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II Abstract

Abstract

Processors with 100s of threads of execution and GPUs with 1000s
of cores are among the state-of-the-art in high-end computing sys-
tems. This transition to many-core computing has required the com-
munity to develop new algorithms to overcome significant latency bot-
tlenecks through massive concurrency. Implementing efficient paral-
lel runtimes that can scale up to hundreds of threads with extremely
fine-grained tasks (less than ⇠100 µs) remains a challenge. We pro-
pose XQueue, a novel lockless concurrent queueing system that can
scale up to hundreds of threads. We integrate XQueue into LLVM
OpenMP and implement X-OpenMP, a library for lightweight tasking
on modern many-core systems with hundreds of cores. We show that
it is possible to implement a parallel execution model using lock-less
techniques for enabling applications to strongly scale on many-core
architectures. While OpenMP is suitable for on-node parallelism, it is
crucial to support heterogenous architectures and distributed memory
environments. The existing parallel programming environments that
support distributed memory environments either discover the DAG en-
tirely on all processes which limits the scalability or introduce explicit
communications which increases the complexity of programming. We
implement Template Task Graph (TTG), a novel programming model
and its C++ implementation by marrying the ideas of control and data
flowgraph programming. TTG supports compact specification and effi-
cient distributed execution of dynamic and irregular applications. TTG
can address the issues mentioned above without sacrificing scalabil-
ity or programmability by providing higher-level abstractions than con-
ventionally provided by task-centric programming systems, but without
impeding the ability of these runtimes to manage task creation and
execution as well as data and resource management efficiently. TTG
implementation currently supports distributed memory execution over
2 different task runtimes PaRSEC and MADNESS.
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CHAPTER 1

Introduction

The Department of Energy (DOE) has reported that ”Scientific productiv-
ity is one of the top ten exascale research challenges [69]”. The scien-
tific computing community is facing unprecedented changes in computer
architectures that has fueled the emergence of the many-core computing
architecture. Processors with 100s and GPUs with 1000s of threads of ex-
ecution are among the state-of-the-art in high-end computing systems. In a
recent report [50], the DOE stated that ”the transition of applications to ex-
ploit massive on-node concurrency... create the most challenging environ-
ment for developing applications in at least two decades.” Extreme on-node
concurrency levels of order 104 is required in order to achieve exascale per-
formance levels according to this report. They continued by saying ”much of
the performance improvement must come from vectorization and lightweight
tasking.” These heterogeneous systems provisioned with many-core accel-
erators fundamentally make programmability harder as we shift from MIMD
(multiple instruction, multiple data) programming to a mixture of MIMD and
SIMD (single instruction, multiple data) programming. The era of many-
core and exascale computing will bring new fundamental challenges in how
we build large-scale systems, how we manage them, and how we program
them. The techniques that have been designed decades ago will have to be
dramatically changed to support the coming wave of extreme-scale general
purpose parallel computing.
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Today, the increase in performance for single-threaded processor has come
to an end due to the limitation of the current Very Large Scale Integration
(VLSI) technology. In response, most hardware companies are designing
and developing new parallel architectures [40]. To achieve higher perfor-
mance, applications need to leverage the parallelism on modern architec-
tures. On the other hand, multicore designs are also encountering scaling
problems, notably the “Dark Silicon” phenomenon [37]. Power and cooling
concerns suggest the number of dynamically active transistors on a single
die may be greatly constrained in the near future. In other words, even if
the number of transistors per chip continues to follow Moore’s law, we will
not be able to use all of them simultaneously. This problem may lead to
scenarios in which only a small percentage of the chip’s transistors can be
“on” at a time [98]. The limitations of current CMOS technology has fueled
the emergernce of many-core architectures and many of these massively
parallel platforms offer a high ratio performance/cost and an efficient power
consumption design [109, 112, 108]. They are also widely used in high per-
formance computing, including systems ranging from a cluster of personal
computers, to large scale supercomputers. As per the Top 500 list [102],
many of the most powerful supercomputers today are based on platforms
that combine multicore and manycore processors with data parallel acceler-
ators.

Task-based parallelism is a simple paradigm for shared memory parallelism
in which a computation is broken-down into a set of inter-dependent tasks
which can then be executed concurrently on various cores. When a task is
created by some processor/thread, it is conceptually queued for execution
by a future available thread. Task dependencies and/or data dependencies
are used to control the flow of tasks through the runtime system. Tasks can
be modeled as Directed Acyclic Graph (DAG) which can can dynamically
unfold during the execution of the application. Given the DAG, tasks can be
executed using a set of processors/threads where each thread dequeues a
task from a queue and executes it. If the queue is empty, thread waits for a
task to come in to the queue until the whole DAG is processed.

Figure 1 shows a DAG with a set of tasks with arrows showing the depen-
dencies. Nodes at one level can ideally be executed in parallel. Here tasks
D,E, G and H can be executed in parallel and they do no have dependen-
cies since they are the leaf tasks. Once the dependencies for F have been
resolved, task F can execute. The execution models of many parallel lan-
guages and libraries [84, 9, 120, 119, 38, 104] rely on such task parallelism.
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Figure 1 Directed Acyclic Graph (DAG)

Most parallel runtime systems today support execution of coarse-grained
tasks with very high efficiency, however when it comes to fine-grained tasks,
the efficiency decreases due to the overhead of scheduling and managing
the tasks. Hence, the need for low overhead tasking becomes significant in
order to explore extreme parallelism from applications.

Many-Task Computing (MTC) [88] has been an emerging paradigm and
area of research for some years now. An MTC workload consists of tasks
that run uninterrupted from start to completion. The task duration may be
highly variable, ranging from tens of cycles to hundreds and thousands of
cycles. Their dependency and data-passing characteristics may range from
many similar tasks to complex, and possibly dynamically determined, de-
pendency patterns. Many-task computing differs from high throughput com-
puting (HTC) in the context of using large number of computing resources
over short periods of time to accomplish many computational tasks. To ef-
ficiently handle MTC workloads, the system needs to exploit parallelism as
much as possible. As more and more cores are being added to increase
the processing speed, the need for parallel execution models that can lever-
age full capabilities of the processors by over-decomposition of tasks into
fine-grained tasks is increasing.

1.1 Early Work in Many Task Computing

GPUs have a very restrictive programming model, but provide at least an
order of magnitude better throughput for applications painstakingly coded to
that model. To program GPUs, typically there is a need to learn another pro-
gramming language such as CUDA (NVIDIA) or OpenCL (AMD). As a result,
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existing vendors must spend extra time and effort to modify or rewrite parts
of their codebase to take advantage of the new capabilities provided by Gen-
eral Purpose GPUs (GPGPUs). Besides that, barely rewriting an application
just to offload computations to a GPU rarely works well. Because of the ar-
chitecture of most GPUs out there, applications must be tailored from the
ground up to follow the rules of the restrictive programming model of GPUs,
otherwise they may suffer from severe performance penalties. Because of
that, interested vendors cannot afford to go through the effort involved. Fi-
nally, while GPUs are great for massively parallel applications with thread-
switching that comes almost at no cost, their performance can take a large
hit when executing programs with complex logic (like complicated branching
and looping for example). Therefore they may be unsuitable for certain ap-
plications of MTC. The Intel Xeon Phi is a family of processors based on the
Intel MIC Architecture [56] that incorporates earlier work on the Larrabee
architecture [95]. It follows an alternative programming model that, although
may not provide the same level of parallelism, provides more flexibility and
therefore can be more suitable for certain application of MTC that GPUs
are not suited for. The reason is that the Xeon Phi has x86 cores that are
more capable (can handle complex branching and looping) than most GPU
cores. Another advantage of having x86 cores is that programming the co-
processor minimizes the amount of work that needs to be done in order to
integrate a Xeon Phi to an existing system. That is because the Phi does
not require being programmed in any specific framework and it can natively
run applications written in C with Pthreads or OpenMP. This work used the
22nm Knights Corner chip, which was the first commercial product from this
family. This product has been discontinued due to the problems with 10nm
technology and we briefly discuss our findings from using this chip.

The Knights Corner is a PCIe vector co-processor with integrates up to 61
in-order dual issue x86 cores, which trace some history to the original Pen-
tium core, like the Larrabee predecessor. Among other enhancements, the
Corner’s cores are augmented with 64-bit support, 4 hardware threads per
core (resulting in more than 200 hardware threads available on a single de-
vice) and 512-bit SIMD instructions [56]. Each core has a 512KB L2 cache
locally but has also access to all other L2 caches in the system through a
high-speed bidirectional ring [56]. Unlike previous GPUs, the L2 cache is
kept fully coherent by a global-distributed tag directory.

Due to the foundations of Intel architecture, the coprocessor can be pro-
grammed in several different ways. We implemented two different frame-
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work for handling MTC workloads - OpenMP and SCIF (Symmetric Commu-
nications Interface). SCIF is a low-level API implemented by Intel for Xeon
Phis for communications across PCIe. For the OpenMP implementation, we
used offloading approach for offloading computations from host to the Phi.
For the SCIF part, we implemented the framework to run natively on the Phi
while accepting jobs from clients running on the host CPU [6]. The major
advantage of native execution coupled with SCIF over offloading is that the
developer gets more control overall in the configuration and the architecture
of their design in order to maximize performance. In addition, different MIC
cards can communicate directly with each other basically making certain
designs more efficient. The OpenMP version of the framework is developed
using a Producer-Consumer architecture which communicates using shared
memory for IPC. The Consumer side hosts the framework which runs as
multiple worker threads which use the shared memory space as a queue
structure, continuously accepting new tasks from producer. Likewise, the
producer acts as a client process which submits tasks to the queue. Asyn-
chronous offloading is used to allow the framework to be non-blocking to
continue accepting tasks while other tasks are running on the Phi. After
submitting the job, the clients can request the result and the server will de-
liver it to them when the task has finished processing. The whole procedure
is non-blocking for the server who can handle multiple requests and submis-
sions at the same time.

To analyze the performance of our implementations, we ran a simple task-
based matrix multiplication benchmark on the Midway High Performance
Computing Cluster at the University of Chicago. Our testing host is an Intel
SandyBridge with 16 cores at 2.6 Ghz and 32 GB of RAM. It has 2 Xeon
Phis from the Knights Corner family attached to it. We calculated speedup
compared to the sequential version and observed higher performance with
fine-granular tasks, but the gain reduces as problem scales up to higher
matrix sizes. The overheads of communication via PCIe interface quickly
became evident as we scaled up the problem sizes. We also analyzed the
performance of sleep(0) tasks to assess the ideal performance of Xeon Phi
with very short length tasks. We achieved an efficiency of 90% with tasks
lasting as short as 640 microseconds.
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1.2 Summary

These preliminary observations motivated us to further explore many-core
architectures and fine-grained tasking with the goal to reduce the underlying
overheads of the existing parallel runtime systems and to explore extreme
fine-grained parallelism. Parallel execution models typically uses concurrent
data structures like queues to hold a bag of tasks. We shifted our focus to
analysing the performance of concurrent queues to understand the over-
heads of managing tasks in task-based runtime systems.



How Bad Is Concurrent Queue Performance Across Many Threads? 7

CHAPTER 2

How Bad Is Concurrent Queue Performance Across
Many Threads?

Concurrent data structures have to deal with data synchronization and com-
munication between threads. Synchronization mechanisms like mutexes,
semaphores and spinlocks are known to have significant overhead and can
easily become the bottleneck to achieving high performance. Many re-
searchers have proposed better performing lock-free data structures using
atomic instructions supported by hardware. Many programming languages
like Java and C++ implement lock-free data structures. Many libraries exist
for these languages [62] [89] [10], that take advantage of the instructions
that hardware can support for implementing high-performance data struc-
tures. However, as we move towards many-core architectures, lock-free
techniques do not scale well due to mutual exclusion and high contention
on memory bus resource.

2.1 Baseline Queue Performance

A single producer single consumer (SPSC) array-based queue provides the
lowest latency for enqueue and dequeue operations when both operations
do not happen simultaneously since they do not require data synchroniza-
tion, thread to thread communication and can benefit from data locality. In
order to parallelize applications, concurrent queues are necessary for shar-
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ing work among various threads and a multiple producer multiple consumer
(MPMC) queue is the most commonly used data structure. Thread con-
tention, data synchronization, cache coherence and cache misses are few
of the many factors that can highly impact the performance of MPMC queues
limiting their scalability.

Table 1 Testbed for evaluation from the Mystic System

Machine Model Sockets-Cores/HT@Freq
skylake-192 Intel Xeon Gold 8160 8-192/384@2.1GHz
skylake-48 Intel Xeon Gold 8160 2-48/96@2.1GHz
skylake-32 Intel Xeon Gold 6130 2-32/64@2.1GHz
skylake-16 Intel Xeon Silver 4110 2-16/32@2.1GHz

phi-64 Intel Xeon Phi 7210 1-64/256@1.5GHz
broadwell-16 Intel Xeon E5-2620 v4 2-16/32@2.1GHz
haswell-12 Intel Xeon E5-2620 v3 2-12/24@2.4GHz

epyc-64 AMD Naples 7501 2-64/128@2.0GHz
theadripper-32 AMD Threadripper 2990WX 1-32/64@3.0GHz

ryzen-8 AMD Ryzen 7 1700 1-8/16@3.0GHz
opteron-48 AMD Opteron 6168 4-48/48@1.9GHz
power9-40 POWER9 EP73 2-40/160@3.8GHz

thunderx-96 ThunderX 88XX ARM v8 2-96/96@2.0GHz

In order to show the scalability and performance of MPMC queues com-
pared to SPSC queues, we selected five diverse systems (see Table 1) from
the Mystic Testbed [85] that represent different architectures with large core
counts. The five systems we choose to evaluate for these initial experiments
are: 1) AMD Epyc, 2) ARM ThunderX, 3) IBM Power9, 4) Intel Xeon Phi, and
5) Intel Xeon Scalable Processor. More information about these systems (as
well as others used in our work) can be found in Table 1.

We measured the latency and throughput of a simple SPSC array-based
circular queue to identify baseline numbers for the lowest latency that can
be achieved on latest many-core architectures. Experiments involve run-
ning 1 billion enqueue operations followed by a sequence of dequeues. We
measured the latency of each operation and calculated the average time per
enqueue/dequeue pair. Queue size is set to the number of samples for the
purposes of this evaluation. Results in Figure 2 show the average latency of
both enqueue and dequeue operations. It can be noted that latency of any
operation on queues takes 30 to 70 cycles depending on the architecture
and clock frequency. This latency measurement includes a check if queue
is full/empty, an increment operation on head/tail, a modulo operation on
head/tail to get the position in the circular array and a copy operation to ad-
d/remove the item. Figure 3 represents the throughput, which is the rate at
which items are being processed by the queue. For throughput experiments,
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Figure 2 Average latency of enqueue/dequeue operations on SPSC
queue

we measured the total time taken for a billion enqueue/dequeue operations
and calculated the throughput. Average throughput of enqueue/dequeue
operations reaches 270 million operations per second on Intel Skylake 192-
core machine. Although these results are significant showing excellent sin-
gle threaded performance, an SPSC queue is limited because it cannot be
used with more than one producer and one consumer.

Figures 4 and 5 depict the results obtained by benchmarking a simple mul-
tiple producer multiple consumer queue for latency and throughput. The
queue is implemented by using a semaphore which keeps track of free
spaces in the queue and pthread_mutex_lock to lock the queue during en-
queue and dequeue operations. This is the most common and simple way to
implement a concurrent queue. We do not expect a single concurrent queue
with multiple threads to scale well. This experiment aims at quantifying the
poor scalability of MPMC queues using mutex locks. Each experiment en-
queues and dequeues one billion items using equal number of producer and
consumer threads. For all the experiments, a round robin pinning of threads
is employed with producer and consumer thread being on the same core
and different hyper threads. Binding threads to processor can result in bet-
ter cache utilization, thereby reducing costly memory accesses. This thread
placement is a result of tests performed by pinning producer to core 0 and
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Figure 3 Average throughput of enqueue/dequeue operations in mil-
lions(M) on SPSC queue

consumer to each other core available and evaluating the performance ob-
tained for every combination which resulted in separate hyper threads on
the same CPU giving the highest performance.

Figures 4 and 5 show the latency and throughput, respectively. Our results
indicate that latency can reach up to millions of cycles under high contention,
and throughput can drop down to as low as 311,329 operations per second
(aggregate over all threads). For the skylake-192 system, which had the
best single core performance at 270 million operations/sec, the MPMC ap-
proach yielded only 810 operations per second per thread at a 384-thread
scale (a 333,333⇥ loss of performance). The fastest MPMC queue through-
put at any scale reached just 5 million operations/sec. These results pro-
vide enough motivation to investigate methods to exploit full concurrency on
many-core architectures while not compromising on the lowest latency that
can be achieved.
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Figure 4 Average latency of enqueue/dequeue operations on a lock-based
queue. This graph is shows that simple lock-based queues don’t scale be-
yond 8 threads on any modern processors.

Figure 5 Average throughput of enqueue/dequeue operations on lock-
based queue. This graph shows that the throughput of a simple lock-based
queue plateaus beyond 8 threads on modern processors
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2.2 Analysis of Synchronization Mechanisms

This section conducts a detailed performance study of synchronization mech-
anisms: 1) mutexes, 2) semaphores, 3) spin locks, and 4) atomic fetch-and-
add operations. The evaluation is conducted on a testbed of 13 systems
representing today’s largest shared-memory systems from Intel, AMD, IBM,
and ARM with up to 384 hardware threads.

2.2.1 Tesbed, Software Stack, and Timing Mechanisms

Testbed: Table 1 shows details of the testbed used for experiments in this
paper. The testbed covers latest many-core architectures from Intel, AMD,
IBM and ARM with processors such as Haswell, Broadwell, Skylake, Phi,
Opteron, Ryzen, Threadripper, Epyc, Power9, and ThunderX. The smallest
system is an 8-core single socket system from AMD. The largest system is
an 8-socket system with 24-core Intel CPUs, for a total of 192-cores and
384 hardware threads. The average system scale is about 50-cores and
100 hardware threads.

Software stack: All experiments in this paper are performed on Ubuntu
18.04 operating system and compiled using GCC version 7.3 with O2 opti-
mization level.

Fine-grained timing: On x86 architectures, latency is measured in CPU
cycles using RDTSCP instruction for start time and RDTSC + CPUID in-
struction for the end time. RDTSCP is a serializing instruction and it pre-
vents instruction reordering around the call. CPUID is also a serializing
call and when it follows RDTSC instruction, it prevents any future instruc-
tions to be executed before timing information is read. The combination
of these two timing functions gives the most accurate results for latency.
Timing on ARM and Power9 architectures is quite different from x86 archi-
tectures. ARM processor has a PMU cycle counter which is only accessible
in privileged mode. The operating system sets up a virtual counter which
counts at the same frequency as the physical counter and can be used for
fine-grained measurements. The ARM cycle counter ticks at a lower fre-
quency than the frequency that cores are running at and hence calibration
is required to get the multiplier that needs to be applied to the cycle count to
get a precise value. In Power9, time base register counts cycles at a fixed
lower frequency and needs to be calibrated to convert the value to actual
cycles at CPU clock frequency. Throughput in all experiments in this paper
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is measured using CLOCK_MONOTONIC for start and end times. Throughput is
calculated for each thread individually and all the results are aggregated to
get the final throughput value for the experiment.

2.2.2 Performance of Synchronization Mechanisms

In order to program for shared-memory systems using multithreading, threads
need to be synchronized. Various thread synchronization mechanisms exist
which ensure that threads do not simultaneously execute a critical section of
the program. Many languages provide high level abstractions for synchro-
nization to ease parallel programming. Common synchronization mecha-
nisms include mutexes (mutual exclusion locks), semaphores, reader/writer
locks and condition variables. Mutex is a mutual exclusion lock which en-
sures exclusive access to the shared resource. Spinlock is a type of lock
which waits in a busy loop if lock cannot be acquired. Atomics operations
are instructions supported by hardware and they lock the memory bus to
access the shared resource. These operations are inherently atomic and
have limited support for data types on various architectures. Semaphores
is a type of mutual exclusion where a thread can wait to get access to the
critical section or do a post so other threads can get access.

While it is essential to synchronize data between threads, it can easily get
very expensive at higher levels of concurrency. This is due to the reason
that only one thread can hold exclusive access to the critical section and all
other threads are waiting to get the lock using up CPU cycles. Lock-free ap-
proaches using atomic operations are believed to be highly efficient, but are
hard to implement and maintain. Lock-free algorithms can be implemented
by using special hardware primitives such as CAS (compare and swap),
FAA (fetch and add) and LL/SC (load-link/store conditional). Most imple-
mentations of mutexes are built on top of atomic instructions supported by
hardware.

The primary focus here is to analyze the cost of low-level thread synchro-
nization mechanisms and for this purpose, we benchmarked pthread_mutex_lock/
pthread_mutex_unlock, sem_wait/ sem_post, fetch-and-add and spin_lock/
spin_unlock to measure latency. Spinlock for this benchmark is imple-
mented using test-and-set algorithm using CAS atomic primitive. Fetch-
and-add is supported by x86 architectures using ’lock xadd’ instruction.
The Power9 variant for FAA instruction is ’lwarx/stwcx’ and ARMv8 provides
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(a) Atomic Fetch-and-add (b) Mutex

(c) Semaphore (d) Spinlock

Figure 6 Average latency of incrementing an integer using different syn-
chronization mechanisms. Same trend is observed on all architectures
where latency keeps increasing as threads are scaled up except Intel Xeon
Phi.

’ldxr/stxr’ which are load/store exclusive instructions used for implementing
atomic read, modify, write operations. These benchmarks are obtained by
running a tight loop of 1 billion operations and collecting the aggregate of the
results. Each iteration acquires the lock, increments a shared integer and
releases the lock, excluding fetch-and-add which performs an increment op-
eration atomically.

Figure 6 shows that all synchronization mechanisms exhibit higher latencies
due to contention at higher levels of concurrency. There are many factors
that impact the cycle counts like cache coherence, communication latency
between cores on same and different sockets, interrupts, cache misses,
etc. Hence, it is important to run multiple iterations of these benchmarks
and to compute the average number of CPU cycles to estimate the latency
of these operations. Latency of a single atomic increment on a Skylake sys-
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tem with 192-cores and 384 hardware threads when running on all threads
concurrently is 33592 cycles whereas on Intel Xeon Phi Knights Landing
with 64-cores and 256 hardware threads, latency reaches 3868 cycles. Sim-
ilar behavior is observed on other architectures with latencies reaching up
to thousands of CPU cycles solely for acquiring the lock, incrementing a
variable and releasing the lock.

Although AMD, Intel, ARM and IBM have distinctly different architectures, it
is interesting to note that the latency of synchronization mechanisms steadily
increases on all the architectures as concurrency increases. For atomic in-
structions, most architectures show a slow rise in the latency up to 8 threads
and latency linearly increases after 8 threads whereas for mutex, spinlock
and semaphor, latency steadily goes up as concurrency level increases. In-
tel Broadwell, Haswell and Skylake processors exhibit similar performance
curve as threads are scaled up where as AMD Ryzen, AMD Threadripper
and AMD Epyc processors start with a slow increase in latency up to 8
threads for all four types of locks and then the latency rapidly grows as level
as concurrency increases.

Intel Xeon Phi Knights landing with 64-cores shows interesting results. Al-
though latency increases up to 64 threads, the latency remains constant as
more threads are added. This behavior can be attributed to the round robin
hyper-threading implemented in Intel Xeon Phi (which is different than all
the other processor architectures evaluated in this paper). In x86 architec-
tures, hyper-threading allows each physical processor to be perceived as
two separate logical processors within the operating system by sharing the
resources, which results in both hyper-threads running simultaneously in-
creasing contention on each core. Whereas, in Intel Xeon Phi, every core
alternates scheduling hardware threads at each cycle thereby not increas-
ing contention and resulting in a better performance as threads are scaled
up to more than the number of cores [106].

2.3 Conclusion

We were not surprised by these findings as it is well known that state-of-the-
art synchronization mechanisms do not scale beyond single digit concurrent
threads [79]. These limitations are automatically imposed onto concurrent
data structures that are implemented using such synchronization mecha-
nisms. Furthermore, use of such concurrent data structures in modern
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parallel runtimes have significant overheads for managing extremely fine-
grained tasks. Even though at low concurrency these mechanisms only cost
hundreds of cycles, these costs quickly grew to tens of thousands and even
hundreds of thousands of cycles at hundreds of threads. Our experience
with the cost of synchronization mechanisms at high concurrency along with
the cost of MPMC queues as a building block for parallel runtimes has mo-
tivated our investigation into methods to eliminate synchronization mecha-
nisms in order to unleash the full performance of many-core architectures
under high concurrency.
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CHAPTER 3

Scalable Concurrent Queues on Modern Many-core
Architectures

This work is motivated in large part by the significant latency gap observed
with SPSC and MPMC models.

A simple concurrent SPSC queue can enqueue and dequeue items in
less than 100 cycles. Independent SPSC queues per core could, in the-
ory, scale linearly with increasing core counts. Thus, we believe that
an MPMC lock-less queue can be built using SPSC queues by manip-
ulating the task/data flow carefully.

We introduce XQueue, a novel lock-less MPMC, out-of-order queuing mech-
anism that can scale up to hundreds of threads. XQueue uses B-queue [116]
as a building block. B-queue is a concurrent SPSC lock-free queue de-
signed for efficient core-to-core communication. It is implemented without
using any locks, atomic operations, or barriers. The latency of queue op-
erations in B-queue is as low as 20 cycles. B-queue uses batching where
both producer and consumer detect a batch of available slots that are safe to
use. Batching avoids shared memory access and therefore improves perfor-
mance. Several fast SPSC queues have been proposed in recent years [75,
71, 5] and we aim to demonstrate that XQueue can be built with any fast
and scalable SPSC queue.
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Figure 7 Architecture of XQueue on a 4-core machine with 4 queues per
consumer.

Figure 7 shows the architectural of XQueue on a 4-core system. The key
idea here is to have N SPSC concurrent queues per worker if there are
N workers. There is one master queue and N � 1 auxiliary queues per
worker, with N (equal to number of workers) producers adding items into
master queues. Every item is a void pointer that represents a task where
a task could be a function pointer or data pointer. One worker exists for
dequeueing tasks from the master queue as well as the auxiliary queues. A
worker first tries to dequeue a task from the master queue. If a task is de-
queued successfully, it is processed immediately. The item when processed
can generate one or more items to be enqueued into the auxiliary queues
of the other CPU cores. Every worker distributes work to auxiliary queues
in a round-robin fashion as shown in Figure 7. A worker then tries to de-
queue an item from its auxiliary queues and dequeued items are processed
immediately.

A simplified version of pseudocode for worker logic is outlined in Algorithm 1.
Since all queues in XQueue are concurrent SPSC queues, producer and
consumer threads can act concurrently processing items in the queues. The
strategy of distributing work across queues (as shown in Figure 7) ensures
that there is a only a single producer and single consumer for every queue
at any point in time. Due to this design, locks can be completely avoided
thereby reducing the latencies of queue operations and improving overall
performance.
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Algorithm 1 Worker logic.
id coreId;next nextCoreId;

while 1 do ret dequeueFromMaster(id, item);

if ret = SUCCESS then retItem processItem(item);

if retItem 6= NULL then enqueueToAuxiliary(next, retItem);
ret dequeueFromAuxiliary(id, item);

if ret = SUCCESS then retItem processItem(item);

if retItem 6= NULL then enqueueToAuxiliary(next, retItem);
next (next+ 1)%numCores;

if next == id then next++;

3.1 Load balancing

In most parallel programming systems, it is a common scenario to use mul-
tiple queues, one per worker, with work produced and consumed locally by
the workers/threads. Load balancing is commonly achieved by using tech-
niques like work stealing [31, 45]. While XQueue also uses multiple queues,
it balances load by the virtue of its design with N queues per core and con-
sumer threads inserting items into the auxiliary queues of all the other cores.
This architecture enables distribution of task graphs to multiple threads with
minimal overhead due to the lock-less design as compared to the state-
of-the-art work stealing techniques which primarily use locks or atomics to
achieve synchronization.

In a task-parallel program, tasks can be modeled as a Directed Acyclic
Graph (DAG) which can be traversed based on inter-dependencies between
the tasks. Task graphs have a pool of ready tasks which can be processed
by threads and subtasks can be generated. The master and auxiliary queues
and the communication between them is modelled after the dynamic exe-
cution of a program where a task can generate subtasks. In the case of
XQueue with N workers and N queues per worker, as shown in Figure 7,
we employ a ring buffer topology for communicating between queues. Es-
sentially, the consumer thread of every set of queues acts as a producer
thread of N �1 auxiliary queues of all the other threads. This pattern of task
distribution ensures optimal load balancing in terms of the number of tasks
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processed per worker. However, this may not be the best fit for every sce-
nario for various reasons, such as data locality, task dependencies, and per
task execution time. Optimal allocation of work among various threads is
known to be NP-hard, but, in the case of XQueue, depending on the nature
of work, the topology of connections between queues and task distribution
strategy can be changed to achieve best performance.

The load balancing mechanism in XQueue can be considered as a push-
based mechanism as opposed to pull-based work stealing approach. This
primary difference impacts how initially imbalanced workloads are handled.
For example, consider the case of Fibonacci. Execution starts with a single
task which recursively unfolds the DAG as execution progresses. In the
work stealing approach, idle workers randomly try to steal tasks from other
workers. This results in several failed steals and coupled with the cost of
locking for every steal, incurs significant overhead. On the other hand, the
push-based approach of XQueue handles this efficiently with its round-robin
distribution without the use of locks, thus incurring minimal overhead. We
discuss the advantages and disadvantages of this approach in Section 3.4.

On modern many-core architectures, it is common to have multiple Non-
uniform memory access (NUMA) zones which impact the latency of memory
operations from various cores. In XQueue, every worker allocates queues in
its respective NUMA zone.This ensures that any memory reads and writes
from various threads have the lowest latency possible. However, when tasks
propagate through auxiliary queues in the system, the latency of memory
read/write is higher across NUMA zones. With XQueue’s ring buffer de-
sign across N cores with N queues, some latency is unavoidable due to the
underlying architecture.

In summary, there is a lot of flexibility for defining the topology for task distri-
bution statically and dynamically during program execution with XQueue. If
the nature of the DAG and data access patterns are known, the task distri-
bution can be tuned to achieve best performance as compared to state-of-
the-art work stealing approaches.

3.2 Xtask - eXtreme fine-grained TASKing runtime

XQueue is designed to have the lowest latency of operations since it does
not use any locks or atomic operations for synchronization. XQueue achieves
minimal load balancing automatically as execution progresses and depend-
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ing on the nature of the DAG and size of tasks, applications with balanced
DAG will benefit from using XQueue as the underlying data structure for
managing tasks. To demonstrate this, we developed a prototype parallel
runtime system that can process a dynamic task graph with task depen-
dencies. The runtime system employs a producer consumer architecture.
Underlying data structure to hold the bag of tasks is XQueue which is imple-
mented using multiple single producer single consumer queues as describe
earlier in this section. Number of producers and consumers is configurable
at runtime along with the queue sizes. A pool of worker threads are launched
waiting to consume tasks from multiple queues. When the framework boot-
straps, it allocates memory for the queues on the NUMA node where the
thread is created on. The framework uses pthread library for implementing
multithreading. We originally developed Xtask wit a long-term goal to accel-
erate fine-grained parallel applications implemented in OpenMP, OpenCL,
Swift/T, etc orders of magnitude beyond the state-of-the-art. However, it
quickly became evident that it is cumbersome to implement complex appli-
cations using the Xtask API since the applications have to be broken down
into tasks manually and rewritten. OpenMP is a popular standard for imple-
menting parallelism by decorating the code with pragmas. We decided to
integrate our ideas into OpenMP in order to broaden the scope of our ideas
into real applications.

3.3 XQueue Integration with the OpenMP Runtime

In order to extend our research to real systems, we integrated XQueue into
OpenMP [14] to enable execution of unmodified OpenMP programs using
XQueue. OpenMP’s tasking model provides a way to efficiently parallelize
dynamic task graphs and recursive algorithms. Several implementations of
OpenMP exist: GNU OpenMP (for GCC) [101], LLVM OpenMP [14], and
Intel OpenMP. We chose to integrate XQueue into the LLVM OpenMP due
to its open source code and its superior performance as compared to GNU
OpenMP with fine-grained tasks [86].

Implementation: In the LLVM OpenMP tasking implementation, every thread
owns a queue and the enqueue/dequeue operations are protected by locks
implemented using Lamport’s bakery algorithm. We replaced the task queues
in OpenMP with multiple SPSC queues per worker to model XQueue. OpenMP
implements a work-stealing scheduler. Every thread first checks it’s own
queue for tasks. If no tasks are found, a thread is randomly chosen to steal
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a single task. We replaced the work stealing scheduler with the scheduler
for XQueue as shown in Algorithm 1. In our XQueue-based OpenMP im-
plementation, every thread checks it’s own queue for tasks. If no tasks are
found, the scheduler checks all auxiliary queues. This process of check-
ing the master queue and auxiliary queues is repeated until a termination
condition is satisfied.

Optimizations: We applied few optimizations to the XQueue system dur-
ing integration with the OpenMP runtime. Since the core design of XQueue
is to have multiple queues per worker, at higher thread counts (hundreds),
the latency of checking all auxiliary queues can become significant and re-
duce the overall performance. To solve this issue, we implemented a hinting
mechanism where every producer stores the ID of the last queue to which
the task was pushed. This hint can possibly be over-written by multiple
threads writing to various queues, however this simple mechanism reduces
the latency of checking auxiliary queues many times.

3.4 Performance Evaluation

We evaluate the performance of XQueue using synthetic and real work-
loads. For the purposes of evaluating XQueue independently, we developed
a prototype parallel runtime system that can process a dynamic task graph
with task dependencies using XQueue. We first evaluate XQueue individu-
ally using a series of micro-benchmarks. We deployed XQueue on 13 sys-
tems (Table 1); we then picked the system with the highest number of cores,
the skylake-192 with 192-cores and 8 NUMA zones to conduct deeper anal-
ysis.

3.4.1 Experiment Setup

We implemented three systems for the micro-benchmark evaluation:

(1) XQueue (SPSC) uses a single SPSC queue per worker.

(2) XQueue (MPMC) uses an MPMC queue with a master queue per
worker.

(3) XQueue (Cilk Deque) uses a Cilk deque [38] with a separate
queue per worker.
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Cilk deque is implemented as part of Cilk 5 multi-threaded language [38]
and uses a shared-memory, mutual-exclusion protocol called the THE pro-
tocol[30] for implementing locks. This mechanism of locking is about 25%
faster than hardware locking primitives.

For the macro-benchmarks, we use the XQueue-enabled LLVM OpenMP
implementation with N queues per worker and N workers. We compare it
with the native LLVM OpenMP and GNU OpenMP libraries.

3.4.2 Micro-benchmark Performance Results

In each experiment we perform 1 billion enqueues/dequeues concurrently
by varying the number of threads. We consider a single operation to be the
act of dequeing an item from the master queue and executing the function
to which that item points to. The function performs a single NOP opera-
tion. The X-axis on all the figures represents the number of producers/con-
sumers.

Figure 8a shows the latency of queue operations on XQueue using lock-
less queue. Each queue operation takes around 110 to 400 CPU cycles
on average on all architectures considered. ARM ThunderX shows the
lowest latency and IBM Power9 shows the highest latency in these micro-
benchmarks. Intel processors Skylake, Haswell, Broadwell and Xeon Phi
show latencies in the range of 180 to 300 CPU cycles on average. The
standard deviation is low across all architectures indicating that XQueue
with lock-less queue can scale up to hundreds of threads with latencies as
low as 110 to 400 cycles.

Figure 8b compares the latency of XQueue (SPSC) with Cilk Deque and
MPMC queues on skylake-192. Here, Cilk Deque/MPMC is a single queue
shared across all the workers. With 192 producers/consumers, latency of
MPMC queue is 13⇥ the latency of Cilk deque. Cilk deque’s Dijkstra-like
locking mechanism achieves much lower latency than locks implemented
using hardware locking primitives. However, the latency is much higher
compared to XQueue which does not use any locks. It is noteworthy that
XQueue has relatively constant latency as we increase the number of threads
by two and half orders of magnitude, while Cilk deque and MPMC show sig-
nificant latency increases over the same scale.
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(a) Average latency of enqueue/dequeue operations using
XQueue (SPSC)

(b) Latency Comparison

(c) Throughput Comparison

Figure 8 XQueue Performance on Skylake-192
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Figure 8c is a log-log plot showing the throughput of XQueue using lock-
based and lock-less queues on the skylake-192 system. The throughput
achieved on this system with XQueue with lock-less queue is 1 billion oper-
ations per second with all hyper threads being utilized. For XQueue using
lock-based queue, the average throughput achieved is 200 million opera-
tions per second and 397 million for the Cilk deque. In the case of MPMC
queue, each mutex lock is held for short intervals and contention is low, but
acquiring the lock has a cost which explains the 5⇥ gap in performance as
compared to XQueue with lock-less queue. Cilk deque also incurs a cost
for acquiring and releasing the lock (a 2.5⇥ gap), although the cost is lower
compared to mutex-based locks. Similarly XQueue implementations over
both lock-less and lock-based queues highly benefit from data being in the
cache avoiding costly memory accesses. A single lock-based queue shared
among all threads shows improvement in performance up to a maximum of
8 threads on all architectures and it steadily declines as more threads are
added. As noted in Chapter 2 for MPMC queue, with high contention on
the mutex lock with more than 8 threads, throughput drops to about 300K
operations per second on skylake-192 with 384 threads. In case of Cilk
deque, the throughput drops to 4 million operations per second. This clearly
shows a 3300X gap in throughput between XQueue with lock-less queue
and single lock-based queue with hundreds of threads.

The results obtained from micro-benchmarks using XQueue with lock-less
queue and lock-based queue are significant and show that this architecture
can scale to at least hundreds of threads with any scalable concurrent SPSC
queue implementation. It can be noted that these micro-benchmarks do not
take into consideration the cache effects of task distribution to other cores in
XQueue since there are no auxiliary queues. Hence, this benchmark shows
the lowest latency and highest throughput that can be achieved, providing a
baseline.

3.4.3 Macro-benchmark Performance Results

To quantify the improvements in real application workloads, we evaluate the
speedup achieved using XQueue-enabled LLVM OpenMP as compared to
the native LLVM OpenMP and GNU OpenMP libraries. We evaluate five
out of nine applications from the BOTS benchmark suite [36]: Fibonacci,
FFT (Fast Fourier Transform), Multisort, NQueens and Health. Results are
shown in Figure 9. We also evaluate the breadth first search application
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from the GAP benchmark suite [12] with real-world social network graphs
such as those from Friendster and Twitter. Results are shown in Figure 11.
The application workloads are summarized in Table 2.

Table 2 Application - number of tasks

Application Inputs(S,M,L,XL) Highest Task Count
Fibonacci 44, 46, 48, 50 40.7B

FFT 134M, 268M, 536M, 1B 128M
Multisort 134M, 268M, 536M, 1B 14M
Nqueens 14, 15, 16 1.1B

Health small, medium, large 126M
BFS friendster 79M
BFS twitter 40M

Fibonacci (Fib) computes the Nth Fibonacci number using recursive par-
allelism. While Fib is hardly a critical parallel application, it does have ex-
tremely fine-grained tasks (e.g., addition of two numbers) with extremely
large number of tasks, and thus exposes the limits of a tasking runtime in
terms of granularity. Figure 9 shows the results obtained on skylake-192.
OpenMP with XQueue achieves 3⇥ speedup as compared to the native
LLVM and GNU versions for Fib(50). The performance gap increases with
problem size due to the increase in overhead of locking operations in the na-
tive OpenMP versions with more fine-grained tasks. Further analysis using
Intel Vtune Profiler showed that about 50% of the execution time is spent in
these operations which includes waits and atomics, where as this overhead
is negligible in the XQueue version due to the lack of locks or atomics. The
overall runtime overhead for managing fine-grained tasks of this application
reduced from over 90% to 29% of the CPU time when using XQueue.

Multisort sorts 32-bit randomly generated numbers using a fast parallel
sorting variation of mergesort. It uses a recursive algorithm with a base
condition of 2048 numbers and they are sorted using serial quicksort and
insertion sort is used for arrays with less than 20 elements. The application
scales well up to 96 threads for all the runtimes and XQueue is faster for
all problem sizes with 1.97⇥ speedup for the largest problem size. How-
ever, the performance drops by 50% at 192 threads. As shown in Figure 9,
XQueue achieves similar performance compared to LLVM and GNU ver-
sions using 192 threads. LLVM and GNU versions of OpenMP exhibit high
CPI (cycles per instruction) rate (0.5 for XQueue vs 24 for both LLVM and
GNU for the largest problem size) which is the result of waits, atomics, and
locks in the GNU/LLVM versions. However, since this application is heav-
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ily memory-bound, the benefits of avoiding locks and lower CPI in XQueue
are outweighed by the data movement across cores, thereby resulting in no
performance benefit.

Health simulates the Columbian Health Care System [29]. A list of potential
patients in a village with one hospital are simulated with several possibilities
of getting sick, needing treatment or reallocating to an upper level hospital.
Every village being simulated is run as a task. The different probabilities at
each step cause indeterminism and load imbalance. On skylake-192, the
performance of this application is heavily impacted due to remote memory
accesses for moving the village data across NUMA zones. Despite some
load imbalance, XQueue achieves 6⇥ speedup compared to LLVM variant
and 4⇥ speedup compared to GNU variant using the large input data.

Fast Fourier Transform (FFT) computes the 1D FFT of a vector with N
complex values using the Cooley-Tukey Algorithm. This algorithm recur-
sively divides the FFT into several smaller Discrete Fourier Transforms (DFTs)
creating multiple tasks at each step. Although the XQueue version has the
advantage of reduced overhead due to lock-less queues, the task distri-
bution suffers due to the static round-robin placement of tasks resulting in
similar overall execution time as compared to other versions of OpenMP. Fig-
ure 10 shows the timeline view of the OpenMP parallel region for the largest
problem size, where green represents effective work and black represents
the spin/wait/overhead time introduced by load imbalance. It is notewor-
thy that OpenMP with XQueue with worse load balancing can still achieve
slightly improved performance (between 0.9⇥ to 1.2⇥) due to the smaller
overheads incurred by avoiding locks.

NQueens computes all the solutions for placing N queens on an N ⇥ N

chess board such that no queens can attack each other. The algorithm
prunes certain branches of the tree that cannot reach the solution which
creates load imbalance. Figure 9 shows that the XQueue-enabled OpenMP
implementation achieves 4X speedup compared to the GNU version. The
performance loss in XQueue as compared to standard LLVM is due to the
significant load imbalance. On the other hand, GNU OpenMP incurs huge
synchronization overheads for managing fine-grained tasks (about 60% on
skylake-192) and the performance is significantly lower for GNU OpenMP
compared to OpenMP with XQueue.
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Figure 9 Speedup of XQueue over standard GNU and LLVM OpenMP im-
plementations on the BOTS benchmarks on skylake-192 using 192 threads.

Figure 10 Load balance of FFT on skylake-192 - LLVM+XQueue (left),
Native LLVM (middle), GNU(right)
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Breadth First Search (BFS) is a fundamental building block of many graph
algorithms: it checks the connectivity of the graph from given source ver-
tices, visiting one layer at a time. In order to demonstrate the applicability
of XQueue using real-world datasets, we evaluate the BFS application from
the GAP Benchmark Suite [12] using social network graphs such as Twitter
and Friendster. The original implementation of BFS in the GAP benchmark
leverages loop parallelism (LP) to parallelize every level of the tree. We
modified the code to use recursive task-based (TP) parallelism with a base
condition of 1024 nodes to evaluate XQueue. We also evaluate the extreme
case with a base condition of 1 node, which creates several extremely fine-
grained tasks. Each data point is the average speedup obtained by running
BFS 64 times from pseudo-randomly selected non-zero degree source ver-
tices. The Twitter graph has 61 million nodes and 1.47 trillion directed edges
for a degree of 23 where degree is the maximum number of edges connect-
ing a vertex. The Friendster graph has 65 million nodes and 3.61 trillion
directed edges for a degree of 55.

Figure 11 shows the speedup achieved for both the test graphs on the
skylake-192 using 192 threads. For the Friendster graph with a base case of
1024 nodes, GNU OpenMP scales well up to 24 threads and performance
degrades at higher concurrency levels. XQueue performs reasonably well at
full scale of 192 threads as compared to GNU and LLVM. XQueue achieves
a speedup of 1.4⇥ for Friendster and 3⇥ for Twitter graphs over GNU with
base case of 1024 nodes. Execution times for LLVM and XQueue are sim-
ilar for Friendster and for Twitter, XQueue achieves 2.4⇥ speedup. For the
base case of 1 node, while there is no significant performance difference
between LLVM and XQueue, GNU’s performance suffers significantly (up to
116⇥ slower) due to the overhead of managing fine-grained tasks. Since
real social network graphs are very unbalanced, they result in highly irreg-
ular memory accesses and load imbalance. Compared to the original GAP
BFS using loop parallelism, XQueue achieves 1.9⇥ speedup using Friend-
ster and 1.6⇥ speedup using Twitter with 192 threads, showing promise
that the task-based parallel approach can be beneficial for these types of
workloads.

Overall, our results show that there is significant room for improvement in
existing task-parallel runtimes and higher performance can be achieved by
using lock-less techniques. Improving load balancing could yield further
performance improvements similar in size to the improvements seen here.
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Figure 11 Speedup of XQueue over standard GNU and LLVM OpenMP
implementations when applied to Breadth First Search from GAP Bench-
mark Suite on skylake-192 using 192 threads.

3.5 Conclusion

XQueue is an extremely scalable lock-less MPMC out of order queuing sys-
tem which can be used in tasking runtimes to overcome the performance
limitations due to overhead of synchronization. Evaluation results show that
XQueue is scalable up to hundreds of threads of execution with up to 6900⇥
lower latencies and 3300⇥ higher throughput when compared to naive im-
plementations. We integrated XQueue with LLVM OpenMP and were able
to achieve up to 6⇥ speedup compared to native LLVM OpenMP and 1⇥
to 4⇥ speedup compared to GNU OpenMP in most cases with up to 116⇥
speedup in some cases on applications from the BOTS benchmark suite
and BFS application from the GAP benchmark suite.
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CHAPTER 4

X-OpenMP – eXtreme fine-grained tasking using
lock-less work stealing

We introduced XQueue, a lock-less concurrent queueing framework for task
parallel runtime systems which enables extreme fine-grained task paral-
lelism. This is achieved by reducing the overheads of the underlying con-
current data structures used in runtime systems. We demonstrated perfor-
mance improvements that could be obtained on modern architectures with
hundreds of cores using several benchmarks. However, XQueue framework
relies on a static round-robin load balancing strategy for distributing work
across processors. While this approach to push work eagerly to other work-
ers can achieve modest load balancing, the lack of dynamic load balancing
can severely limit the performance of real-world workloads.

Load balancing is crucial to parallel applications as imbalances quickly lead
to sub-optimal execution times. Work stealing is typically used in most par-
allel runtimes and execution models for load balancing. Work stealing in-
volves stealing work from a random busy worker when a processor runs
out of work. Traditional work stealing implementations use lock-based ap-
proaches to steal work from concurrent queues. These concurrent data
structures do not scale up to hundreds of threads on modern many-core ar-
chitectures and exhibit significant overheads at high levels of concurrency.
Acar et al. explored a lock-less approach for work stealing by implementing
an algorithm that can steal work non-atomically [2]. We extend their work
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on load balancing along with our prior work on lock-less concurrent parallel
framework [80] and propose a dynamic lock-less load balancing mechanism
that can provide significant performance improvements using real applica-
tion workloads.

4.1 Motivation

In task-parallel runtimes, load imbalance is a significant performance lim-
iting factor. Several studies have shown the importance of dynamic load
balancing in multi-threaded applications [31, 6]. Dynamic load balancing
enables better distribution of work across the processors to achieve efficient
performance. In a multi-threaded runtime, typically tasks are executed by
a fixed number of workers. Every worker owns a task pool and execute
tasks from their pool. Any subtasks that are spawned are inserted into the
worker’s own task pool. When a worker runs out of tasks, it randomly picks
workers to steal tasks from. The amount of load balancing required varies
from application to application. Workers can steal a single unit of work at
a time, or two units, or half the amount of work from the victim’s task pool.
Literature has shown that asking two random workers for work is sufficient
in most cases to achieve exponential improvement in performance [76].

Figure 12 shows the timeline plot of the Unbalanced Tree Search (UTS)
benchmark [83] executed using GNU’s implementation of OpenMP. The green
dots indicate effective CPU time and the black dots indicate idle time. The
plot shows a significant load imbalance for this application where several
workers (bottom of the figure) are idle for most of the application run, and
other workers are idle for a significant amount of the time. The load imbal-
ance results in a major slowdown in the execution time of the application.
The UTS benchmark is designed to understand the efficiency of dynamic
load balancing in parallel runtime systems and this plot clearly highlights the
imbalance in existing task-based runtime systems. Processors are heavily
under-utilized resulting in poor overall performance. The simplest way to
achieve load balancing is to distribute work across workers in a round-robin
fashion. While this is easy to implement, real-world applications are dy-
namic in nature with varying computational intensity and complexity. A naive
round-robin load balancing approach may not be sufficient for improving the
performance of real-world workloads [13].
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Figure 12 Load Imbalance in Unbalanced Tree Search using 192 threads
and GNU OpenMP

Multi-threaded systems use synchronization mechanisms like mutexes, semaphores,
spinlocks, or atomic operations [105, 59] to ensure thread safety and cor-
rectness. Concurrent data structures are the central building block of multi-
threaded execution models and work stealing relies heavily on these im-
plementations. However, traditional synchronization mechanisms do not
scale to hundreds of threads. The mutual exclusion required to ensure
correctness, consistency, and thread safety leads to serialized concurrent
accesses and adds unnecessary overheads. New approaches for concur-
rent data structures are necessary to push the limits of scalability on modern
many-core architectures. Lock-free approaches [93, 24, 73, 72, 74] mitigate
these overheads to an extent by using atomic operations which guarantee
system-wide progress, but literature has shown it is very difficult to write cor-
rect lock-free code [100]. Lock-less non-atomic updates to data structures
are significantly faster compared to the atomic variants and are the focus of
our work.

One of the challenges of parallel execution models that use traditional work
stealing is the potential need for a large number of steals to achieve opti-
mal load distribution. When a runtime is initialized and workers are created,
they start looking for work and when no work is found in the local task pool,
work stealing is triggered. Studies have shown that several steal requests
are generated at the beginning and tail end of the execution [117]. Work
stealing implemented using traditional synchronization-based mechanisms
tend to have huge overheads for stealing work. Hence, work stealing should
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be triggered sparingly and only when necessary to avoid unnecessary over-
heads.

4.2 X-OpenMP - eXtreme fine-grained tasking runtime

OpenMP is a popular standard for implementing parallel runtime execution
models. Task-based parallelism has emerged for exploiting dynamic paral-
lelism from applications on modern many-core and multi-core architectures.
We introduce X-OpenMP with the goal of enabling extreme fine-grained
parallelism for task-parallel applications. We extend our work on XQueue
and implement dynamic load balancing to overcome the limitations of static
round-robin load balancing.

4.2.1 Load Balancing

Static round-robin load balancing is limited for dynamically unfolding task
graphs due to the inability to load balance during the course of application
execution. Most multi-threaded runtime systems [38, 23, 104] use load bal-
ancing mechanisms like work stealing and work sharing in order to reduce
the overall execution time. Traditional work stealing mechanisms typically
use synchronization constructs to safely steal work from the victim’s queue.
However, since XQueue uses SPSC queues where queue operations are
not protected using locks, there is a need to design a lock-less algorithm
that can perform dynamic load balancing of tasks using work stealing.

4.2.1.1 Lock-less Work Stealing Using Wait

A mechanism that does not use synchronization is required for implement-
ing work stealing using XQueue. Intel’s x86 architectures have a memory
model that supports Total Store Ordering (TSO) [96]. TSO guarantees that
load and store operations to a memory location are in order as issued by
the processor. This memory consistency model provides an opportunity
to explore lock-less techniques on x86 architectures for implementing low
overhead concurrent data structures and load balancing mechanisms. Prior
work has presented an algorithm that does not require atomic read-modify-
write operations for shared memory work stealing [2] that works on total
store memory architectures like Intel’s x86. Processors communicate by
reading and writing into memory locations non-atomically. The details of the
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original implementation can be found in the technical report [2]. We em-
ployed a modified version of this algorithm for work stealing in X-OpenMP to
implement dynamic load balancing. The implementation works as follows.
The algorithm requires two memory cells per worker where one cell holds a
combination of 40-bit round number (representing the round of work steal-
ing) and 24-bit identifier (ID of the worker) packed into a 64-bit word and the
other memory cell holds a pointer to the stolen task. Algorithms 2 and 3
present the pseudocode for victim and stealer threads. To perform work
stealing, an idle thread (stealer) first randomly picks a victim. As shown
in Algorithm 3, the stealer first checks if the victim is accepting requests.
This is shown in the first line of the algorithm where the 40-bit round num-
ber is extracted by using bit operations and compared with the victim’s own
round number. The steal request is valid only if the extracted round num-
ber is less than the victim’s own round number. The stealer then takes a
copy of victim’s round number and writes its identifier packed with the round
number into the victim’s 64-bit memory cell. The stealer thread waits in a
while loop until the copy of its round number matches the victim’s round or
a stolen task is received. While waiting, it also writes a steal request to it’s
own memory cell and leaves it unserved. This self query makes sure no
other steal requests come in to this thread since it is idle. When a stolen
task is copied by the victim to the stealer’s memory cell, the stealer imme-
diately breaks out of the while loop and executes the task. On the other
hand, a busy victim looks at it’s memory cell during a dequeue operation, as
shown in Algorithm 2, extracts the round number from the steal request and
compares this round number with its current round number. If it matches,
the steal request is valid and the victim dequeues a task from its queue and
copies it to the stolen task memory cell of the stealer. The victim increments
it’s round number to invalidate any steal requests coming in. The round is
incremented in 2 scenarios: (1) when a steal request is served and a task
is copied to the stealer’s stolen task field; and (2) when victims’ queues are
empty.

The pseudocode presents only the core logic leaving out the complex im-
plementation specific details. The actual implementation also ensures that
a stealer is not able to steal requests from other threads while it is waiting
to steal a task. Also, this implementation works similarly to traditional work
stealing mechanisms where a stealer waits to steal a task from a victim.

The original algorithm in the technical report [2] is implemented for steal-
ing threads and waits forever in the while loop until a steal succeeds or is
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Algorithm 2 Work Stealing With Wait - Victim’s Logic
local_steal_req  thread� > steal_req; round  local_steal_req &((1 <<
40)� 1);

if round == thread� > round then ret dequeue(thread_id, item);

if ret == SUCCESS then stealer_id local_steal_req >> 40;
threads[stealer_id]� > stolen_task  item;

thread� > round++;

Algorithm 3 Work Stealing With Wait - Stealer’s Logic

if (victim� > steal_req&((1 << 40) � 1) < victim� > round) then
round = victim� > round;
victim� > steal_req = round+ (thread_id << 40);

while round == victim� > round||thread� > stolen_task 6= NULL do
if (victim� > steal_req&((1 << 40) � 1)) < round then victim� >

steal_req = round+ (thread_id << 40);

if (thread� > stolen_task 6= NULL) then return thread� >
stolen_task;

return NULL;

invalidated. However, in the implementation of X-OpenMP, to ensure the
application terminates after executing the DAG, the worker breaks out of
the loop after waiting for a certain amount of time. The amount of time a
worker waits to steal a task has a direct impact on overall execution time.
Due to the static load balancing, a worker waiting to steal a task might get
work from other workers and the worker needs to return to executing tasks
as soon as possible. In order to achieve better performance, the time a
worker waits to steal a task is dynamically adjusted based on the recent
activity. The concept is similar to exponential backoff in computer networks
where feedback is used to multiplicatively decrease the rate of some pro-
cess in order to achieve an acceptable rate [66]. In our model, the wait
time is controlled by the number of loop iterations, starting with a very small
number and doubling every time a steal request fails. If a steal request suc-
ceeds, the number of iterations is decreased by a small amount in order to
achieve the ideal number of iterations required for stealing. Effectively, the
wait time increases exponentially for failed requests and decreases linearly
for successful requests with the goal to achieve an optimal wait time. This
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approach minimizes the number of failed steal requests while adjusting the
wait time to achieve better performance.

4.2.1.2 Lock-less Work Stealing Without Wait (Wait-Free)

While the above algorithm using dynamic wait time works like traditional
work stealing algorithms, the communication between workers in XQueue
using SPSC queues can be used to implement work stealing without wait-
ing. The benefit of this approach is that it eliminates the wait time while
enabling load balancing using steal requests and queue operations. As
shown in Algorithm 5, it starts off with the stealer submitting a steal request
to a random victim thread by writing a 64-bit word in the victim’s memory
cell. Instead of waiting in a while loop to receive a task from the victim, the
stealer immediately returns to the scheduler and checks it’s own queues for
tasks. If no tasks are found, it picks another random worker to submit a steal
request.

On the victim’s side, if a steal request is received, the victim can take action
in both enqueue and dequeue operations. Algorithm 4 shows the pseu-
docode of the dequeue operation. If the victim is trying to dequeue a task
and a steal request is received, the victim checks all it’s queues for a task,
and it enqueues the task into the stealer’s auxiliary queue instead of copying
it to the stealer’s stolen task memory cell. In case of an enqueue operation,
if a steal request is received, instead of following a round-robin order for dis-
tributing tasks, it enqueues the task into the auxiliary queue of the stealer.
If no steal request is found, the enqueue continues in a round-robin fashion
across all the workers. This approach of work stealing leverages the ex-
isting connections between queues and workers for enqueue and dequeue
and does not require sophisticated waiting logic to ensure termination of the
application.

Algorithm 4 Wait-Free Work Stealing - Victim’s Logic
local_steal_req  thread� > steal_req; round  
local_steal_req&((1ULL << 40)� 1);

if round == thread� > round then ret dequeue(thread_id, item);

if ret == SUCCESS then stealer_id local_steal_req >> 40;
threads[stealer_id]� > enqueue(item); thread� > round++;
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Algorithm 5 Wait-Free Work Stealing - Stealer’s Logic

if (victim� > steal_req&((1 << 40)�1) < victim� > round) then round =
victim� > round;
victim� > steal_req = round+ (thread_id << 40);
return NULL;

It is worth noting that the wait-free work stealing algorithm results in many
more steal requests being submitted than the wait-based approach, thereby
resulting in more successful steals and better load balancing in terms of the
number of tasks. A significant difference between the traditional work steal-
ing approach and the lock-less approaches described above is that in the
traditional approach, an idle worker is doing all the work for stealing a task.
However, in the case of the lock-less approach, a busy worker is facilitating
work stealing by checking it’s queues and pushing a task to the stealer. This
approach may slightly increase the overhead of tasking, however it is not
significant as we will show in the evaluation section. During a dequeue op-
eration, the worker is checking all the queues to dequeue tasks. In the case
of dequeue with no steal requests, one task needs to be removed, whereas
if there is a steal request, two tasks need to be removed from the queues,
one for executing by itself and the other for handing over to the stealer.

The wait-free lock-less work stealing algorithm is shown in the Figure 13.
For simplicity, we show two threads and two queues per thread where thread
T0 can enqueue into queue Q2 of thread T1 and T1 can enqueue into queue
Q2 of T0. In Figure 13-A, the stealer thread T0 checks it’s own queues for
tasks during dequeue operation. If no tasks are found, T0 writes a steal
request into T1’s memory cell as shown by the dotted red line. After putting
a steal request, T0 checks if the termination condition for the runtime is
satisfied and if not, returns back to the dequeue operation which is shown
by the dotted red loop for dequeue. Victim thread T1 checks for incoming
steal requests during a dequeue operation. If a request is received, thread
T1 checks its queues for two tasks, one for executing itself and the other
for fulfilling the steal request. Only the stealing part is shown in the figure.
Thread T1 dequeues an item and enqueues it to queue Q2 of thread T0. It
then increments it’s round value to allow other incoming steal requests. Also,
thread T0 writes a self query using its own round number incremented by
one into it’s own steal request memory cell. This tells the other workers that
steal requests are not currently being accepted by this worker (as shown in
Algorithm 3.
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(a) A

(b) B

Figure 13 Wait-free work stealing in action - [A] shows the stealer putting
a steal request to the victim [B] shows the victim serving the steal request



40 X-OpenMP – eXtreme fine-grained tasking using lock-less work stealing

4.2.1.3 Considerations

X-OpenMP is designed using lock-less techniques to overcome the high
overheads of synchronization at high concurrency levels. This approach re-
quires several SPSC queues per worker to enable concurrent access and
to ensure a single thread enqueues and a single thread dequeues at any
point in time. Multiple queues in XQueue require more memory per worker
as compared to a single queue per worker in other OpenMP implementa-
tions, which becomes significant when there are hundred’s of workers in the
system. It is worth noting that the performance is not sensitive to queue
size as is the case with the native LLVM OpenMP. If the queue size is very
small, it results in many failing enqueues which in turn results in few workers
executing most of the tasks. We evaluated the X-OpenMP approach using
varying queue sizes and achieved similar performance with both small and
large queues due to the presence of multiple queues.

The original implementation of XQueue uses N2 queues where N is the
number of workers in the system. This is a limitation imposed by the static
round-robin load balancing strategy which can limit the scalability of the sys-
tem. Our implementation of work stealing enables dynamic load balancing
which can be used to reduce the number of queues required in order to
achieve better performance. One strategy would be to constrain the ring
buffer of queues to be within a NUMA zone and load balance dynamically
across other NUMA zones. This was proposed by the authors in prior work
and our work in dynamic load balancing enables exploration of these options
with just minor changes to the current implementation.

4.2.1.4 Scheduling Logic

Our scheduling logic is similar to XQueue with some additional logic for
tracking the last successful victim. The worker first checks its own queues
for tasks. If no tasks are found, it randomly chooses a victim thread to steal
work from. A steal request is submitted to the victim and if the steal is suc-
cessful, the runtime tracks the victim’s ID for future steals. If the steal fails,
the saved victim ID is reset and the scheduler randomly picks another victim
to steal from. This is an optimization from the native LLVM OpenMP imple-
mentation that we adopt for X-OpenMP. This optimization enables efficient
work stealing from an overloaded worker.
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If some workers are overloaded, instead of stealing one task at a time, mul-
tiple tasks can be stolen to load balance quickly and efficiently using less
steal requests [117]. The wait-free work stealing approach submits several
work stealing requests due to the virtue of its design and we explore the per-
formance by stealing one and two tasks at a time to understand the overall
impact on performance.

4.3 Evaluation

We evaluate X-OpenMP using a set of synthetic benchmarks and real-world
applications. The microbenchmarks are specifically designed to understand
the performance of lock-less techniques described in our work for tasking
and load balancing. We evaluate 4 different implementations in X-OpenMP:

(1) XQUEUE-STATIC - uses static round robin load balancing;

(2) XOMP-DYNAMIC-WAIT - uses static load balancing and dynamic
wait-based work stealing;

(3) XOMP-DYNAMIC-WAITFREE/ XOMP-DYNAMIC-WAITFREE-STEALONE
- uses static load balancing and dynamic wait-free work stealing,
stealing one task at a time;

(4) XOMP-DYNAMIC-WAITFREE-STEALTWO - uses static load bal-
ancing and dynamic wait-free work stealing, stealing two tasks at
a time.

We compare the performance of X-OpenMP (XOMP) with native LLVM OpenMP
(OMP) and GNU OpenMP (GOMP). To quantify the performance improve-
ments in real application workloads, we evaluate strassen’s matrix multipli-
cation from the BOTS benchmark suite [36], cholesky factorization and sym-
metric rank-k update routines from the PLASMA linear algebra library [32]
and the Unbalanced Tree Search benchmark [83]. All experiments are con-
ducted on an Intel Skylake Server with 192 cores (384 hardware threads) at
2.1GHz with 8 sockets and 8 NUMA zones. This server is part of the Mystic
testbed [85]. We compiled all the benchmarks using LLVM Clang version
11.0 and O3 optimization level and ran experiments on Ubuntu 20.04.4.
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Figure 14 Parallel Tasking Overhead on skylake-192 using 192 threads
(lower is better)

4.3.1 Microbenchmarks

To evaluate the overheads of tasking and to explore the scalability of X-
OpenMP with extremely fine-grained tasks, we implemented a set of mi-
crobenchmarks inspired by the EPCC Benchmark Suite [19]. While the
EPCC benchmark suite contains benchmarks for measuring the overheads
of tasking and load balancing in OpenMP, these benchmarks are not suf-
ficient for understanding the performance of the lock-less techniques de-
scribed in this work. For the purposes of evaluation, each microbenchmark
runs a loop that increments a variable for a certain number of iterations as a
task. The number of iterations is derived based on the delay time specified
in the benchmark by running a test loop. We refer to this task as the delay
task. For benchmarking X-OpenMP, we designed 3 different microbench-
marks: (1) Tasking overhead - measures the overhead of launching a task
of a certain length; (2) Task Distribution - measures how the tasks are dis-
tributed across workers when all workers are given an equal number of fixed
length tasks; (3) Work Stealing Efficiency - measures the efficiency of work
stealing when only the master worker receives all the tasks.
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Figure 15 Task Distribution on skylake-192 using 192 threads

Figure 14 shows the overheads of tasking in microseconds for various ver-
sions of OpenMP using 192 threads. In this benchmark, each worker pro-
cesses 8 million delay tasks where each task runs for a fixed length of 0.1 mi-
croseconds. The experiment is repeated 20 times and the plot shows the av-
erage execution time. The tasking overhead measured for X-OpenMP with
static round-robin load balancing is about 110 nanoseconds. The overhead
of X-OpenMP with workstealing is about 150 to 200 nanoseconds. In na-
tive LLVM OpenMP, the tasking overhead is about 400 nanoseconds. GNU
OpenMP exhibits significantly higher overhead for extremely fine-grained
tasks at about 20 microseconds for 1 nanosecond tasks, with the overhead
going down up to 2 microseconds for 1 microsecond tasks. These results
clearly illustrate that the overheads of tasking can be significantly reduced
by using lock-less concurrent queuing mechanisms.

Figure 15 shows a box plot of task distribution across workers for 20 runs
of 8 million fixed delay tasks using 192 threads. Every worker in the X-
OpenMP implementation with static load balancing executes the same num-
ber of tasks due to the absence of dynamic load balancing. LLVM and GNU
OpenMP versions spend significant time in load balancing depending on the
execution speed of each worker. The tasking overhead plays a significant
role in triggering work stealing, since higher overhead for pushing tasks im-
plies that the workers are idle for a long time which triggers work stealing
even when it is not necessary. X-OpenMP with wait-based and wait-free
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Figure 16 Efficiency of Work Stealing on skylake-192 using 192 threads
(closer to 100% is better)

workstealing approaches also steal tasks in order to load balance, how-
ever the standard deviation is low compared to the native LLVM and GNU
versions. Overall, the execution time is directly correlated with the number
of tasks executed by each worker. Compared LLVM and GNU versions,
X-OpenMP run about 36% faster in this microbenchmark. This slowdown
is due to the overheads of enqueueing and dequeuing in lock-based ap-
proaches used in LLVM and GNU versions.

Figure 16 shows the efficiency of work stealing across 192 workers. This
benchmark creates an OpenMP parallel region and the master thread runs
a for loop which creates 65K delay tasks with 0.1 microsecond delay. This
experiment is repeated 20 times and we count the total number of tasks
processed per worker. The plot shows the efficiency of each worker based
on the task distribution across all the runs. Efficiency is calculated by taking
a ratio of actual task count over the ideal task count. The ideal case is when
every worker runs an equal number of tasks which implies the efficiency is
100%. The efficiency for all versions of XOMP ranges between 95% and
105% and for the native LLVM OpenMP version, the efficiency ranges be-
tween 90% and 120%. GNU OpenMP shows significant variance in the task
distribution which is also observed in the overall execution time and it runs
about 5X to 10X slower compared to the native LLVM and XOMP versions.
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Figure 17 Scaling of Strassen’s Matrix Multiplication using 8K matrix on
skylake-192 (lower is better)

The main takeaway from this benchmark is that lock-less implementations of
work stealing perform similarly to traditional work stealing implementations.

4.3.2 Macrobenchmarks

To demonstrate the behavior of X-OpenMP in real application scenarios,
we chose benchmarks which are most studied, fundamental and relevant to
real-world HPC applications: a matrix multiplication benchmark, two linear
algebra routines, and an unbalanced tree search benchmark. We evaluate
these applications on the skylake machine with 192 cores using various
versions of X-OpenMP and compare with LLVM and GNU versions.

Strassen’s Matrix Multiplication [36, 52] is a parallel algorithm that uses
the divide and conquer approach to multiply two square matrices. A large
matrix is divided into smaller and smaller matrices by recursion. When the
algorithm reaches the base size, it computes the matrix multiplication using
a divide and conquer approach. The depth based cutoff value for divide and
conquer algorithm is set to 3.

Figure 17 shows the scalability plot for Strassen’s matrix multiplication al-
gorithm. The experiment multiplies square matrices of size 8192x8192 us-
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Figure 18 Performance of Strassen’s Matrix Multiplication using 8K matrix
and varying base sizes on skylake-192 (lower is better)

ing the recursive algorithm and base condition is set to 256 since it gives
the fastest execution time for most implementations (see below). The re-
sults show that the implementation scales up to 96 threads and then per-
formance degrades. GNU OpenMP is the fastest and runs in 3.6 seconds
using 96 threads, followed by XOMP-STATIC which runs in about 5.9 sec-
onds. The native LLVM version runs about 5% slower than X-OpenMP using
96 threads. It is interesting to note that while GNU OpenMP scales well be-
yond 96 threads, the LLVM OpenMP quickly degrades in performance.

Figure 18 shows the results obtained by running Strassen’s algorithm on an
8192x8192 matrix using 192 threads and varying base sizes for the matrix
from 128 to 1024. The plot shows the average of three runs. The best
performance is achieved using base sizes of 256 and 512 in case of X-
OpenMP. It is worth noting that X-OpenMP using static load balancing is
sufficient to achieve good performance for this algorithm. Dynamic work
stealing induced additional overhead increasing the overall running time for
this application, however the behavior is specific to this algorithm.

LLVM OpenMP is much slower compared to the other implementations for
Strassen’s matrix multiplication using 192 threads. At this concurrency scale,
the runtime incurs significant overheads due to wait time and synchroniza-
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Figure 19 Symmetric Rank Update using 12K matrix on skylake-192 using
96 threads (higher is better)

tion which results in high cycles per instruction rate. This algorithm is also
highly memory intensive and memory profile of the application showed high
memory pressure on one numa node compared to the others for all the run-
times.

Symmetric Rank-k Update (SYRK) [22] is an important building block of
many linear algebra algorithms and included in the Basic Linear Algebra
Subprograms (BLAS) specification [34]. The SYRK algorithm computes the
upper or lower part of the result of a matrix product where the given matrix
is a symmetric matrix. Parallel Linear Algebra Software for Multicore Archi-
tectures (PLASMA) numerical library [32] is a dense linear algebra package
which implements a full set of BLAS routines using task-based parallelism.
PLASMA library uses a tile-based approach for the algorithms where the
matrix is divided into square blocks and each tile is typically processed by a
task.

Figure 19 shows the results obtained by running DSYRK on skylake-192 us-
ing 96 threads and varying tile sizes. The algorithm scales up to 4 sockets
and 96 threads on the skylake-192 server. X-OpenMP with static round-
robin load balancing achieves the highest floating point operations per sec-
ond with 1229 GFLOPS at 976 tile size. X-OpenMP with wait-based work



48 X-OpenMP – eXtreme fine-grained tasking using lock-less work stealing

Figure 20 Cholesky Factorization on a 12K matrix on skylake-192 using
96 threads (higher is better)

stealing approach achieves 927 GFLOPS using 848 tile size. X-OpenMP
with the wait-free approach and stealing two tasks at a time achieves 979
GFLOPS using 736 tile size. The native LLVM version achieves 956 GFLOPS
using 1024 tile size, however it is about 50% slower with smaller block
sizes. These results clearly illustrate the importance of low overhead task-
ing [50] for achieving high performance on modern machines with hundreds
of cores.

Cholesky Factorization (POTRF) of a symmetric positive definite matrix is
the factorization of the matrix into upper triangular and lower triangular ma-
trices with positive diagonal elements. Several prior works have explored
task-based Cholesky factorization algorithms and we evaluate the DPOTRF
algorithm from the PLASMA numerical library which is a tile-based imple-
mentation using OpenMP tasking. Cholesky factorization uses DPOTRF for
factorization of a tile and uses three kernels from the library for the algo-
rithm: DGEMM (general matrix matrix multiplication), DTRSM (for solving a
system with a triangular matrix) and DSYRK (for rank-k update of the sym-
metric matrix).

Figure 20 shows the performance of Cholesky Factorization algorithm on
skylake-192 server using 12K matrix, 96 threads and varying tile sizes. The
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Figure 21 Cholesky Factorization using different matrix sizes and tile size
of 256 on skylake-192 run using 96 and 192 threads (higher is better)

highest performance of 911 GFLOPS is achieved using a tile size of 256. X-
OpenMP with wait-free work stealing performs best for this algorithm. Steal-
ing two tasks instead of one seems to achieve better performance for some
tile sizes and overall the dynamic work stealing highly improves the perfor-
mance compared to native LLVM OpenMP. It is worth noting that the native
LLVM version achieves peak performance using tile size of 352, and all ver-
sions of X-OpenMP achieve peak performance using a tile size of 256. This
clearly shows that the lightweight tasking and reduced synchronization over-
heads can help speed up applications using tasks of much finer granularity
than is possible in today’s runtime systems. This also highlights the po-
tential to explore over decomposition of task-based applications to achieve
maximum speed up on modern architectures. The algorithm using GNU
OpenMP takes a long time to execute and it results in very low GFLOPS
for both DPOTRF and DSYRK algorithms, hence we have not included the
results in the plots. We plan to explore the reason further and include the
results in the final revision.

Figure 21 shows the results obtained by executing Cholesky Factorization
on different matrix sizes on the skylake-192 server. The experiment is per-
formed using 96 threads and 192 threads using native LLVM OpenMP and
various X-OpenMP implementations. As mentioned earlier, the current im-
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Figure 22 Unbalanced Tree Search using 96 threads on skylake-192
(lower is better)

plementation of this algorithm scales up to 96 threads and the performance
drops significantly using 192 threads. X-OpenMP consistently achieves
20% higher performance using 96 threads for all matrix sizes evaluated.
X-OpenMP using static load balancing and wait-free based single task work
stealing achieve high performance compared to the other implementations
of X-OpenMP.

Unbalanced Tree Search (UTS) [83] benchmark is designed to evaluate
the performance of dynamic load balancing in task parallel runtime systems.
The benchmark implements a version of UTS using OpenMP tasking where
workstealing is used to reduce the load imbalance between workers. We
chose this benchmark since it requires efficient dynamic load balancing to
achieve good performance. The benchmark traverses all the nodes of a
tree with a parameterized size and imbalance and reports the total number
of nodes in the tree. The benchmark provides sample trees for the purposes
of evaluation. We evaluate T3L which is binomial tree with over 100 million
nodes with 17844 tree depth and close to 90 million leaf nodes. We report
the results of running UTS using 96 threads and 192 threads on skylake-192
server.
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Figure 23 Unbalanced Tree Search using 192 threads on skylake-192
(lower is better)

Figures 22 and 23 show the execution time of T3L using 96 threads and
192 threads on the skylake-192 server. As with the other benchmarks, UTS
benchmark also scales up to 4 sockets and 96 threads on this machine using
LLVM and GNU OpenMP, X-OpenMP scales up to 192 threads. To under-
stand the impact on performance due to high tasking overheads at high lev-
els of concurrency, we evaluated the application using 96 threads and 192
threads. The plots show execution time of UTS at varying levels of compute
granularity. The granularity defines the amount of compute for each task,
with 1 being the finest granularity and 10 being the coarsest. For all fine,
medium and coarse grain tasks, X-OpenMP with static round robin load bal-
ancing achieves the best execution time of 8.6 seconds, 9.9 seconds, and
11.8 seconds respectively using 192 threads. GNU OpenMP incurs sig-
nificant overheads with this workload with about 40X slowdown across all
granularities. Figure 24 shows a part of the timeline plot of one execution of
UTS using T3L graph and X-OpenMP. The static round-robin load balancing
coupled with dynamic work stealing achieve good task distribution across
all the workers. Although the nature of the workload is highly imbalanced,
X-OpenMP achieves a reasonable load balance and speed up compared
to the other OpenMP implementations. These results showcase the signifi-
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Figure 24 Unbalanced Tree Search using X-OpenMP and 192 threads on
skylake-192

cance of better load balancing to achieve improved performance. Using 96
threads, the best execution time is achieved using X-OpenMP with static
round robin load balancing at the finest granularity. For medium and coarse
granularities, X-OpenMP with wait-free load balancing and stealing one task
at a time performs the best at 11.9 seconds and 13.1 seconds. X-OpenMP
is 10X faster than GNU OpenMP and 2X faster than LLVM OpenMP using
96 threads.

4.3.3 Results Discussion and Summary

This evaluation showed that static load balancing mechanisms are suitable
for some applications, while others require more dynamic approaches. Con-
figuring how many tasks to steal at a time is dependent on the application
and the computational complexity of the tasks. If tasks are of similar lengths
in terms of execution time, static round-robin load balancing along with steal-
ing one task at a time works well. For highly imbalanced applications, tradi-
tional work stealing approaches can incur extremely high overheads due to
synchronization at higher concurrency levels. Such applications can benefit
from lock-less approaches presented in our work. Most state-of-the-art ap-
plications do not scale up to hundreds of threads on modern architectures
and the applications must be redesigned to achieve further improvements in
performance using extremely fine-grained tasks.

These experimental results clearly demonstrate the performance improve-
ments that can be achieved using lightweight tasking and reduced synchro-
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nization overheads. The techniques presented in this work can be used to
enhance existing parallel runtime systems to improve the efficiency of fine-
grained parallelism on many-core architectures.

4.4 Conclusion

We propose X-OpenMP as a framework to enable extremely fine-grained
task parallelism on modern shared memory architectures with hundreds of
cores. We extend our prior work on lock-less queuing mechanisms with
static load balancing and propose an algorithm for achieving dynamic load
balancing using work stealing. The work stealing algorithm in X-OpenMP
does not require any atomicity for read, write, and modify operations, and
achieves competitive performance with state-of-the-art implementations. X-
OpenMP extends LLVM OpenMP using our techniques described in this
work. As a result, existing OpenMP applications can run unmodified just
by linking against the X-OpenMP library. We evaluate our approach us-
ing workloads that are highly prevalent in HPC applications and are crucial
for achieving better performance in real-world scenarios. We demonstrate
speedups of up to 40X compared to GNU OpenMP and up to 2X compared
to the native LLVM OpenMP implementation.
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CHAPTER 5

The Template Task Graph (TTG) — an emerging
practical dataflow programming paradigm for

scientific simulation at extreme scale

Our work in X-OpenMP shows that it is possible to implement task-parallel
execution models using lockless techniques to achieve significant speedups
on shared memory manycore architectures. However, there are several ap-
plications that require dataflow based parallelism [11, 27, 18] to overcome
the limitations of fork-join based parallelism by specifying data dependen-
cies at finer granularity and allowing tasks to execute as soon as data depen-
dencies are satisfied. Fork-join parallelism can introduce artificial depen-
dencies in applications that are data-parallel and not task-parallel. Hence,
it is imperative to explore this space in order to cover a broader scope of
applications which are irregular and hard to speedup using existing parallel
execution models.

This work is inspired by the belief that flowgraph programming (FGP) is a
superior match for (1) high-performance parallel programming of modern
computers with complex (distributed/heterogeneous) memory hierarchies
and a large number of, potentially heterogeneous, compute resources, (2)
irregular (scientific) applications characterized by data-dependent operation
streams, and (3) combinations thereof. This belief is reflected by many ef-
forts employing data- and control/work-flow programming to simplify parallel
programming as an alternative to traditional bulk-synchronous models. The
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advantages of FGP are due to several traits: (1) specification of only essen-
tial dependencies between operations maximizes exploitable concurrency
and opportunities for hiding latency by overlapping data motion and compu-
tation, (2) making the data part of the flow, a dataflow reduces the need for
synchronization, eliminates scheduling delays, and makes operations easier
to reuse by eliminating nonessential side effects, and (3) by raising the level
of abstraction, programs (often) become easier to write, easier to transform
(thereby supporting the development of domain-specific languages), and
easier to port. While these advantages are not unique to FGP, achieving
them via more conventional means typically involves significant program-
ming costs due to the low-level (and sometimes explicit) management of
asynchronous execution. Thus FGP is uniquely positioned to address the
tension between programmer productivity and the programming challenges
posed by the ever-increasing complexity of hardware and applications.

5.1 TESSE - Task-based Environment for Scientific Simulation at
Extreme Scale

TESSE attacks the twin challenges of programmer productivity and portable
performance for advanced scientific applications on massively-parallel hy-
brid systems with complex disjoint memories. Of specific interest are irreg-
ular computations which are hard to compose and execute efficiently with
mainstream parallel programming paradigms. There are several source of
the Irregularity in modern advanced scientific applications. First, there is
the irregularity of the data itself: as greater simulation size and/or higher
precision are targeted dense data structures (uniform meshes, dense ten-
sors) must be replaced by their data-sparse counterparts (adaptively-refined
meshes, block-sparse and ranksparse tensors) to keep the simulation cost
tractable. Second, as applications become more complex (e.g., due to mul-
tiple physics models being coupled) and as they seek greater concurrency
on increasingly heterogeneous hardware, it also becomes necessary to ex-
ecute multiple (potentially, dissimilar) operations in parallel. The ensuing ir-
regularity and associated resource management and other issues are com-
monly resolved by static partitioning of processors, or centralized job steal-
ing. Both approaches have been successful as long as the computations
involved were large enough to hide the cost of scheduling and/or migration,
the two pillars of most of the existing solutions. Unfortunately, as exemplified
by the two paradigmatic science applications motivating TESSE (fast tree-
based computation on deeply refined numerical meshes, and block-sparse
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tensor algebra in many-body quantum simulation) exploiting sparsity usu-
ally leads to highly irregular fine-grained computation as well as highly data-
dependent data/work flows that are very dynamic in nature. To be able to
compose and execute efficiently the irregular computation patterns underly-
ing these and other modern scientific applications in TESSE we adopted the
ideas of dataf low and other flow programming approaches to raise the level
of abstraction beyond the relatively low-level APIs of modern task-based
programming models and runtimes. The key innovation of TESSE is TTG, a
flow programming model inspired by earlier innovations such as Flow-Based
Programming (FBP) [2]. Unlike the earlier uses of flow programming, the tar-
gets of TTG are modern scientific algorithms to be deployed to current and
near-future supercomputers, hence the efficient utilization of hardware re-
sources, distributed-memory, and heterogeneity are all first-class concerns.
Although the key innovations of TTG are not tied to particular choice of im-
plementation, we implemented TTG as a library in C++ for general appli-
cability and close-to-metal efficiency. TTG can be viewed as marrying the
ideas of flow programming models with the key innovations in the PARSEC
runtime [3] for compact specification of task DAGs, namely the Parameter-
ized Task Graph (PTG; section V) [4] in which each edge represents a flow of
data associated with a parameter identifying the particular data and, equiva-
lently, the receiving task. Simplistically, such a parameter represents a loop
index or data structure coordinate (e.g., integer tuple addressing elements of
a tensor). Thus, each edge and vertex in PTG encodes several edges and
vertices in a DAG of tasks, allowing potentially massive task DAGs to be
represented compactly as well as instantiated across a narrow wave front
only as needed for execution. The algorithms of dense linear algebra are
naturally expressed within the PTG as a workflow over mutable data that
fully captures the lifetime of a datum including whether it is created, read,
written, modified, or consumed by a given task. This parameterization com-
bined with the deep understanding of what tasks are doing with data helps
reduce resource utilization and data motion, and enables efficient placement
and scheduling through use of temporal/spatial locality. The TTG extends
the idea of PTG by generalizing the notion of parameters to arbitrary types
and enabling datadependent selection of task dependencies, which allows
to dynamically build the DAG of tasks depending on computations within the
predecessor tasks. The TTG implementation replaces the standalone DSL
for specifying PTG in PARSEC by a high-level programming API realized as
a modern C++ library (the 2017 ISO standard of C++ is used). The use
of modern C++ allows for type information to be utilized to ensure correct-
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ness when constructing graph as well as for optimizations (e.g. consuming
data passed by rvalue references). Lastly, TTG also introduces some con-
cepts from flow programming models, such as programmable terminals, that
were not part of PTG. Thus TTG is a major advance of the successful idea
of PTG towards general-purpose computation; unfortunately, the general-
purpose character of TTG makes it challenging for TTG to retain all of the
optimizations feasible within the PTG; making TTG exploit the full capabili-
ties of PARSEC runtime is the focus on the ongoing work.

5.2 Template Task Graph

TTG represents an algorithm as a flowgraph (template task-graph, TTG)
composed of one or more nodes (template tasks) equipped with ordered
sets of input and output terminals connected by directed edges. In the cur-
rent C++ implementation of TTG, template tasks, terminals, and edges are
explicitly and strongly typed. Edges encode all possible flows of messages.
Each message consists of a task ID and data; this idea builds on the con-
cept of the Parameterized Task Graph (PTG) [27]. The task ID represents
the task (instance of a task template) for which the data is intended. Thus,
messages in the TTG model generally contain both a control part (task ID)
and data part, allowing to marry the control-flow and data-flow paradigms.
Pure control flow can be implemented by omitting the data part, i.e., by using
the null type (void) to represent the data part of the message. Pure dataflow
can be implemented analogously by using the null type to represent the task
ID.

Once every input terminal of a given template task has received one mes-
sage with the same value of task ID, a task is created with the data parts
of the corresponding messages. Tasks define a task body, which is a C++
method that will be executed by the runtime system. TTG does not constrain
the task bodies in any way (i.e., the tasks can be arbitrary, not necessarily
pure, functions) but any side effects may require additional synchronization
to avoid data races. During its execution, the task may deliver new mes-
sages to zero or more output terminals. Introducing the data dependence
into the control flow (i.e., by deciding whether a particular output terminal
will receive a message or not, or by making the task IDs of the outgoing
messages dependent on the data contents of the input messages) allows
to implement general data-dependent task flows in TTG seamlessly. Thus,
the message flow through a TTG generates a set of tasks representing an
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application. Each TTG can be viewed as encoding a set of possible directed
acyclic graphs (DAGs) of tasks with the actual DAG executed being depen-
dent on the data flowing through it.

5.2.1 TTG Concepts

Central concepts are:

• TaskId: A unique identifier for each task. For example, if comput-
ing on a vector it might be the vector/loop index, or if computing
on a database it might be the name of a record, or in a matrix-
multiplication algorithm it might be the triplet of integers identifying
the tiles being operated upon. The only constraint on the type of
TaskId is that it be hashable. The TaskId is used by the runtime to
identify the compute resource (process rank, gpu, etc.) for the task
using an optional user-defined map, and when a task sends data to
a successor the same map is used to route data. This map is thus
the primary tool for balancing load and data. A TaskId of type void
implies a singleton task on process rank zero.

• Terminal: Each input argument and output result of a (template)
task are exposed to the programmer and runtime as a Terminal.
A task propagates a result or output value to a successor task by
sending the value and the successor’s TaskId to the appropriate
output Terminal. Broadcast to multiple values of TaskId is sup-
ported. By default, an input Terminal is a singleassignment vari-
able, this property being used by the runtime to determine when
arguments of a task are available. However, an input Terminal is
programmable and, for instance, could perform a reduction oper-
ation. If the number of expected input values is fixed, the runtime
can determine completion, but with variable length (streaming) data
either the user-provided reduction operation or a predecessor task
must finalize the argument.

• Edge: Programs are composed by connecting output terminals
with input terminals, currently identified by position but by name is
planned. Multiple edges can connect to an input terminal, enabling
data to come from multiple sources, and an output terminal might
connect to multiple successors implying a broadcast operation.



The Template Task Graph (TTG) — an emerging practical dataflow
programming paradigm for scientific simulation at extreme scale 59

• TemplateTask: This wraps a user-defined function with informal sig-
nature void f(TaskId, Arg0, Arg1, ..., OutputTerminals). Again, each
input argument is exposed as a Terminal, and OutputTerminals is a
tuple of the output terminals (an alternative interface also provides
the input arguments as a tuple of references). The task associated
with a specific TaskId is instantiated when any input Terminal re-
ceives a value, and a task is marked ready for execution when all ar-
guments are finalized. If there are no arguments, the task must be
created either manually via a special method (invoke(TaskId))ofthe
TemplateTask, or via a pull operation as described below. Most
users will instantiate a TemplateTask by invoking the make_tt fac-
tory function that deduces type information from the signature of
the user’s function, as illustrated below. However, a user-defined
class can derive from the TemplateTaskBase class template using
the curiously recurring template pattern that enables the base class
to access methods of the derived class. As originally conceived and
important for distributed-memory computers, tasks were assumed
to only receive data through their input terminals and to have send-
ing data to output terminals as their only side effect. However, there
is no constraint on this behavior and work flow over mutable data is
also readily composed.

• CompositeTemplateTask: This exposes the same API as Template-
Task but wraps an entire subgraph exposing input and output ter-
minals as selected by the programmer.

• Push versus pull: As described so far, data must be pushed from
a task’s output terminal into a successor’s input terminal. How-
ever, many algorithms, such as those operating on pre-existing data
structures, can be more easily composed and more efficiently ex-
ecuted by pulling data as needed. This is accommodated by con-
necting terminals via a pull-Edge. When a task is instantiated, the
runtime checks each input terminal to see if its value should be
pulled, in which case the necessary predecessor task (the TaskId
of which is computed from the current task’s TaskId via a user-
defined function) is instantiated. This can be done recursively and
lightweight operations, such as reading a value from local memory,
can be directly invoked to avoid the overhead of task creation.
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Given a user function (f) with the required signature (see TemplateTask
above), a call to the make_tt factory would be used as

1 auto tt = make_tt(f, input_edges , output_edges , task_name ,

input_terminal_names , output_terminal_names);

in which input_edges and output_edges are possibly tuples of edges to
connect to each terminal, and task_name, input_terminal_names, and output_terminal_names

are optional names for the task and terminals.

5.2.2 Cholesky Decomposition Example Using TTG

To illustrate these concepts, we consider the well-known algorithm for (non-
pivoted) Cholesky factorization of a dense tiled matrix used in the standard
distributed-memory linear algebra package ScaLAPACK [25] and whose
TTG implementation will be assessed in subsection 5.3.2. Figure 25 illus-
trates its template task graph. The algorithm consists of 4 types of tasks:
POTRF (Cholesky factorization of diagonal tiles), GEMM (generalized matrix mul-
tiply), SYRK (symmetric rank-k matrix update), and TRSM (triangular linear sys-
tem solver). Each task type is represented by a node in TTG, with two ad-
ditional nodes representing reading of the input data (INITIATOR) and writing
the output data (result).

1 /* Edges with 1-tuple task IDs */
2 ttg::Edge <Int1 , Tile > init_potrf;

3 /* Edges with 2-tuple task IDs */
4 ttg::Edge <Int2 , Tile > potrf_trsm , trsm_result ,

5 trsm_syrk , gemm_trsm;

6 /* Edges with 3-tuple task IDs , encodes the iteration K */
7 ttg::Edge <Int3 , Tile > trsm_gemm_row , trsm_gemm_col;

8 auto POTRFOp =

9 ttg:: make_tt(potrf_fn /* not shown here */,
10 /* input edges */ ttg::edges(init_potrf),

11 /* output edges */
12 ttg::edges(potrf_results ,

13 potrf_trsm));

14 auto trsm_fn =

15 []( const Int2& id , const Tile <T>& tile_kk ,

16 Tile <T>&& tile_mk ,

17 std::tuple <ttg::Out <Int2 , Tile <T>>,

18 ttg::Out <Int2 , Tile <T>>,

19 ttg::Out <Int3 , Tile <T>>,

20 ttg::Out <Int3 , Tile <T>>>& out){

21 const auto [I, J] = id;

22 const auto K = J;

23 /* call LAPACK library ’s tsrm function */
24 TRSM(tile_kk , tile_mk);

25 std::vector <Int3 > row_ids , col_ids;

26 /* ids for gemms row I */
27 for (int n = J+1; n < I; ++n)

28 row_ids.push_back(Int3(I, n, K));

29 /* ids for gemms column I */
30 for (int m = I+1; m < NROWS; ++m)

31 col_ids.push_back(Int3(m, I, K));

32 /* broadcast the result to 4 output terminals:
33 * 0: to final output task writing back the tile;
34 * 1: to the SYRK kernel;
35 * 2: to the gemm tasks on in row I;
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36 * 3: to the gemm tasks in column K; */
37 ttg::broadcast <0, 1, 2, 3>(

38 std:: make_tuple(id, Int2(I, K), row_ids , col_ids),

39 std::move(tile_mk), out);

40 };

41 auto TRSMOp = ttg:: make_tt(trsm_fn ,

42 /* input edges */
43 ttg::edges(potrf_trsm , gemm_trsm),

44 /* output edges */
45 ttg::edges(trsm_result , trsm_syrk ,

46 trsm_gemm_row ,

47 trsm_gemm_col));

48

5.2.2 illustrates how the TTG is composed by connecting inputs and outputs
of each task template to the edges (represented in C++ by ttg::Edge). Note
that each output terminal may be attached to one or more input terminals.
Each task template is typically composed from a free or lambda function by
calling ttg::make_tt (Lines 9 and 41). 5.2.2 illustrates also how the TRSM

task template is implemented. The lambda (or free function) implementing
a task body receives as its arguments the task ID (if non-void), input data
(if non-void), and the tuple of output terminals (ttg::Out; Lines 14–20). The
function body performs arbitrary computation on the data and, if needed,
“sends” the data to the output terminals via ttg::send (if intended to be
an input for a single task) or ttg::broadcast (if intended to be an input for
multiple tasks; Lines 37–39). Since the edges, input, and output terminals
are all explicitly parametrized by the type of data they transport the type
safety of TTG’s edges and task templates is checked at compile time. Note
that the graph built by connecting the nodes that represent task types via
edges includes cycles and thus does not represent directly the DAG of tasks.
It is during the execution, when tasks are instantiated with their task IDs, that
the DAG of task is constructed, distributed across processes, by each task
instance that discovers a new task instance.

The task ID of a given task does not have to match, or even be of the same
type as, the task IDs of its output terminals. For example, the TRSM task IDs
are represented by a 2-tuple (Int2) and produce data that will be used to
create tasks with IDs represented by 3-tuples (Int3). Immutable data may
be shared between tasks while tasks mutating inputs receive private copies,
which may be passed on to other operations. Thus, applications need not be
concerned with protecting access to data under TTG’s control. The safety of
side-effects of tasks on data outside the control of TTG is under the purview
of the application.
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Figure 25 Template task-graph of the tiled Cholesky factorization. The
INITIATOR operation is responsible for providing input to tasks that have no
direct predecessor in the algorithm.

Once a task template receives all inputs needed for a given task ID the task
is scheduled for execution. The process on which a given task will be ex-
ecuted is specified by a user-defined function mapping task IDs to process
ranks. Note that creation and execution of tasks is entirely abstracted out
in TTG. Thus, TTG can be viewed as a higher-level abstraction for a low-
level task runtime. Current implementation of TTG can use one of two task
runtimes for distributed task execution: PaRSEC and MADNESS. subsec-
tion 5.2.6 will discuss the relevant implementation details.

In recent work, the following features were added to TTG:

• the ability to assign priorities to tasks by supplying each task tem-
plate with a priority map mapping a task ID to a specific task priority
that is provided to the underlying runtime system;

• optimized implementation of ttg::broadcast, which appears as a
common use case, e.g. in the TRSM task template in 5.2.2;

• streaming terminals that can receive not just a single message but
a (bounded or unbounded) stream of messages;

• support for C++ data types serializable via general-purpose seri-
alization frameworks, as well as support for RMA data transfers
where supported by the runtime;
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• an improved implementation of TTG over two runtimes, focusing on
performance.

Several of these features are discussed in detail below.

5.2.3 Sending and Broadcasting

TTG supports several ways to send data out of tasks:

• to a single output terminal accompanied by a single task ID (ttg::send;
see Figure 26a);

• to a single output terminal accompanied by several task IDs (ttg::broadcast;
see Figure 26b);

• to multiple output terminals, each accompanied by one or more
task IDs (ttg::broadcast; see Figure 26c).

The latter is used in the implementation of the TRSM task template shown in
5.2.2 (Lines 37–39). The data broadcasting was introduced to optimize data
transfers between processes and avoid repeated transfers of the same data.

Note that by default send and broadcast both copy the argument data; this
allows subsequent mutation of the data for sending it to other terminals.
Passing data by constant reference indicates that the copying can be by-
passed, if possible (e.g., if the lifetime of the object is already tracked by the
runtime; see Section 5.2.6). To indicate that the data is no longer going to be
used in the task template body the data can be passed by rvalue reference
(via std::move); for types with efficient rvalue copies this allows to implement
efficient (potentially, zero-copy within memory space) data flow through the
graph. These customization mechanisms are illustrated in 5.2.3.

1 void taskfn(const TaskID& task_id , const MatrixTile& input ,

2 tuple <Out <TaskID , MatrixTile >,

3 Out <TaskID , MatrixTile >,

4 Out <TaskID , MatrixTile >>& out) {

5 MatrixTile output = compute_output_tile(input);

6 send <0>(task_id , output , out); // new copy required
7 send <1>(task_id , move(output), out); // no copy due to move
8 send <2>(task_id , input , out); // no copy as input is const
9 }
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k1

(a) Send data ac-
companied by task
ID k1 to 1 output ter-
minal

k1 k2 k3

(b) Broadcasting data ac-
companied by task IDs
{k1, k2, k3} to 1 output ter-
minal

k1
k2 n1

n2 m1

(c) Broadcasting data accom-
panied by task IDs {k1, k2},
{n1, n2}, {m1} to 3 output termi-
nals

Figure 26 TTG send and broadcast operations.

5.2.4 Streaming Terminals

The original design of TTG mandated that each input terminal can receive
only a single message for a given task ID. For some types of algorithms
this restriction produces task templates with large numbers of input termi-
nals. For example, a 1D Jacobi would only require 3 input terminals: the
state of the task at the previous iteration as well as the state of the left and
right neighbors. However, a 2D Jacobi requires 5 to 9 inputs (depending if
neighbors on the diagonal need to be considered), and a 3D Jacobi quickly
becomes un-manageable through explicit input terminals defined as inde-
pendent variables in the user code. In this work, this restriction was lifted
by making all input terminals capable of receiving a stream of messages for
every task ID. The input messages are reduced (e.g., concatenated) using
a user-provided function U ⌦ T ! U reducing a pair of values into a single
value. Each incoming message is processed in a light-weight manner (i.e.,
without spawning a task) until either the prescribed number of messages
has been received or the input terminal is programmatically “finalized” for
the given task ID (see Figure 27). An example for using streaming terminals
will be provided later in subsection 5.3.5.

Streaming
Terminal

U

T

UTTA T TTBU

*{N-1}

Figure 27 TTG streaming terminal with input T, output U, and a size of N.
The reduction operation of the terminal will be called N � 1 times on input
from TTA before before a task of TTB will be eligible for execution.
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5.2.5 Data serialization

Execution of TTG programs involving dataflow requires support for serial-
ization of user data types, both for data between memory spaces (such as
between host memories of different processes, or between host and de-
vice memory for a single process). The original implementation of TTG was
limited to serialization of data types that were (1) trivially (bitwise) copy-
able, or (2) were serializable by the MADNESS runtime-provided serializa-
tion. In this work, TTG was extended to support data types serializable via
the widely-available Boost.Serialization1 library. Since stock Boost serial-
ization archives provide a number of default features intended for archival
purposes (type versioning, pointer tracking, etc.), they are ill-suited for high-
performance applications like TTG. Therefore, support for Boost.Serialization-
compatible types in TTG uses custom archives optimized for high-performance
serialization into in-memory buffers. TTG also provides type traits that de-
tect serializability of a given type via Boost.Serialization, MADNESS, or by
memcpy, and makes the optimal choice of serialization protocol. Thus several
mechanisms of serialization are provided for a given flowgraph.

Unfortunately, the default serialization protocols that TTG can exploit nec-
essarily involve multiple copies (object to/from serialization buffer to/from
MPI message buffer, etc.). To increase the efficiency of data flow, a split-
metadata (splitmd) mechanism was implemented in TTG in the course of
this work. Unlike Boost.Serialization and its sibling MADNESS serializa-
tion protocols, in which the entire object is serialized and transferred as a
whole, splitmd is a 2-stage protocol (see Figure 28). First, the object’s meta-
data (data fields that are sufficient for allocating an object’s representation
in memory) are serialized and transferred. In addition, the object’s contigu-
ous memory is registered with the communication library. The metadata and
registration information combined are typically sufficiently small to utilize the
eager protocol commonly found in MPI implementations. On the receiving
process, the metadata is used to allocate a new object. In the second phase,
the received registration information is used to fetch the data into the con-
tiguous memory of the newly created object using remote memory access
(RMA). The RMA capability to TTG is typically provided by underlying com-
munication libraries such as LCI [28], UCX [107], or GASnet [15]. It can also
be emulated using MPI point-to-point operations or use features proposed

1 https://www.boost.org/doc/libs/1_77_0/libs/serialization/doc/index.html

https://www.boost.org/doc/libs/1_77_0/libs/serialization/doc/index.html
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  template<>
  struct SplitMetadataDescriptor<MatrixTile> {
 

    auto get_metadata(const MatrixTile& t) {
      return t.metadata();
    }
 

    auto get_data(MatrixTile& t) {
      return std::array<iovec, 1>({t.size(), 
                                   t.data()});
    }
 

    auto create_from_metadata(metadata_t& meta) {
      return MatrixTile(meta);
    }
  };
 

get_metadata()

Figure 28 Schematic depiction of TTG’s serialization format for objects
containing contiguous data segments (left) and an example implementation
for a MatrixTile (right).

for MPI RMA [92]. Once the transfer is complete, the sender is notified to
release the source object.

Since the splitmd serialization fundamentally requires allocated-but-not-yet-
initialized to be a valid state, the splitmd is intrusive (i.e., typically requires
modification of the type definition and/or implementation). Type traits are
used to test at compile time whether a given type supports the splitmd proto-
col. Serialization protocols chosen by TTG are selected in this order of pref-
erence: splitmd (if supported by the TTG backend; see subsection 5.2.6),
trivial (memcpy), Boost.Serialization (if the Boost library is available), madness
(if the MADNESS library is available).

5.2.6 TTG Execution Backends

As mentioned before, TTG as a programming model is a higher-level ab-
straction over the underlying low-level task runtime. The current C++ imple-
mentation of TTG can in principle create tasks using many available task
runtimes, e.g., standard C++ (std::async) or OpenMP. In practice, however,
for optimal resource utilization the implementation details of the task runtime
matter greatly even in a shared-memory (host-only) setting. For distributed
memory operation, additional features are needed to support seamless data
transfers, parallel primitives (collective operations, global termination de-
tection), and resource management; extra support is needed for hetero-
geneous execution and memory spaces within the node.

The implementation details of TTG are collectively referred to as a TTG
backend. A backend provides the ability to schedule and execute tasks
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as well as resource management and coordination for communication and
computation in a distributed setting. There are currently two backends sup-
porting the execution of TTG applications on shared- and distributed-memory
platforms: MADNESS or PaRSEC. The MADNESS backend served as an
early proof of concept for TTG, with the PaRSEC backend targeted to serve
as the main vehicle for efficient performance-portable operation on distributed
and heterogeneous platforms. The feature set required to implement TTG
is not unique to these two backends and is available in other runtimes (e.g.,
UPC++), thus implementation of additional backends for TTG should be
straightforward.

MADNESS parallel runtime started as the foundation for fast integrodif-
ferential numerical calculus with guaranteed precision in up to 6 dimensions,
with applications in chemistry and nuclear physics, among others [47]. By
now, however, the MADNESS parallel runtime has evolved into a powerful
general-purpose environment for task-based composition of a wide range of
parallel algorithms on distributed data structures as varied as irregular trees
in MADNESS and the sparse tensors in the TiledArray framework [21]. The
central elements of the parallel runtime are a) futures for hiding latency and
managing dependencies, b) global namespaces with one-sided access, c)
remote method invocation in objects in global namespaces, and d) dynamic
load balancing and data redistribution. An SPMD model is provided with a
single logical main thread per process, a thread pool to execute tasks, and
a thread dedicated to serving remote active messages. MADNESS can be
configured to use its own thread pool implementation, or to use Intel TBB
or PaRSEC. An application in the MADNESS runtime can be viewed as a
dynamically constructed DAG, with futures as edges.

PaRSEC [17] is a task-based runtime for distributed heterogeneous ar-
chitectures, capable of dynamically unfolding a concise description of a
graph of tasks on a set of resources and satisfying all data dependencies by
shepherding data between memory spaces (including between nodes) and
scheduling tasks on heterogeneous resources. Compared to many runtime
systems that support a single way to represent or discover a DAG of tasks,
PaRSEC is designed to support many Domain Specific Languages (DSLs)
or Application Programming Interfaces (APIs). This makes PaRSEC a tool
of choice to study different APIs or DSLs for distributed task-based program-
ming.
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Multiple components constitute the PaRSEC runtime: programming inter-
faces (DSLs/APIs), schedulers, communication engines and data interfaces.
The runtime uses a modular component architecture (MCA), allowing differ-
ent modules or instances to be dynamically selected during runtime, pro-
viding a varied set of capabilities to different instances of the runtime (such
as scheduling policies, or support for heterogeneity). A well-defined API
for these modules transforms them into black boxes, and allows interested
developers or users to implement their own, application specific, policies.
The different DSLs share the same runtime, data representation, communi-
cation engine, scheduler, cohabiting over the same set of hybrid resources
and seamlessly inter-operating in the context of the same application.

Several optimizations were introduced in this work specifically for the PaR-
SEC backend, including improvements to the PaRSEC runtime itself: a flexi-
ble new interface of the PaRSEC runtime system to efficiently organize com-
munication between processes, the use of active messages for control sig-
nals, the use of a one-sided communication for asynchronous transfers of
data, and the use of completion callbacks for notifications. The splitmd se-
rialization protocol is also only available when using the PaRSEC backend.
Most importantly, the PaRSEC backend now owns the data flowing through
the TTG graph and is in charge of managing its life-cycle and marshaling it
across memory space boundaries, such as for avoiding copying when data
is passed to ttg:send or ttg::broadcast by const reference.

These additions target improving the efficiency and scalability of the PaR-
SEC backend, but have no impact on the correctness and capability of TTG,
both current TTG backends support the full set of TTG features. In fact, all
TTG programs developed in this work are backend independent, with the
backend selection performed at compile time by setting a single preproces-
sor macro. Since the backend can sometimes have substantial impact on
the performance, where warranted the performance will be demonstrated
for both backends.

5.3 Benchmarks

A set of paradigmatic algorithms, with varying degree of irregularity in their
data and computation traits, was implemented using C++ implementation
of the TTG programming model. The performance was evaluated against
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Table 3 Software configurations

Software Hawk Seawulf

MPI Open MPI 4.1.1, UCX 1.10.0 Intel MPI 20.0.2
Compiler GCC 10.2.0 GCC 10.2.0
HWLOC 1.11.9 1.11.12
MKL 19.1.0 20.0.2

reference implementations using traditional programming models or, where
available, against existing state-of-the-art implementations.

5.3.1 Test Setup

We performed our evaluation on two systems. The Hawk system is a Hewlett
Packard Enterprise Apollo2 installed at the High Performance Computing
Center Stuttgart (HLRS) in Stuttgart, Germany, consisting of 5,632 dual-
socket 64-core AMD EPYC 7742 nodes equipped with 256 GB main mem-
ory and connected through a Mellanox Infiniband HDR 200 fabric. The Sea-
wulf system is a Linux cluster installed at StonyBrook University3 and con-
sists of a variety of nodes equipped with Intel CPUs. In particular, we used
up to 32 dual-socket Intel 20-core Xeon Gold 6148 CPUs with 192 GB main
memory connected using a Mellanox InfiniBand FDR network. The used
software configuration for both systems are listed in Table 3.

5.3.2 Dense Cholesky Factorization

We implemented the dense tiled Cholesky factorization (POTRF) [20] in
TTG and compared its performance against state-of-the-art implementa-
tions SLATE [39], Chameleon4 (running on top of StarPU [7]), ScaLAPACK [25],
and DPLASMA [16] (running on top of PaRSEC). The templated task-graph
of the tiled POTRF algorithm is depicted in Figure 25. To demonstrate the
competitive performance TTG can deliver, we ran two separate scaling ex-
periments: i) weak scaling across a number of nodes; and ii) problem scal-
ing on a fixed number of nodes. In both cases, we used 60 worker threads
pinned to a single NUMA domain per node to avoid interference and to work
around issues with process binding observed with some of the reference im-

2 https://www.hlrs.de/systems/hpe-apollo-hawk/
3 https://it.stonybrook.edu/help/kb/understanding-seawulf
4 https://project.inria.fr/chameleon/

https://www.hlrs.de/systems/hpe-apollo-hawk/
https://it.stonybrook.edu/help/kb/understanding-seawulf
https://project.inria.fr/chameleon/
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Figure 29 Weak-scaling of POTRF on Hawk . Each node holds a submatrix
of size 30k2. The tile size is 5122.

plementations, leaving 4 cores for the operating system and communication
threads.

5.3.2.1 Node-scaling

Figure 29 shows a clear separation between two sets of scalability trends.
ScaLAPACK and SLATE steadily continue to grow their performance but at
a slower pace compared with the others, a behavior that can be explained
by the sequentiality induced by the compute flow in the Cholesky algorithm
without lookahead implemented in these two libraries. On the other side,
all task-based versions benefit from the lack of synchronizations of the tile
Cholesky implementation, and see a significant growth in performance with
the increase in the number of compute resources in this weak-scale setup.
Chameleon slightly trails behind the TTG and DPLASMA despite having the
same potential parallelism due to the same tiled Cholesky implementation.
A possible explanation is a more efficient communication substrate in PaR-
SEC, including the collective communication, but a more in-depth analysis
would be necessary to confirm this.

5.3.2.2 Problem-scaling

Figure 30 shows a similar outcome, two well-separated groups, both asymp-
totically reaching their peak for this number of processes. Again, the task-
based approaches benefit from the lack of synchronizations, and thus a
large potential parallelism that once efficiently mapped into the compute re-
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Figure 30 Scaling the matrix size on 64 nodes performing tiled Cholesky
factorization with a tile size of 5122 on Hawk .

sources lead to a more efficient execution and to reaching the practical peak
for smaller matrix sizes.

5.3.3 Floyd-Warshall All-Pairs-Shortest Path (FW-APSP)

The FW-APSP algorithm finds the shortest path between every pair of ver-
tices in a directed graph. It is among the most fundamental graph algorithms
and has several applications in computer networks, logic programming, opti-
mizing compilers, model-checking, social media, transportation, among oth-
ers.

1 void fw_apsp(double **X,int N) {

2 for(k=0; k<N; ++k)

3 for(i=0; i<N; ++i)

4 for(j=0; j<N; ++j)

5 X[i][j]=min(X[i][j], X[i][k]+X[k][j]);

6 }

Prior work proposed different optimization techniques to improve the perfor-
mance of the algorithm. Venkataraman et al. proposed a single-level tiled
algorithm to improve the I/O complexity [115]. Javanmard et al. extended
it to a recursive multi-level tiled algorithm to run efficiently on distributed-
memory machines as well as GPUs [55, 53]. In the recursive multi-level
tiled algorithm, the first level of tiling is used to distribute the underlying ad-
jacency matrix among processes and further parallelism and I/O efficiency
were achieved by recursive sub-tiling. Nookala et al. [82] implemented
a data-flow version of the standard two-way recursive divide-and-conquer
FW-APSP algorithm in Intel CnC [18] and compared the performance with
a fork-join implementation in OpenMP. They showed that a data-flow im-
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Figure 31 Flow of data among different kernels in blocked FW-APSP al-
gorithm.

plementation outperforms its fork-join counter-part when, due to artificial
dependencies, the fork-join implementation fails to generate enough sub-
tasks to keep all processors busy and does not have enough data locality to
compensate for the lost performance.

As shown in Figure 31, the parametric recursive algorithm has four kernels
(A, B, C, and D) that each compute the minimum shortest path within the
input tiles of the adjacency matrix. Kernel A is only applied to the tiles on
the diagonal, followed by kernels B and C applied to the respective row
and column. The results of kernels B and C are used as input for ker-
nel D, which is applied to the panels on both sides of the current row and
column. In the multi-level MPI+OpenMP implementation, the exchange of
super-tiles along rows and columns is performed using MPI broadcast op-
erations while the application of the operations to the sub-tiles is done using
OpenMP tasks. In TTG, on the other hand, a single-level 2D block-cyclic dis-
tribution of tiles is used and tiles are broadcast to all successor operations
independent of other tiles. The MPI+OpenMP implementation of [55] puts
significant constraints on the available process configurations by requiring
process numbers that are both square and multiples of 2. This constraint
was later discussed in [54, 53] and virtual padding is mentioned as a po-
tential solution to this constraint but the distributed-memory implementation
was not discussed. While the TTG implementation of the benchmark does
not have these constraints, in the interest of comparability we decided to run
the same configuration for both MPI+OpenMP and TTG.

Figure 32 depicts the strong-scaling behavior of both the TTG and MPI+OpenMP
implementation on a 32k matrix with different block sizes. The data shows
that the TTG implementation clearly outperforms the MPI+OpenMP imple-
mentation up to 16 nodes by a factor of almost 2, with TTG running on top
of PaRSEC further scaling to 64 nodes for block sizes of 64 and 128. TTG
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Figure 32 Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on Hawk using 16 processes per node, 8 threads each (block
sizes in square brackets).

running on top of MADNESS benefits from larger tile sizes, presumably due
to the lower number of tiles to communicate, but is limited in its scalability.

For TTG running on top of PaRSEC, smaller block sizes lead to better scal-
ability. At 256 nodes, however, TTG using blocks of size 128 reaches its
scalability limit: (32k128 ) = 256 blocks in each dimension distributed across
p
256⇥ 16 = 64 processes per dimension results in 256

64 = 4 blocks per pro-
cess, less than the number of threads. Unfortunately, an issue in Open MPI
prevented us from running with block sizes of 64 with TTG on top of PaR-
SEC on 256 nodes. However, we expect TTG to further scale to 256 nodes
once this issue is resolved.

Figure 33 shows the strong-scaling behavior on SeaWulf using a 32K ma-
trix with block sizes 128 and 256. TTG implementations outperform the
MPI+OpenMP implementation on up to 32 nodes by a factor of 4. TTG with
MADNESS performs similar to the PaRSEC version with 256 tile size as
compared to 128 tile size due to less communication with larger tiles. The
running time for benchmarks with 64 tile size exceeded the time-limit and
hence are not included in the plot.
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Figure 33 Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on SeaWulf using 2 processes per node, 20 threads each
(block sizes in square brackets).

5.3.4 Block-Sparse GEMM

As a first irregular application, we considered a block-sparse matrix-matrix
multiplication (bspmm). The arguments are matrices tiled in blocks of irregular
dimensions, with a significant subset of blocks empty. The bspmm algorithm
we implemented follows a 2D SUMMA strategy [114], adapted to the task-
based representation, similarly to [49]. The TTG for bspmm introduces
control tasks and edges to implement three control-flow feedback loops in
the application: two to limit the amount of parallel broadcasts of tiles of the
input matrices, and introduce some ordering of communications, and a third
to constrain the task scheduler and improve data re-use by forcing the work
to focus on a subset of GEMM tasks that work on the same subset of data.

The resulting TTG is depicted in Figure 34. Tasks of type ReadSpA/B load the
tiles from memory and inject them into the flowgraph. The tiles are broad-
cast to remote nodes via the tasks of type BcastA/B, and stored on each
node in the tasks of type LStoreA/B, to avoid additional communications.
There is a control-flow feedback loop from LStoreA/B to the ReadSpA/B to con-
trol how many of these communications can happen in parallel. Then, tiles
flow to the main computational kernel in tasks of type MultiplyAdd through
local broadcast tasks of type LBcastA/B. There is another feedback control
loop through tasks of type Coordinator that wait until multiple MultiplyAdd

tasks are completed before it allows tasks of type LBcastA/B to continue
broadcasting local work. This reduces the choices of the scheduler and
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Figure 34 Template task-graph of the block-sparse matrix-matrix multiply
algorithm.

forces it to focus on a subset of GEMM tasks that work on the same subset
of data. Both feedback loops are implemented using streaming terminals
discussed in subsection 5.2.4.

Compared to the previous applications, BSPMM is irregular and requires
dynamic decisions: the DAG of tasks that must be executed depends on
each input problem, and there is no universal data placement and schedul-
ing strategy that can guarantee optimal performance without adapting these
decisions to each input problem. The task-based approach of TTG dele-
gates the dynamic scheduling decision to the underlying runtime system,
creating some adaptability. Data placement remains heuristical, based on
a 2D block cyclic distribution to balance the load, and the additional control
flow is here to manage the high degree of parallelism of the problem.

To evaluate the performance of the bspmm implementation, we used the ma-
trix representation of the Yukawa integral operator (exp(�r12/5)/r12) in the
cc-pVDZ-RIFIT Gaussian atomic orbital basis for the main protease of the
SARS-CoV-2 virus in complex with the N3 inhibitor [58] (total of 2,500 atoms;
this size is representative of target problem sizes in biomedical applications).
The size of the matrix is 140,440; rows/column panels corresponding to
each of the 2,500 atoms are grouped into tiles such that the size of each
tile does not exceed the target tile size of 256. Tiles of the matrix with the
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Figure 35 Nonzero blocks of the block-sparse Yukawa potential matrix
used for the bspmm benchmark (see text for details).

per-element Frobenius norm of less than 10�8 are discarded. We compute
the square of the resulting block-sparse matrix A (Figure 35) using the bspmm

implementation.

We compare the TTG implementation with the Distributed Block Compressed
Sparse Row library (DBCSR [67]). DBCSR is part of the CP2K quan-
tum chemistry and solid state physics program package; it implements a
2.5D communication-reducing SUMMA algorithm [99] and focuses on block-
sparse matrix-matrix multiplication of matrices with a relatively large occu-
pation.

Figure 36 shows the performance obtained for an increasing number of
nodes for the Yukawa potential matrix multiplication. From 8 to 128 nodes,
DBCSR and both TTG backends all exhibit very similar performance, with
a linear strong scaling. The TTG implementation with both backends stop
scaling at this size and for this matrix, while the DBCSR one continues. The
TTG implementation over the PaRSEC backend shows a high variability at
128 nodes, with some runs significantly slower than others, and a peak at
the same speed as the TTG implementation over the MADNESS backend
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Figure 36 Strong scaling of block-sparse GEMM.

and the DBCSR one. We are investigating this instability, that we observe
only for the specific communication pattern for 128 nodes.

At 256 nodes, each process holds only a few tiles of the product matrix, and
communications become the dominant factor of the execution. The 2.5D
SUMMA algorithm [99] implemented in DBCSR continues to scale due to
its ability to leverage greater cross-section bandwidth compared to the 2D
SUMMA variant that was implemented in TTG. We expect that by converting
the current 2D SUMMA TTG implementation to 2.5D SUMMA we will be able
to at least match the strong-scaling performance of DBCSR.

5.3.5 Multi-Resolution Analysis (MRA)

This benchmark computes adaptively the order-10 multiwavelet [4, 3] repre-
sentation of 3-D Gaussian functions (exponent 30, 000) to precision of 10�8

with Gaussian centers distributed randomly in a [�6, 6]3 volume. This ran-
dom distribution leads to substantial clustering and hence load imbalance
that is only partially addressed by overdecomposition using a task ID map
that randomly distributes function tree nodes (and their children) across pro-
cesses at some target level of refinement. Empirically, the load imbalance
is offset by the reduction of communication.

The MRA computation on each function commences by adaptively project-
ing into the multiwavelet basis by recurring down until the local represen-
tation error is below the truncation threshold. The resulting data structure
is a 3D spatial tree that extends down about 6 levels of adaptive dyadic
refinement. Subsequently, the fast wavelet transform (compression) and
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inverse transform (reconstruction) are performed and the norm of the func-
tion is also computed for verification purposes. Work and data flow down
the tree in the projection and reconstruction steps, and flows up the tree
for compression. In the compression operation, a parent node needs co-
efficients from its 23 = 8 children. The code is templated by the number
of dimensions, making this a perfect use case of streaming terminals so
that a single terminal can process children in arbitrary dimensions. Prior to
streaming terminals, the example had to employ complex C++ templates to
manage a variable and potentially large number of terminals. The native
MADNESS implementation computes on each tree in parallel, but there is
an explicit barrier after each computational step (projection, compression,
reconstruction, norm) as the in-memory data structure is completed. In con-
trast, the TTG implementation eliminates all inessential barriers and streams
data through the entire DAG and never stores an explicit representation of
all trees. The transition between algorithms that ascend and descend im-
plies that there is a moment for each tree for which all data is stored (as
arguments of pending tasks), but computation on other trees proceeds in-
dependently in the TTG implementation.

1 reduce_leaves_tt ->template set_input_reducer <0>(

2 /* the reduction operator */
3 []( FunctionReconstructedNode <T,K,NDIM > &&a,

4 FunctionReconstructedNode <T,K,NDIM > &&b)

5 {

6 a.neighbor_coeffs[a.key.childindex ()] = a.coeffs;

7 a.is_neighbor_leaf[a.key.childindex ()] = a.is_leaf;

8 a.neighbor_sum[a.key.childindex ()] = a.sum;

9 a.neighbor_coeffs[b.key.childindex ()] = b.coeffs;

10 a.is_neighbor_leaf[b.key.childindex ()] = b.is_leaf;

11 a.neighbor_sum[b.key.childindex ()] = b.sum;

12 return a;

13 },

14 1 << NDIM /* the number of reductions to perform */
15 );

The streaming terminal feature is essential for expressing the MRA numer-
ical calculus algorithms, such as the compress operation, in a manner in-
dependent of the number of dimensions d. Since the number of inputs to
a compress task is 2d, changing d would require changing the flowgraph.
5.3.5 shows how streaming terminal can be used to implement accumula-
tion of the input node data sent to the compress task. Each compress task
expects exactly 2d inputs, hence the size of the stream expected by the input
terminal can be passed directly to the set_input_reducer method.

Figures 37a and 37b show the results of strong-scaling MRA using TTG and
native MADNESS on Seawulf up to 32 nodes and on Hawk up to 64 nodes.
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(a) Strong scaling MRA: 4 to 32 nodes with 120 functions on Seawulf , using 2
processes per node with 20 threads each.

(b) Strong scaling MRA: 8 to 64 nodes with 400 functions on Hawk , using 8
processes per node with 16 threads each.

Figure 37 Strong scaling MRA on Seawulf and Hawk .

TTG over PaRSEC clearly outperforms TTG over MADNESS and native
MADNESS on both machines. The benchmark uses plain-old-data (POD)
structures for node data and the performance of TTG over MADNESS suf-
fers due to data copies and high communication overhead as compared to
the efficient communication in TTG over PaRSEC which avoids unneces-
sary copying of data. The native MADNESS implementation scales up to
32 nodes on both machines. However, it reaches the scalability limit due to
the existence of barriers at every step of the computation and re-allocation
of data. We are investigating methods for reducing the communication over-
heads in TTG over MADNESS.
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5.4 Conclusion

Template Task Graph is a new flowgraph programming model that aims to
lower the complexity of performance-portable parallel programming of (es-
pecially, irregular) complex applications by abstracting many details of the
underlying task scheduling and execution as well as associated data and
resource management. In this paper, we presented the current status of
TTG’s C++ distributed-memory implementation using two task-based run-
time systems (MADNESS and PaRSEC). We evaluated these implementa-
tions over four paradigmatic applications, ranging from the most regular and
compute intensive to applications whose execution is data dependent and
memory bound. These evaluations show high performance and scalability,
on par and sometimes exceeding the performance of state of the art imple-
mentations in other programming paradigms. We presented in detail how
the features of the language are exploited by the implementations to reduce
memory copies and increase data management and communication. It must
also be noted that the development cost, while a subjective measure, was
certainly significantly lower compared with the state-of-the-art applications,
and done by outsiders of the representative domain.
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CHAPTER 6

Related Work

In this chapter, we talk about existing work in the areas of many task com-
puting, concurrent data structures and parallel runtime systems and how
they differ from our work.

6.1 Many Task Computing

In the last years, the use of scheduler based on many-core or heteroge-
neous architectures for general or for specific applications has been widely
studied [121, 78]. S. Yamagiwa et al. [121] propose a GPGPU streaming
based on distributed computing environment; S. Nakagawa et al. [78] pro-
vide a new middleware capable of out-of-order execution of works and data
transfers using stream processing. Other works [41, 118] follow a simi-
lar strategy based on streaming to minimize data transfers overhead. S.
Kato et al. [61] introduce TimeGraph, a GPU scheduler composed by two
different GPU scheduling policies which allow to interrupt the low priority
tasks execution in order to execute higher priority tasks within a real-time
multi-tasking environments for video applications. Similar to the previously
mentioned works and considering that the GPUs in a cluster are not usually
fully utilized, Duato et al. [33] present their rCUDA, a middleware that en-
ables CUDA remoting over a commodity network by allowing to use CUDA-
compatible GPUs installed in a remote computer, as, they were installed in
the computer where the application is being executed. Also, V. J. Jiménez et
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al. [57] present a sort of predictive runtime scheduling which supports sev-
eral scheduling algorithms in order to choose the appropriate platform (Mul-
ticore, GPU, . . .) in which the algorithm would be better executed, resulting
in almost fully usage of CPU/GPU-like systems, with a peak time reduction
of 40% with respect to only using the GPU. Basically most the aforemen-
tioned works take advantage of overlapping memory transfers among CPU
and GPU memories with single kernel executions.

With the aim of exploiting MTC on many-core, other authors [68, 63] have
studied the efficiency of this new feature. Merged task, maybe the first MTC
approach on GPUs, allows us to run several independent kernels over the
same GPU simultaneously. It was presented by M. Guevara et al. [44] and
P. Valero-Lara et al. [111]. Posteriorly, C. Gregg et al. [42] and K. Zhang et
al. [122] included a scheduler which can select the best matching among
tasks before running. Additionally, P. Valero-Lara et al. [110] applied this
strategy to different GPU architectures to obtain the most convenient ar-
chitectural features for running concurrent kernels. After that, in [113], it
is proposed a new heterogeneous (CPU-GPU) scheduler in which groups
of independent blocks of tasks were efficiently managed to fully use CPU-
GPU and reduce the overhead of memory transfers. More recently, S.
Krieder et al. [64] presented GeMTC, a CUDA based framework which al-
lows MTC workloads to run efficiently on NVIDIA’s GPUs. P. Nookala et
al. [81] adapted this framework (GeMTC) to efficiently use the particular
features of Intel Xeon Phi and evaluate MTC applications on Intel accelera-
tors. The above mentioned works relate to our early work using Intel Xeon
Phis which motivated us to explore parallel runtime systems for fine-grained
tasking in general.

6.2 Concurrent queues

Several researchers have proposed concurrent queue implementations. Scog-
land et al. [94] presented the characterization of various concurrent queues
on many-core architectures and proposed a high-throughput queue specif-
ically engineered for many-core architectures. Schweizer et al. [93] per-
formed detailed analysis of x86 atomic instructions on various architectures
and discovered that atomics prevent instruction level parallelism and that
latency depends on architectural properties such as the coherence state of
the accessed cache lines. Scott et al. [73] proposed a lock-free queue algo-
rithm for machines that provide atomic primitives. Cache-friendly concurrent
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lock-free queue (CFCLF) [72] is a lock-free queue that employs a matrix for
the queue structure, reducing core-to-core communication overhead and
making it cache efficient. BQ [74] is a lock-free queue that exploits batching
to gain better performance. Morrison et al. [77] proposed a concurrent non-
blocking linearizable FIFO queue using atomic FAA that outperforms CAS
based implementations by up to 2⇥.

6.3 Parallel runtime systems

Most parallel runtime systems and execution models, such as OpenMP
[14], Charm++ [60], and Swift/T [120], use concurrent queues for sharing
data between threads or processes. OpenMP’s task construct [8] enables
task-based parallelism. Charm++ demonstrates about 10-20% improve-
ment in performance by using optimization techniques like lock-free queues,
CPU affinity, and memory management [70]. Recently, Cpp-taskflow [104]
emerged as an alternative to OpenMP task parallelism for C++.

Numerous efforts to provide a similar level of abstraction via a fine-grain
task-based dataflow programming exist, adding to those that have transi-
tioned from a grid-based workflow toward a task-based environment. Some
of the recent task-based runtimes like Legion [11], StarPU [7], HPX [48],
CnC [18], OmpSs [35], DASH [91], PaRSEC [17] and MADNESS [47] act
as an intermediary between the hardware resources and a programming
paradigm, language or API to isolate application developers from the un-
derlying hardware. Some of these programming interfaces have nascent
support for distributed execution, e.g., recent versions of the OpenMP spec-
ification [84] introduce the task and depend clauses which can be employed
to express control flow graphs. OpenMP is widely used and supports ho-
mogeneous, shared memory systems, and its target extension to support
accelerators is quickly gaining traction. A limitation of the OpenMP model is
that distributed memory and inter-node communication need to be explicitly
implemented with the use of an external communication library.

In OmpSs, tasks are discovered by a single thread and executed by worker
threads. The model allows nesting of tasks in individual nodes to relieve
the main thread; however it may suffer from scalability issues on large scale
distributed systems.

HPX aims to overcome these challenges by replacing explicit communi-
cations and synchronizations with asynchronous communication between
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nodes and lightweight control objects, allowing applications to exploit fine-
grained parallelism within the context of a global address space.

Legion, on the other hand, describes logical regions of data and uses those
regions to express the dataflow and dependencies between tasks, and de-
fers to its underlying runtime, REALM [103], the scheduling of tasks, and
data movement across distributed heterogeneous nodes.

To the best of our knowledge, we are the first to explore lock-less strate-
gies in concurrent programming where data can be carefully manipulated to
avoid the use of locks. Furthermore, existing runtime systems have not fo-
cused on the efficient support of fine-grained tasks, resulting in sub-optimal
application execution, a problem that will only get worse with larger many-
core architectures.

6.4 Load Balancing

Several researchers have proposed various load balancing mechanisms [31,
45]. Blumofe and Leiserson et al. introduced work stealing and proved that
it is superior to work sharing [13]. Quintin et al. proposed hierarchical work
stealing for exploiting data locality to achieve speed up compared to clas-
sical work stealing algorithms [87]. Various parameters of work stealing
have been explored in the literature and Michael et al. showed that two ran-
dom choices for work stealing exponentially improves performance and is
sufficient to achieve good load balancing [76]. Several applications imple-
ment their own load balancing mechanisms in order to achieve ideal perfor-
mance on various architectures. Unbalanced Tree Search benchmark [83]
implements a work stealing mechanism for efficient dynamic load balancing
and by varying key work stealing parameters, the authors expose impor-
tant tradeoffs between the granularity of load balance, the degree of paral-
lelism, and communication costs. Recently Shiina et al. introduced “Almost
Deterministic Work Stealing" which addresses the issue of data locality by
making scheduling almost deterministic [97]. All mechanisms proposed in
the literature for multi-threaded runtimes rely on concurrent data structures
and synchronization mechanisms for achieving dynamic load balancing. In
contrast, our work explores lock-less techniques for achieving comparable
dynamic load balancing by using non-atomic memory updates.
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6.5 Flowgraph Programming

Flowgraphs, while ubiquitous as general models of computation (e.g., in
compilers), have recently become featured as first-class concepts in pro-
gramming models and languages aimed at high performance. Control-flow
graph models include Taskflow [51], CUDA graphs [26]; TensorFlow [1] and
Dask [90] APIs support dataflow graphs; Intel TBB [65] includes support for
both control flow and dataflow graphs; CnC [18] and Legion [11] can sup-
port control or dataflow graphs through data partitioning and mapping. The
most direct influence on TTG was Parametrized Task Graph, a program-
ming model supported by PaRSEC in which computation is represented as
flows of tuple-indexed data through an operation graph. Almost all of these
programming models are implemented as C++ libraries. Most implemen-
tations limit the support for flowgraphs to shared memory setups, or use
explicit communications transformed in tasks to simulate the flowgraph in
a distributed setting. The Hume flowgraph DSL focuses on real-time em-
bedded systems [46]. The S-NET DSL [43] is an orchestration language of
tasks, strictly decoupling implementation and parallelism.
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CHAPTER 7

Conclusion and Future Work

We believe that X-OpenMP creates the opportunity to transparently accel-
erate many applications with fine-grained parallelism. Our work in this area
of task-based parallel runtime systems creates new avenues for exploring
lock-less techniques in the HPC space. We plan to evaluate real-world
scientific applications in Computational Biology, Materials Science, Com-
putational Chemistry, and Astrophysics using X-OpenMP to demonstrate
the performance improvements achievable in parallel runtimes as a step to-
wards exascale goals. We also plan to explore applications that can be over-
decomposed into many finer-grained tasks by rethinking the algorithms to
achieve improved performance using the techniques presented in this paper.
We also would like to investigate the applicability of lock-less programming
techniques in GNU OpenMP [101], the Swift/T workflow system [120], as
well as the Parsl parallel programming library [9] in order to further broaden
the applications that could take advantage of the proposed techniques.

With respect to TTG, future work will consider extensions to simplify data
injection in the DAG of tasks, to better manage memory and network uti-
lization, to provide some degree of Quality-of-Service with regard to the
computation and communication scheduling, and to support heterogeneous
platforms. We are also interested in adding more runtime backends to TTG
in future with X-OpenMP being one of the choices. By enabling efficient
support of fine-grained parallelism across the growing range of scales seen
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in modern and future hardware, we believe this work will enhance the pro-
ductivity of parallel programmers.

Timeline

• Revise X-OpenMP paper based on reviews from PACT’22 - June/July
2022.

• Journal Extension to XQueue for submission to TPDS or TOC -
Soon.

• Extend XQueue work by integrating lockless queues into GNU OpenMP
for submission to IPDPS’23 or TPDS/TOC - November 2022

• Explore the opportunities for integrating XQueue into Parsl - Ju-
ly/August 2022.

• Release first version of TTG to public after enabling GPUs for ap-
plications using PaRSEC - Soon.

• Plan to graduate - December 2022.
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