I/O libraries for data compression and decompression, e.g. [80, 81, 82]. None
of these techniques take consideration of the overhead involved in decompression
by assuming the chunk allocated to each node would be requested as an entirety.
In contrast, virtual chunks provide a mechanism to apply flexible compression and
decompression.

There is much previous work to study the file system support for data compres-
sion. Integrating compression to log-structured file systems was proposed decades
ago [83], which suggested a hardware compression chip to accelerate the compress-
ing and decompressing. Later, XDFS [84] described the systematic design and im-
plementation for supporting data compression in file systems with BerkeleyDB [85].
MRAMFS [86] was a prototype file system to support data compression to leverage
the limited space of non-volatile RAM. In contrast, virtual trunks represent a general
technique applicable to existing algorithms and systems.

Data deduplication is a general inter-chunk compression technique that only
stores a single copy of the duplicate chunks (or blocks). For example, LBFS [87]
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was a networked file system that exploited the similarities between files (or ver-
sions of files) so that chunks of files could be retrieved in the client’s cache rather
than transferring from the server. CZIP [88] was a compression scheme on content-
based naming, that eliminated redundant chunks and compressed the remaining (i.e.
unique) chunks by applying existing compression algorithms. Recently, the meta-
data for the deduplication (i.e. file recipe) was also slated for compression to further
save the storage space [89]. While deduplication focuses on inter-chunk compress-
ing, virtual chunk focuses on the I/O improvement within the chunk.

Index has been introduced to data compression to improve the compressing and
query speed e.g. [90, 91]. The advantage of indexing is highly dependent on the
chunk size: large chunks are preferred to achieve high compression ratios in order
to amortize the indexing overhead. Large chunks, however, would cause potential
decompression overhead as explained earlier in this chapter. Virtual chunk over-
comes the large-chunk issue by logically splitting the large chunks with fine-grained
partitions while still keeping the physical coherence.

6.3 GPU Acceleration

Recent GPU technology has drawn much research interest of applying these many-
cores for data parallelism. For example, GPUs are proposed to parallelize the
XML processing [92]. In high performance computing, a GPU-aware MPI was
proposed to enable the inter-GPU communication without changing the original
MPI interface [93]. Nevertheless, GPUs do not necessarily provide superior perfor-
mance; GPUs might suffer from factors such as small shared memory and weak
single-thread performance as shown in [94]. Another potential drawback of GPUs
lies in the dynamic instrumentation that introduces runtime overhead. Yet, recent
study [95] shows that the overhead could be alleviated by information flow analy-
sis and symbolic execution. In this paper, we leverage GPUs in key-value stores—a
new domain for many-cores.

6.4 Filesystem Provenance

As distributed systems become more ubiquitous and complex, there is a growing
emphasis on the need for tracking provenance metadata along with file system meta-
data. A thorough review is presented in [96]. Many Grid systems like Chimera [97]
and the Provenance-Aware Service Oriented Architecture (PASOA) [98] provide
provenance tracking mechanisms for various applications. However these systems
are very domain specific and do not capture provenance at the filesystem level. The
Distributed Provenance Aware Storage System (DPASS) tracks the provenance of
files in a distributed file system by intercepting filesystem operations and sending
this information via a netlink socket to user level daemon that collects provenance in
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a database server [99]. The provenance is however, collected in a centralized fash-
ion, which is a poor design choice for distributed file systems meant for extreme
scales. Similarly in efficient retrieval of files, provenance is collected centrally [100].

PASS describes global naming, indexing, and querying in the context of sensor
data [101], which is a challenging problem also from system’s perspective [36]. PA-
NFS [102] enhances NFS to record provenance in local area networks but does not
consider distributed naming explicitly. SPADE [103] addresses the issue by using
storage identifiers for provenance vertices that are unique to a host and requiring
distributed provenance queries to disambiguate vertices by referring to them by the
host on which the vertex was generated as well as the identifier local to that host.

Several storage systems have been considered for storing provenance. ExS-
PAN [104] extends traditional relational models for storing and querying prove-
nance metadata. SPADE supports both graph and relational database storage and
querying. PASS has explored the use of clouds [101]. Provbase uses Hbase to store
and query scientific workflow provenance [105]. Further compressing provenance
[104], indexing [106] and optimization techniques [107] have also been considered.
However, none of these systems have been tested for exascale architectures. To give
adequate merit to the previous designs we have integrated FusionFS with SPADE
as well as considered FusionFS’s internal storage system for storing audited prove-
nance.

6.5 Data Serialization

Many serialization frameworks are developed to support transporting data over dis-
tributed systems. XML [108] represents a set of rules to encoding documents or
text-based files. Another format, namely JSON [109], is treated as a lightweight
alternative to XML in web services and mobile devices as well. While XML and
JSON are the most widely used data serialization format for text-based files, binary
format is also gaining its popularity. A binary version of JSON is available called
BSON [110]. Two other famous binary data serialization frameworks are Google’s
Protocol Buffers [32] and Apache Thrift [111]. Both frameworks are designed to
support lightweight and fast data serialization and deserialization, which could sub-
stantially improve the data communication in distributed systems. The key differ-
ence between Thrift and Protocol Buffers is that the former has the built-in support
for RPC.

Many other serialization utilities are available at the present. Avro [112] is
used by Hadoop for serialization. Internally, it uses JSON [109] to represent data
types and protocols and improves the performance of the Java-based framework.
Etch [113] supports more flexible data models(for example, trees), but it is slower
and generates larger files. BERT [114] supports data format compatible with Er-
lang’s binary serialization format. Message Pack [115] allows both binary data and
non UTF-8 encoded strings. Hessian [116] is a binary web service protocol that
is 2X faster than the Java serialization with significantly smaller compressed data
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size. ICE [117] is a middleware platform that supports object-oriented RPC and data
exchange. CBOR [118] is designed to support extremely small message size.

None of the aforementioned systems, however, support data parallelism. Thus
they suffer the low efficiency problem when multiple CPU cores are available par-
ticularly when the data is large in size. PPB, on the other hand, takes advantage of
the idle cores and leverage them for parallelizing the compute-intensive process of
data serialization

Many frameworks are recently developed for parallel data processing. MapRe-
duce [119] is a programming paradigm and framework that allows users to process
terabytes of data over massive-scale architecture in a matter of seconds. Apache
Hadoop [120] is one of the most popular open-source implementations of MapRe-
duce framework. Apache Spark [121] is an execution engine which supports more
types of workload than Hadoop and MapReduce.

Several parallel programming models and paradigms have been existing for
decades. Message Passing Interface (MPI) a standard for messages exchange be-
tween processes. It greatly reduces the burden from developers who used to con-
sider detailed protocols in multiprocessing programs and tries to optimize the per-
formance in many scenarios. The major implementation includes MPICH [122] and
Open MPI [123]. OpenMP [124] is a set of compiler directives and runtime library
routines that enable the parallelization of code’s execution over shared memory
multi-processor computers. It supports different platforms and processor architec-
tures, programming languages, and operating systems. Posix Threads (Pthread) is
defined as a set of C programming types and function calls. It provides standardized
programming interface to create and manipulate threads, which allow developers
to take full advantage of the capabilities of threads. Microsoft’s Parallel Patterns
Library (PPL) [125] gives an imperative programming model that introduces paral-
lelism to applications and improves scalability.

Numerous efforts have been devoted to utilizing or improving data parallelism in
cluster and cloud computing environment. Jeon et al. [126, 127] proposed adaptive
parallelization and prediction approaches for search engine query. Lee et al. [128]
presented how to reduce data migration cost and improve I/O performance by incor-
porating parallel data compression on the client side. Klasky et al. [129] proposed
a parallel data-streaming approach with multi-threads to migrate terabytes of scien-
tific data across distributed supercomputer centers. Some work [130, 131, 132, 133]
proposed data-parallel architectures and systems for large-scale distributed comput-
ing. In [134, 135], authors exploited the data parallelism in a program by dynami-
cally executing sets of serialization codes concurrently.

Unfortunately, little study exists on data parallelism for data serialization, mainly
because large messages are usually not the dominating cost by convention. PPB [17]
for the first time identifies that large message is a challenging problem from our ob-
servations on real-world applications at Google. We hope our PPB experience could
provide the community insights for designing the next-generation data serialization
tools.
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7 Conclusion

This chapter envisions the characteristics of future cloud storage systems for scien-
tific applications that used to be running on HPC systems. Based on literature and
our own FusionFS experience, we believe the key designs of future storage system
comprise the fusion of compute and storage resources as well as completely dis-
tributed data manipulation (both metadata and data), namely (1) distributed meta-
data accesses, (2) optimized data write, and (3) localized file read.

To make matters more concrete, we then detail the design and implementation of
FusionFS, whose uniqueness lies in its highly scalable metadata and data through-
put. We also discuss its integral features such as cooperative caching, efficient ac-
cesses to compressed data, space-efficient data reliability, distributed data prove-
nance, and parallel data serialization. All the aforementioned features enable Fu-
sionFS to nicely bridge the storage gap between scientific big data applications and
cloud computing.
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