
EXTREME FINE-GRAINED PARALLELISM ON

MODERN MANY-CORE ARCHITECTURES

BY

POORNIMA NOOKALA

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Adviser

Chicago, Illinois
December 2022

© Copyright by

POORNIMA NOOKALA

December 2022

ii

ACKNOWLEDGEMENT

First and foremost, I am incredibly grateful to my supervisor Dr. Ioan Raicu
for his continuous support and invaluable guidance throughout my PhD. I am also
extremely thankful to Dr. Robert Harrison for his treasured support and for advising
my research work at Stony Brook University. Dr.Raicu and Dr.Harrison have been
monumental in shaping my PhD and I can’t thank them enough.

I would like to o↵er special thanks to my dissertation committee: Dr. Kyle
Hale, Dr. Stefan Muller and Dr. Jia Wang. I would like to extend my sincere thanks
to Dr. Kyle Hale and Dr. Stefan Muller from Illinois Institute of Technology and
Dr. Peter Dinda from Northwestern University for helping me develop the core idea
behind the thesis. I would also like to express my gratitude to Dr. Kyle Chard for
help in polishing my papers. In addition, I would like to thank all my colleagues
and collaborators for their time spent and e↵orts made in countless meetings, brain-
storming sessions, and running experiments. This dissertation could not have been
completed without the consistent encouragement and support from my husband Ram
Karri. My appreciation also goes out to my children, my family and friends for their
encouragement and support all through my studies.

I would like to acknowledge the support from National Science Foundation
(NSF) for this work under grants OAC-2107548/2107283, CCF-1757964, CCF-1461260,
CCF-1757970, CNS-1730689 at Illinois Institute of Technology and OAC-1931387 and
ACI-1450344 at Stony Brook University.

iii

AUTHORSHIP STATEMENT

I, Poornima Nookala, attest that the work in this thesis is substantially my

own.

In accordance with the disciplinary norm of Computer Science (see IIT Faculty

Handbook - https://web.iit.edu/general-counsel/faculty-handbook, Appendix S), the

following collaborations occurred in the thesis:

I am extremely grateful to Dr. Ioan Raicu for his guidance and continuous

support throughout my PhD journey. I will be forever grateful to Dr. Robert Harrison

for giving me the opportunity to be part of the TTG team and for the guidance and

contributions of Dr. Edward F. Valeev from University of Tennessee, Dr. George

Bosilca, Dr. Thomas Herault and Dr. Joseph Schuchart from the University of

Tennessee at Knoxville for making TTG possible. Dr. Mahdi Javanmard, Dr. Martin

Kong, Dr. Rezaul Chowdhury and Zafar Ahmad have been extremely helpful in

exploring the limitations of fork-join parallelism. I would also like to thank Dr.

Pavan Balaji from Meta for the brainstorming sessions for improvising my ideas on

XQueue.

Last, but not the least, I would like to thank my fellow PhD student Alexandru

Orhean, and Caleb Lehman and Jonathan Anderson (who were part of the Research

Experience for Undergraduates (REU) program) for their contributions to this work.

I would also like to thank Serapheim Dimitropoulos, Karl Stough, Pedro Valero-Lara,

Fernando L Pelayo and Johan Jansson for their contributions to my early work in

Many Task Computing.

The work in this thesis would not have been possible without the inputs and

guidance from everyone listed here. I am extremely grateful to all!

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

AUTHORSHIP STATEMENT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xii

CHAPTER

1. INTRODUCTION . 1

1.1. Task-Based Parallelism 3
1.2. Many-Task Computing 4
1.3. Early Work in Many Task Computing 4
1.4. Dissertation Overview 10

2. HOWBAD IS CONCURRENTQUEUE PERFORMANCE ACROSS
MANY THREADS? . 12

2.1. Baseline Queue Performance 15
2.2. Analysis of Synchronization Mechanisms 21
2.3. Summary . 26

3. SCALABLE CONCURRENT QUEUES ON MODERN MANY-
CORE ARCHITECTURES 28

3.1. XQueue: Lock-less Queueing Mechanism for Task-Parallel
Runtime Systems . 29

3.2. Performance Evaluation 34
3.3. Summary . 51

4. X-OPENMP : EXTREME FINE-GRAINED TASKING USING
LOCK-LESS WORK STEALING 52

4.1. Motivation . 53
4.2. X-OpenMP - eXtreme fine-grained tasking runtime 55
4.3. Performance Evaluation 64

v

4.4. Summary . 80

5. EFFICIENT EXECUTION OF DYNAMIC PROGRAMS USING
DATA-FLOW BASED PARALLEL PARADIGM 81

5.1. Motivation . 83
5.2. Background . 85
5.3. Classic 2-way R-DP Algorithms: Fork-Join based and Data-

flow based Implementations 88
5.4. Experimental Results 96
5.5. Summary . 104

6. THE TEMPLATE TASKGRAPH (TTG): AN DATAFLOWPRO-
GRAMMING PARADIGM FOR IRREGULAR SCIENTIFIC AP-
PLICATIONS . 107

6.1. Motivation . 108
6.2. Template Task Graph 109
6.3. Benchmarks . 121
6.4. Summary . 128

7. RELATED WORK . 130

7.1. Many Task Computing 130
7.2. Concurrent queues . 131
7.3. Parallel runtime systems 132
7.4. Load Balancing . 133
7.5. Dataflow Programming 134
7.6. Flowgraph Programming 136

8. CONCLUSION AND FUTURE WORK 137

BIBLIOGRAPHY . 139

vi

LIST OF TABLES

Table Page

2.1 Testbed for evaluation from the Mystic System 16

3.1 Application - number of tasks 42

5.1 Ratio of the maximum estimated cache misses over the actual cache
misses for the GE benchmark with problem size 8K⇥8K on SKYLAKE. 102

6.1 Software configurations . 122

vii

LIST OF FIGURES

Figure Page

1.1 Directed Acyclic Graph (DAG) 3

1.2 Micro-architecture of the Entire MIC coprocessor [1]. 6

1.3 Micro-architecture of the Entire MIC coprocessor [1]. 7

1.4 E�ciency of Sleep workload using MIC by varying concurrency . . 9

1.5 E�ciency comparison of sleep workload using OpenMP and SCIF . 10

2.1 Average latency of enqueue/dequeue operations on SPSC queue . 17

2.2 Average throughput of enqueue/dequeue operations in millions(M)
on SPSC queue . 18

2.3 Average latency of enqueue/dequeue operations on a lock-based
queue. This graph is shows that simple lock-based queues don’t
scale beyond 8 threads on any modern processors. 20

2.4 Average throughput of enqueue/dequeue operations on lock-based
queue. This graph shows that the throughput of a simple lock-based
queue plateaus beyond 8 threads on modern processors 21

2.5 Average latency of incrementing an integer using di↵erent synchro-
nization mechanisms. Same trend is observed on all architectures
where latency keeps increasing as threads are scaled up except Intel
Xeon Phi. 25

3.1 Architecture of XQueue on a 4-core machine with 4 queues per con-
sumer. 30

3.2 Average latency of enqueue/dequeue operations using XQueue (SPSC) 36

3.3 Latency Comparison . 37

3.4 Throughput Comparison . 38

3.5 Execution Time (using 192 threads) of a synthetic benchmark with
a mix of fine-grained and coarse-grained tasks and varying queue
sizes (legend shows queue sizes in parentheses). 40

3.6 Memory Bandwidth obtained using STREAM Triad benchmark. . 41

3.7 Speedup of XQueue over standard GNU and LLVM OpenMP im-
plementations on the BOTS benchmarks on skylake-192 using 192
threads. 44

viii

3.8 Load balance of FFT on skylake-192 45

3.9 Performance of Strassen’s Matrix Multiplication benchmark using
8K matrices on skylake-192 using 192 threads and varying tile sizes
(lower is better). 46

3.10 Speedup of XQueue over standard GNU and LLVM OpenMP imple-
mentations when applied to Breadth First Search from GAP Bench-
mark Suite on skylake-192 using 192 threads. 48

3.11 Performance of Gaussian Elimination algorithm using 16K matrix
on skylake-192 using 192 threads and varying base sizes (lower is
better). 49

3.12 Performance of Symmetric Rank Update (DSYRK) on skylake-192
using 192 threads and varying tile sizes (lower is better). 50

4.1 Load Imbalance in Unbalanced Tree Search using 192 threads and
GNU OpenMP . 54

4.2 Wait-free work stealing in action - [A] shows the stealer putting a
steal request to the victim [B] shows the victim serving the steal
request . 62

4.3 Parallel Tasking Overhead on skylake-192 using 192 threads (lower
is better) . 66

4.4 Task Distribution on skylake-192 using 192 threads 67

4.5 Delta of Task Distribution using Work Stealing on skylake-192 using
192 threads (lower is better) 68

4.6 Execution Time (using 192 threads) of a synthetic benchmark with
a mix of fine-grained and coarse-grained tasks and varying queue
sizes (legend shows queue sizes in parentheses). 70

4.7 Scaling of Strassen’s Matrix Multiplication using 8K matrix on skylake-
192 (lower is better) . 71

4.8 Performance of Strassen’s Matrix Multiplication using 8K matrix
and varying base sizes on skylake-192 (lower is better) 72

4.9 Symmetric Rank Update using 12K matrix on skylake-192 using 96
threads (higher is better) . 73

4.10 Cholesky Factorization on a 12K matrix on skylake-192 using 96
threads (higher is better) . 75

ix

4.11 Cholesky Factorization using di↵erent matrix sizes and tile size of
256 on skylake-192 run using 96 and 192 threads (higher is better) 76

4.12 Unbalanced Tree Search using 96 threads on skylake-192 (lower is
better) . 77

4.13 Unbalanced Tree Search using 192 threads on skylake-192 (lower is
better) . 78

4.14 Unbalanced Tree Search using X-OpenMP and 192 threads on skylake-
192 . 79

5.1 Simple CnC Specification . 86

5.2 A graphical representation of the CnC program. 89

5.3 Function A of 2-way R-DP GE algorithm. 90

5.4 Barriers prevent further potential parallelism 91

5.5 Execution time of Gaussian Elimination on EPYC-64 99

5.6 Execution time of Gaussian Elimination on SKYLAKE-192 100

5.7 Execution time of Smith-Waterman on EPYC-64 103

5.8 Execution time of Smith-Waterman on SKYLAKE-192 104

5.9 Execution time of Floyd Warshall’s Algorithm on EPYC-64 105

5.10 Execution time of Floyd Warshall’s Algorithm on SKYLAKE-192 . 106

6.1 2D Wavefront Computation 113

6.2 TTG streaming terminal with input T, output U, and a size of N.
The reduction operation of the terminal will be called N � 1 times
on input from TTA before before a task of TTB will be eligible for
execution [2] . 117

6.3 Flow of data among di↵erent kernels in blocked FW-APSP algorithm. 123

6.4 Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on Hawk using 16 processes per node, 8 threads
each (block sizes in square brackets). 124

6.5 Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on SeaWulf using 2 processes per node, 20 threads
each (block sizes in square brackets). 125

x

6.6 Strong scaling MRA: 4 to 32 nodes with 120 functions on Seawulf ,
using 2 processes per node with 20 threads each. 127

6.7 Strong scaling MRA: 8 to 64 nodes with 400 functions on Hawk ,
using 8 processes per node with 16 threads each. 128

xi

ABSTRACT

Processors with 100s of threads of execution and GPUs with 1000s of cores are

among the state-of-the-art in high-end computing systems. This transition to many-

core computing has required the community to develop new algorithms to overcome

significant latency bottlenecks through massive concurrency. Implementing e�cient

parallel runtimes that can scale up to hundreds of threads with extremely fine-grained

tasks (less than ⇠100 µs) remains a challenge. We propose XQueue, a novel lockless

concurrent queueing system that can scale up to hundreds of threads. We integrate

XQueue into LLVM OpenMP and implement X-OpenMP, a library for lightweight

tasking on modern many-core systems with hundreds of cores. We show that it is pos-

sible to implement a parallel execution model using lock-less techniques for enabling

applications to strongly scale on many-core architectures. While the fork-join model

is suitable for on-node parallelism, the use of joins and synchronization induces arti-

ficial dependencies which can lead to under utilization of resources. Data-flow based

parallelism is crucial to overcome the limitations of fork-join parallelism by specify-

ing dependencies at a finer granularity. It is also crucial for parallel runtime systems

to support heterogeneous platforms to better utilize the hardware resources that

are available in modern day supercomputers. We implement Template Task Graph

(TTG), a novel programming model and its C++ implementation by marrying the

ideas of control and data flowgraph programming. TTG can address the issues of per-

formance portability without sacrificing scalability or programmability by providing

higher-level abstractions than conventionally provided by task-centric programming

systems, but without impeding the ability of these runtimes to manage task creation

and execution as well as data and resource management e�ciently. TTG implemen-

tation currently supports distributed memory execution over 2 di↵erent task runtimes

PaRSEC and MADNESS.

xii

1

CHAPTER 1

INTRODUCTION

The Department of Energy (DOE) has reported that “Scientific productivity

is one of the top ten exascale research challenges” [3]. The scientific computing com-

munity is facing unprecedented changes in computer architectures that has fueled the

emergence of the many-core computing architecture. Today’s high-end computing

systems have 100s of processors and GPUs have 1000s of threads of execution. In

a recent report [4], the DOE stated that “the transition of applications to exploit

massive on-node concurrency... create the most challenging environment for devel-

oping applications in at least two decades.” Extreme on-node concurrency levels of

order 104 is required in order to achieve exascale performance levels according to

this report. They continued by saying “much of the performance improvement must

come from vectorization and lightweight tasking.” These heterogeneous systems pro-

visioned with many-core accelerators fundamentally make programmability harder as

we shift from MIMD (multiple instruction, multiple data) programming to a mixture

of MIMD and SIMD (single instruction, multiple data) programming. The era of

many-core and exascale computing will bring new fundamental challenges in how we

build large-scale systems, how we manage them, and how we program them. The

techniques that have been designed decades ago will have to be dramatically changed

to support the coming wave of extreme-scale general purpose parallel computing.

Today, the increase in performance of a single-threaded processor has come

to an end due to the limitation of the current Very Large Scale Integration (VLSI)

technology. In response, most hardware companies are designing and developing new

parallel architectures [5]. To achieve higher performance, applications need to lever-

age the parallelism on modern architectures. On the other hand, multicore designs

are also encountering scaling problems, notably the “Dark Silicon” phenomenon [6].

2

Power and cooling concerns suggest the number of dynamically active transistors on

a single die may be greatly constrained in the near future. In other words, even if the

number of transistors per chip continues to follow Moore’s law, we will not be able to

use all of them simultaneously. This problem may lead to scenarios in which only a

small percentage of the chip’s transistors can be “on” at a time [7]. The limitations of

current CMOS technology has fueled the emergernce of many-core architectures and

many of these massively parallel platforms o↵er a high ratio of performance/cost and

an e�cient power consumption design [8, 9, 10]. They are also widely used in high

performance computing, including systems ranging from a cluster of personal com-

puters, to large scale supercomputers. As per the Top 500 list [11], many of the most

powerful supercomputers today are based on platforms that combine multi-core and

many-core processors with data parallel accelerators. These many-core architectures

have the potential to address the needs of computation-hungry scientific applications

at the node level, but they are di�cult to program due to an increasing level of paral-

lelism that requires programmers to have a deep understanding of hardware, parallel

constructs, and associated synchronization mechanisms.

Shared memory parallelism can be expressed in various forms mainly loop-

based parallelism and task-based parallelism. Typically, in loop-based parallelism,

loops are divided into chunks of equal size and executed concurrently by di↵erent

threads managed by a parallel runtime system. Task-based parallelism evolved in

parallel runtime systems to support irregular parallelism in applications where the

parallelism cannot be expressed by loops. In task-based parallelism, an application is

decomposed into dependent or independent tasks to form a task graph which can be

executed by di↵erent threads in the system. Furthermore, task-based parallelism can

be categorized based on the way task graphs are expressed: control-flow and data-

flow. In control-flow, the dependent tasks can only be triggered after completion of

the parent task, whereas in data-flow, the tasks are ready to run when input data

3

Figure 1.1. Directed Acyclic Graph (DAG)

for a task becomes available. We explore both control-flow and data-flow based task

parallelism in this work.

1.1 Task-Based Parallelism

Task-based parallelism is a simple paradigm for shared memory parallelism in

which a computation is broken-down into a set of inter-dependent tasks which can

then be executed concurrently on various cores. When a task is created by some

processor or thread, it is conceptually queued for execution by a future available

thread. Task dependencies and/or data dependencies are used to control the flow of

tasks through the runtime system. Tasks can be modeled as Directed Acyclic Graphs

(DAGs) which can dynamically unfold during the execution of the application. Given

the DAG, tasks can be executed using a set of processors/threads where each thread

dequeues a task from a queue and executes it. If the queue is empty, thread waits for

a task to come in to the queue until the whole DAG is processed.

Figure 1.1 shows a DAG with a set of tasks with arrows showing the depen-

dencies. Nodes at one level can ideally be executed in parallel. Here tasks D,E, G and

H can be executed in parallel and they do no have dependencies since they are the

4

leaf tasks. Once the dependencies for F have been resolved, task F can execute. The

execution models of many parallel languages and libraries [12, 13, 14, 15, 16, 17] rely

on such task parallelism. Most parallel runtime systems today support execution of

coarse-grained tasks with very high e�ciency, however when it comes to fine-grained

tasks, the e�ciency decreases due to the overhead of scheduling and managing the

tasks. Hence, the need for low overhead tasking becomes significant in order to explore

extreme parallelism from applications.

1.2 Many-Task Computing

Many-Task Computing (MTC) [18] has been an emerging paradigm and area

of research for some years now. An MTC workload consists of tasks that run un-

interrupted from start to completion. The task duration may be highly variable,

ranging from tens of cycles to hundreds and thousands of cycles. Their dependency

and data-passing characteristics may range from many similar tasks to complex, and

possibly dynamically determined, dependency patterns. Many-task computing dif-

fers from high throughput computing (HTC) in the context of using large number of

computing resources over short periods of time to accomplish many computational

tasks. To e�ciently handle MTC workloads, the system needs to exploit parallelism

as much as possible. As more and more cores are being added to increase the process-

ing speed, the need for parallel execution models that can leverage full capabilities of

the processors by over-decomposition of tasks into fine-grained tasks is increasing.

1.3 Early Work in Many Task Computing

GPUs have a very restrictive programming model, but provide at least an

order of magnitude better throughput for applications painstakingly coded to that

model. To program GPUs, typically there is a need to learn another programming

language such as CUDA (NVIDIA) or OpenCL (AMD). As a result, existing vendors

5

must spend extra time and e↵ort to modify or rewrite parts of their codebase to take

advantage of the new capabilities provided by General Purpose GPUs (GPGPUs).

Besides that, barely rewriting an application just to o✏oad computations to a GPU

rarely works well. Because of the architecture of most GPUs out there, applications

must be tailored from the ground up to follow the rules of the restrictive programming

model of GPUs, otherwise they may su↵er from severe performance penalties. Because

of that, interested vendors cannot a↵ord to go through the e↵ort involved. Finally,

while GPUs are great for massively parallel applications with thread- switching that

comes almost at no cost, their performance can take a large hit when executing

programs with complex logic (like complicated branching and looping for example).

Therefore they may be unsuitable for certain applications of MTC. The Intel Xeon

Phi is a family of processors based on the Intel MIC Architecture [1] that incorporates

earlier work on the Larrabee architecture [19]. It follows an alternative programming

model that, although may not provide the same level of parallelism, provides more

flexibility and therefore can be more suitable for certain application of MTC that

GPUs are not suited for. The reason is that the Xeon Phi has x86 cores that are

more capable (can handle complex branching and looping) than most GPU cores.

Another advantage of having x86 cores is that programming the coprocessor minimizes

the amount of work that needs to be done in order to integrate a Xeon Phi to an

existing system. That is because the Phi does not require being programmed in any

specific framework and it can natively run applications written in C with Pthreads

or OpenMP. This work [20, 21] used the 22nm Knights Corner chip, which was the

first commercial product from this family. This product has been discontinued due

to the problems with 10nm technology and we briefly discuss our findings from using

this chip.

The Knights Corner is a PCIe vector co-processor with integrates up to 61

in-order dual issue x86 cores, which trace some history to the original Pentium core,

6

like the Larrabee predecessor. Among other enhancements, the Corner’s cores are

augmented with 64-bit support, 4 hardware threads per core (resulting in more than

200 hardware threads available on a single device) and 512-bit SIMD instructions [1].

Each core has a 512KB L2 cache locally but has also access to all other L2 caches

in the system through a high-speed bidirectional ring [1]. Unlike previous GPUs, the

L2 cache is kept fully coherent by a global-distributed tag directory.

Vector
Core

Vector
Core

Vector
Core

Vector
Core

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

G
D

D
R

C
o
n
tr

o
ll

er
M

er
m

o
ry

G
D

D
R

C
o
n
tr

o
ll

er
M

er
m

o
ry

Vector
Core

Vector
Core

Vector
Core

Vector
Core

...

V
ecto

r
C

o
re

V
ecto

r
C

o
re

V
ecto

r
C

o
re

V
ecto

r
C

o
re

G
D

D
R

C
o
n
tro

ller
M

erm
o
ry

G
D

D
R

C
o
n
tro

ller
M

erm
o
ry

Interprocessor Network

Interprocessor Network

...

...

...

PCIe
Client
Logic

F
ix

ed
 F

u
n

ct
io

n
 L

o
g

ic

...

Figure 1.2. Micro-architecture of the Entire MIC coprocessor [1].

Due to the foundations of Intel architecture, the coprocessor can be pro-

grammed in several di↵erent ways. Here, we introduce two di↵erent approaches,

OpenMP and SCIF (Intel’s Symmetric Communications Interface). OpenMP uses

o✏oading approach for o✏oading computations from the host to the accelerator. The

SCIF implementation runs natively on the accelerator and accepts jobs from Clients

running on the host. There are several advantages and disadvantages between the

two methods. The major advantage of native execution coupled with SCIF over of-

floading is that the developer gets more control overall in the configuration and the

architecture of their design in order to maximize performance. In addition, di↵erent

MIC cards can communicate directly with each other basically making certain designs

7

more e�cient. Frameworks that use o✏oading mode (OpenMP), do not necessarily

take advantage of the DMA-features of the hardware they run on while on SCIF you

are guaranteed that if you are using Remote Memory Access (RMA). That is not to

say that OpenMP does not come with any advantages over SCIF. Quite the opposite,

the advantages of o✏oading are pretty significant for the framework that was imple-

mented for this project. The low-level C code needed for the SCIF implementation

is relatively a lot more complex when compared with pragma directives provided by

OpenMP. In addition, using SCIF implies that the framework must have at least one

of its parts running natively on the Phi as the endpoint. In order to do that the

developer needs to set up an application to run natively on the Phi and involves a

lot of configuration. Using OpenMP with the o✏oading capabilities provided by the

MIC, all this configuration is taken care of.

Task Queue

Memory

Shared

Process

Client Host
Process

Xeon
Phi Task

...

...

Figure 1.3. Micro-architecture of the Entire MIC coprocessor [1].

The OpenMP version of the framework as shown in Figure 1.3 is developed us-

ing a Producer-Consumer architecture which communicates using shared memory for

IPC. The Consumer side hosts the framework which runs as multiple worker threads

8

which use the shared memory space as a queue structure, continuously accepting new

tasks from producer. Likewise, the producer acts as a client process which submits

tasks to the queue. Asynchronous o✏oading is used to allow the framework to be

non-blocking to continue accepting tasks while other tasks are running on the Phi.

This approach was chosen to provide the same feature set as GeMTC [22] while taking

advantage of asynchronous o✏oading capabilities of OpenMP.

SCIF implementation employs a Client Server architecture where clients send

their tasks to the Phi from the host and the server, which runs natively on the

Phi, accepts the jobs. After submitting the job, the clients can request the result

and the server will deliver it to them when the task has finished processing and is

placed on the results queue of the framework. The whole procedure is non-blocking

for the server who can handle multiple requests and submissions at the same time.

That functionality is implemented with epoll() for handling connections that are

later passed to threads [23] that push or dequeue tasks from the queues. The SCIF

socket-like API is used for communications between the server and the clients. It

comes as a shared library named *libmtcq. This library includes all the functionality

that handles incoming and outgoing queues of tasks, pushing jobs and distributing

tasks to workers. It is also completely parametrizable in terms of queue sizes, worker

threads, and application threads. Since the Xeon Phi does not have the hierarchical

architecture of SMXs and Warps nor the concept of application kernels that you

generally see in GPGPUs, everything is implemented with standard Pthreads. There

is a parametrizable number of master threads that dequeues tasks from the incoming

queue. If the task is a parallel application, which is the case most of the time, then the

master thread will assign the task to the specified number of worker threads. Else if

it is sequential only one thread will be assigned and the master thread will go back to

dequeue more jobs. Each queue is implemented as a finite bu↵er from the Producer-

Consumer model which means that it uses a single mutex and two semaphores to

9

Figure 1.4. E�ciency of Sleep workload using MIC by varying concurrency

ensure that no deadlocks or data-races arise.

All of our experiments were run on the Midway High Performance Computing

Cluster at University of Chicago. Our testing host is an Intel Sandy Bridge with 32

cores at 2.6 Ghz and 32 GB of RAM. It has 2 Xeon Phis attached to it.

We performed experiments using a synthetic sleep workload with various sleep

length tasks. As seen in figure 1.4, preliminary results show that e�ciency reaches

higher 90s for task lengths at 1 msec when using 1 worker on the host, 2 msec for 60

workers and 5 msec for 128 workers. This clearly shows that this framework using

OpenMP performs better than GeMTC on Xeon Phi which reaches higher e�ciency

only at 5 ms. To reduce the overhead of multithreading, we took an approach of

creating threads on the Phi before o✏oading tasks which reduced the overall execution

time considerably. Also, figure 1.5 shows the comparison of sleep workload e�ciency

10

Figure 1.5. E�ciency comparison of sleep workload using OpenMP and SCIF

between OpenMP and SCIF. Both implementations achieve 90% e�ciency with sleep

duration of 640 microseconds.

To enable running MTC workloads on Xeon Phi, we designed a framework

that not only sends and executes tasks on Xeon Phi but also ensures that these tasks

are isolated from each other and can run in parallel. We implemented both OpenMP

as well as SCIF-based frameworks and were able to run MTC workloads on Xeon Phi.

1.4 Dissertation Overview These preliminary observations motivated us to

further explore many- core architectures and fine-grained tasking with the goal to re-

duce the underlying overheads of the existing parallel runtime systems and to explore

extreme fine-grained parallelism. Parallel execution models typically use concurrent

data structures like queues to hold a bag of tasks. In Chapter 2, we shifted our focus to

analyzing the performance of concurrent queues and synchronization mechanisms to

understand the overheads of managing tasks in task-based runtime systems. In Chap-

11

ter 3, we propose a lock-less concurrent out of order queueing mechanism, XQueue,

with static round-robin load balancing aimed at reducing the overheads of concurrent

data structures in parallel runtime systems. We integrate the lock-less mechanism into

LLVM’s implementation of OpenMP to test our idea on real applications written us-

ing OpenMP. In Chapter 4, we introduce X-OpenMP which extends XQueue-enabled

LLVM OpenMP and implements dynamic load balancing using lock-less work steal-

ing. X-OpenMP library can be used to transparently accelerate applications written

in OpenMP just by linking against our library. In Chapter 5, we analyze the lim-

itations of fork-join programming model in OpenMP and compare with data-flow

programming models. We show that data-flow programming models are important

for expressing fine-grained parallelism in applications. In Chapter 6, we present a

new data-flow based programming model TTG that aims to bridge the gap between

programmer productivity and performance portability. In Chapter 7, we discuss the

related work and in Chapter 8, we conclude.

12

CHAPTER 2

HOW BAD IS CONCURRENT QUEUE PERFORMANCE ACROSS MANY
THREADS?

A queue is a data structure that allows insertion of items using enqueue oper-

ation and removal of items using dequeue operation. The operations are performed

in a first-in first-out (FIFO) order. A concurrent queue allows multiple producers to

insert items and multiple consumers to remove items from the queue by protecting

the operations using synchronization mechanisms. Concurrent queues permeate com-

puter systems and networks. For example, Hadoop MapReduce [24] uses scheduling

queues to organize applications and share resources between the running applications.

Apache Spark [25] uses queues for FIFO job scheduling and can concurrently execute

jobs submitted by various threads. Database Management Systems and Information

Retrieval Systems often have a query execution engine that is responsible for selecting

the proper selection algorithms to implement a given query plan, deciding whether

intermediate results are materialized or pipelined and executing the resulting physical

query plan as a parallel program. Today’s TPUs [26] can be used to accelerate neural

network performance; however, the input data pipeline needs to be e�cient to extract

data asynchronously for achieving peak performance. Multiple concurrent queues can

be used for data pipelining by fetching data ahead of time thereby improving resource

utilization and increasing the overall throughput.

Our focus on concurrent queues is more specifically motivated by intra-node

task parallelism on modern and future parallel computers. Task parallelism is an

important paradigm for shared-memory parallelism in which computation is broken

down into a set of inter-dependent tasks which can then be executed concurrently

on various cores. Task dependencies and data dependencies are used to control the

flow of tasks through the runtime system. The execution models of many parallel

languages use such task parallelism. For example, OpenMP [27] has evolved to a

13

task-centric model where even parallel loops are compiled to fine granularity tasks

with dependencies which the run-time must dynamically schedule to the available

resources. When a task is enabled by some thread, it is conceptually queued for

execution by a future available thread. Software dataflow languages [14] similarly

have a runtime that executes a dynamically unfolding task graph with scheduling via

concurrent queues.

To achieve strong scaling and high e↵ective levels of parallelism, today’s par-

allel languages and execution models are also moving to finer and finer granularity

tasks. One reason for this is that as core counts grow on the node, applications need

to support over-decomposition (many more tasks than cores) in order to improve per-

formance, hide latency caused by blocking on dependencies, and otherwise achieve

maximum speedup [28]. This and other drivers produce the same outcome: tasks

and their dependencies need to be managed at the sub-microsecond granularity. As

the need for extremely low latency, high throughput concurrent queues grows, achiev-

ing them is simultaneously becoming increasingly di�cult because the node itself is

scaling.

Of particular interest here are single producer, single consumer (SPSC) and

multiple producer, multiple consumer (MPMC) concurrent queues. The queue itself

contains tasks, typically in the form of pointers (to task objects). A concurrent SPSC

queue allows a single producer to enqueue while a single consumer simultaneously

dequeues. An MPMC concurrent queue allows multiple simultaneous producers and

consumers to queue and dequeue. While each producer and consumer is typically

a software thread, the interesting case for latency and throughput is when these are

mapped to non-overlapping hardware threads (logical cores) and scheduled simultane-

ously. We elaborate on these queues in Section 2.2, and show that simple approaches

to their concurrency, while perfectly adequate at small scales, quickly fall apart as we

14

consider larger nodes.

Threads running concurrently in this manner can interleave instructions in

many ways and a shared data structure needs to be carefully protected to avoid

races. Concurrent SPSC and MPMC queues are no exception and require that their

state (e.g. head and tail) be protected with a synchronization mechanism. Various

synchronization mechanisms [29] exist, including mutual exclusion locks (mutexes),

spinlocks, semaphores, and atomic primitives.

A second approach to concurrent queues is avoid separate synchronization by

embedding race-avoidance directly into the data structure design itself. This also has

the benefit of avoiding the possibility of deadlock due to misuse of synchronization

primitives (e.g., lock acquisition in di↵erent orders along di↵erent codepaths). lock-

free data structures achieve this through the use of atomic primitives, such as CAS

(compare-and-swap) and Fetch-And-Add (FAA). Several libraries internally use lock-

free techniques [30, 31, 32], but the literature has show that it is di�cult to write

lock-free code that is correct [33, 34, 35, 36]. Even more compelling are lock-less data

structures [37], which not only avoid the use of locks, but also can avoid the need for

atomic operations under certain conditions. Both lock-free and lock-less programming

are challenging due instruction and memory access reordering that occurs due to the

compiler and the hardware, and the need to observe the memory consistency model

that is actually provided between logical cores.

How well do the basic primitives on which traditionally synchronized and lock-

free/lock-less SPSC and MPMC queues build actually perform? To address this

question, we evaluated the scalability of a wide range of primitives in terms of latency

of throughput. A large, diverse set of hardware was used, including numerous variants

of x64 from Intel and AMD, two generations of Intel Xeon Phi, ARM, and IBM Power9

(details in Table 2.1). Machines with as many as eight sockets and 384 logical cores

15

(hardware threads) were considered.

This work has the following contributions:

1. We motivate scalable SPSC and MPMC constructs from the needs of fine-

grained task parallelism.

2. We provide a detailed performance study of synchronization primitives, includ-

ing mutexes, semaphores, spin locks, and atomic fetch-and-add operations, on

today’s largest shared-memory systems from Intel, AMD, IBM, and ARM. Sys-

tems with up to 8 sockets and 384 hardware threads are included.

2.1 Baseline Queue Performance

A single producer single consumer (SPSC) array-based queue provides the

lowest latency for enqueue and dequeue operations when both operations do not

happen simultaneously since they do not require data synchronization, thread to

thread communication and can benefit from data locality. In order to parallelize

applications, concurrent queues are necessary for sharing work among various threads

and a multiple producer multiple consumer (MPMC) queue is the most commonly

used data structure. Thread contention, data synchronization, cache coherence and

cache misses are few of the many factors that can highly impact the performance of

MPMC queues limiting their scalability.

In order to show the scalability and performance of MPMC queues compared

to SPSC queues, we selected five diverse systems (see Table 2.1) from the Mystic

Testbed [38] that represent di↵erent architectures with large core counts. The five

systems we choose to evaluate for these initial experiments are: 1) AMD Epyc, 2)

ARM ThunderX, 3) IBM Power9, 4) Intel Xeon Phi, and 5) Intel Xeon Scalable

Processor. More information about these systems (as well as others used in our

16

Table 2.1. Testbed for evaluation from the Mystic System

Machine Model Sockets-Cores/HT@Freq

skylake-192 Intel Xeon Gold 8160 8-192/384@2.1GHz

skylake-48 Intel Xeon Gold 8160 2-48/96@2.1GHz

skylake-32 Intel Xeon Gold 6130 2-32/64@2.1GHz

skylake-16 Intel Xeon Silver 4110 2-16/32@2.1GHz

phi-64 Intel Xeon Phi 7210 1-64/256@1.5GHz

broadwell-16 Intel Xeon E5-2620 v4 2-16/32@2.1GHz

haswell-12 Intel Xeon E5-2620 v3 2-12/24@2.4GHz

epyc-64 AMD Naples 7501 2-64/128@2.0GHz

theadripper-32 AMD Threadripper 2990WX 1-32/64@3.0GHz

ryzen-8 AMD Ryzen 7 1700 1-8/16@3.0GHz

opteron-48 AMD Opteron 6168 4-48/48@1.9GHz

power9-40 POWER9 EP73 2-40/160@3.8GHz

thunderx-96 ThunderX 88XX ARM v8 2-96/96@2.0GHz

work) can be found in Table 2.1.

We measured the latency and throughput of a simple SPSC array-based circu-

lar queue to identify baseline numbers for the lowest latency that can be achieved on

latest many-core architectures [39]. Listing 1 shows the implementation of enqueue

and dequeue operations for an SPSC queue. Experiments involve running 1 billion

enqueue operations followed by a sequence of dequeues. We measured the latency

of each operation and calculated the average time per enqueue/dequeue pair. Queue

17

Figure 2.1. Average latency of enqueue/dequeue operations on SPSC queue

size is set to the number of samples for the purposes of this evaluation. Results in

Figure 2.1 show the average latency of both enqueue and dequeue operations. It can

be noted that latency of any operation on queues takes 30 to 70 cycles depending

on the architecture and clock frequency. This latency measurement includes a check

if queue is full/empty, an increment operation on head/tail, a modulo operation on

head/tail to get the position in the circular array and a copy operation to add/remove

the item. Figure 2.2 represents the throughput, which is the rate at which items are

being processed by the queue. For throughput experiments, we measured the total

time taken for a billion enqueue/dequeue operations and calculated the throughput.

Average throughput of enqueue/dequeue operations reaches 270 million operations

per second on Intel Skylake 192-core machine. Although these results are significant

showing excellent single threaded performance, an SPSC queue is limited because it

18

Figure 2.2. Average throughput of enqueue/dequeue operations in millions(M) on
SPSC queue

cannot be used with more than one producer and one consumer.

Listing 2 shows the implementation of enqueue and dequeue operations for a

multiple producer multiple consumer queue. The queue is implemented by using a

semaphore which keeps track of free spaces in the queue and pthread_mutex_lock to

lock the queue during enqueue and dequeue operations. This is the most common and

simple way to implement a concurrent queue. We do not expect a single concurrent

queue with multiple threads to scale well. This experiment aims at quantifying the

poor scalability of MPMC queues using mutex locks. Each experiment enqueues and

dequeues one billion items using equal numbers of producer and consumer threads.

For all the experiments, a round robin pinning of threads is employed with producer

and consumer thread being on the same core and di↵erent hyper threads. Binding

threads to processors can result in better cache utilization, thereby reducing costly

19

1void enqueue (i n t item , s t r u c t queue ∗q)

2{

3q−>ta sk s [(++q−>r ea r) % q−>capac i ty] = item ;

4re turn ;

5}

6

7i n t dequeue (s t r u c t queue ∗q)

8{

9i n t item = q−>ta sk s [(++q−>f r on t) % q−>capac i ty] ;

10re turn item ;

11}

Listing 1. Single Producer Single Consumer Queue Operations

1void enqueue (i n t item , s t r u c t queue ∗q)

2{

3sem wait(&q−>spaces sem) ;

4pthread mutex lock(&q−>l o ck) ;

5q−>ta sk s [(++q−>r ea r) % q−>capac i ty] = item ;

6pthread mutex unlock(&q−>l o ck) ;

7sem post(&q−>task sem) ;

8

9re turn ;

10}

11

12i n t dequeue (s t r u c t queue ∗q)

13{

14i n t item ;

15sem wait(&q−>task sem) ;

16pthread mutex lock(&q−>l o ck) ;

17item = q−>ta sk s [(++q−>f r on t) % q−>capac i ty] ;

18pthread mutex unlock(&q−>l o ck) ;

19sem post(&q−>spaces sem) ;

20

21re turn item ;

22}

Listing 2. Multiple Producer Multiple Consumer Queue Operations

20

Figure 2.3. Average latency of enqueue/dequeue operations on a lock-based queue.
This graph is shows that simple lock-based queues don’t scale beyond 8 threads on
any modern processors.

memory accesses. This thread placement is a result of tests performed by pinning

producer to core 0 and consumer to each other core available and evaluating the

performance obtained for every combination which resulted in separate hyper threads

on the same CPU giving the highest performance.

Figures 2.3 and 2.4 show the latency and throughput, respectively. Our results

indicate that latency can reach up to millions of cycles under high contention, and

throughput can drop down to as low as 311,329 operations per second (aggregate over

all threads). For the skylake-192 system, which had the best single core performance

at 270 million operations/sec, the MPMC approach yielded only 810 operations per

second per thread at a 384-thread scale (a 333,333⇥ loss of performance). The fastest

MPMC queue throughput at any scale reached just 5 million operations/sec. These

21

Figure 2.4. Average throughput of enqueue/dequeue operations on lock-based queue.
This graph shows that the throughput of a simple lock-based queue plateaus beyond
8 threads on modern processors

results provide enough motivation to investigate methods to exploit full concurrency

on many-core architectures while not compromising on the lowest latency that can

be achieved.

2.2 Analysis of Synchronization Mechanisms

This section conducts a detailed performance study [40] of synchronization

mechanisms: 1) mutexes, 2) semaphores, 3) spin locks, and 4) atomic fetch-and-add

operations. The evaluation is conducted on a testbed of 13 systems representing

today’s largest shared-memory systems from Intel, AMD, IBM, and ARM with up to

384 hardware threads.

22

2.2.1 Testbed, Software Stack, and Timing Mechanisms. Testbed: Ta-

ble 2.1 shows details of the testbed used for experiments in this paper. The testbed

covers latest many-core architectures from Intel, AMD, IBM and ARM with proces-

sors such as Haswell, Broadwell, Skylake, Phi, Opteron, Ryzen, Threadripper, Epyc,

Power9, and ThunderX. The smallest system is an 8-core single socket system from

AMD. The largest system is an 8-socket system with 24-core Intel CPUs, for a total

of 192-cores and 384 hardware threads. The average system scale is about 50-cores

and 100 hardware threads.

Software stack: All experiments in this paper are performed on Ubuntu

18.04 operating system and compiled using GCC version 7.3 with O2 optimization

level.

Fine-grained timing: On x86 architectures, latency is measured in CPU

cycles using RDTSCP instruction for start time and RDTSC + CPUID instruction

for the end time. RDTSCP is a serializing instruction and it prevents instruction re-

ordering around the call. CPUID is also a serializing call and when it follows RDTSC

instruction, it prevents any future instructions to be executed before timing informa-

tion is read. The combination of these two timing functions gives the most accurate

results for latency. Timing on ARM and Power9 architectures is quite di↵erent from

x86 architectures. ARM processor has a PMU cycle counter which is only accessible

in privileged mode. The operating system sets up a virtual counter which counts at

the same frequency as the physical counter and can be used for fine-grained measure-

ments. The ARM cycle counter ticks at a lower frequency than the frequency that

cores are running at and hence calibration is required to get the multiplier that needs

to be applied to the cycle count to get a precise value. In Power9, time base register

counts cycles at a fixed lower frequency and needs to be calibrated to convert the

value to actual cycles at CPU clock frequency. Throughput in all experiments in this

23

paper is measured using CLOCK_MONOTONIC for start and end times. Throughput is

calculated for each thread individually and all the results are aggregated to get the

final throughput value for the experiment.

2.2.2 Performance of Synchronization Mechanisms. In order to program

for shared-memory systems using multithreading, threads need to be synchronized.

Various thread synchronization mechanisms exist which ensure that threads do not

simultaneously execute a critical section of the program. Many languages provide

high level abstractions for synchronization to ease parallel programming. Common

synchronization mechanisms include mutexes (mutual exclusion locks), semaphores,

reader/writer locks and condition variables. Mutex is a mutual exclusion lock which

ensures exclusive access to the shared resource. Spinlock is a type of lock which

waits in a busy loop if lock cannot be acquired. Atomics operations are instructions

supported by hardware and they lock the memory bus to access the shared resource.

These operations are inherently atomic and have limited support for data types on

various architectures. Semaphores is a type of mutual exclusion where a thread can

wait to get access to the critical section or do a post so other threads can get access.

While it is essential to synchronize data between threads, it can easily get very

expensive at higher levels of concurrency. This is due to the reason that only one

thread can hold exclusive access to the critical section and all other threads are waiting

to get the lock using up CPU cycles. Lock-free approaches using atomic operations

are believed to be highly e�cient, but are hard to implement and maintain. Lock-

free algorithms can be implemented by using special hardware primitives such as CAS

(compare and swap), FAA (fetch and add) and LL/SC (load-link/store conditional).

Most implementations of mutexes are built on top of atomic instructions supported

by hardware.

The primary focus here is to analyze the cost of low-level thread synchroniza-

24

1f o r (i n t i = 0 ; i < NUM SAMPLES PER THREAD; i++)

2{

3lock () ;

4counter++;

5unlock () ;

6}

Listing 3. Single Producer Single Consumer Queue Operations

tion mechanisms and for this purpose, we benchmarked pthread mutex, sem wait/

sem post, fetch�and�add and spin lock/ spin unlock to measure latency. Spinlock

for this benchmark is implemented using test-and-set algorithm using CAS atomic

primitive. Fetch-and-add is supported by x86 architectures using ’lock xadd’ instruc-

tion. The Power9 variant for FAA instruction is ’lwarx/stwcx’ and ARMv8 provides

’ldxr/stxr’ which are load/store exclusive instructions used for implementing atomic

read, modify, write operations. These benchmarks are obtained by running a loop of

1 billion operations and collecting the aggregate of the results. As shown in Listing

3, each iteration acquires the lock, increments a shared integer and releases the lock,

excluding fetch-and-add which performs an increment operation atomically.

Figure 2.5 shows that all synchronization mechanisms exhibit higher latencies

due to contention at higher levels of concurrency. There are many factors that im-

pact the cycle counts like cache coherence, communication latency between cores on

same and di↵erent sockets, interrupts, cache misses, etc. Hence, it is important to

run multiple iterations of these benchmarks and to compute the average number of

CPU cycles to estimate the latency of these operations. Latency of a single atomic

increment on a Skylake system with 192-cores and 384 hardware threads when run-

ning on all threads concurrently is 33592 cycles whereas on Intel Xeon Phi Knights

Landing with 64-cores and 256 hardware threads, latency reaches 3868 cycles. Similar

behavior is observed on other architectures with latencies reaching up to thousands

25

(a) Atomic Fetch-and-add (b) Mutex

(c) Semaphore (d) Spinlock

(e) Legend

Figure 2.5. Average latency of incrementing an integer using di↵erent synchroniza-
tion mechanisms. Same trend is observed on all architectures where latency keeps
increasing as threads are scaled up except Intel Xeon Phi.

26

of CPU cycles solely for acquiring the lock, incrementing a variable and releasing the

lock.

Although AMD, Intel, ARM and IBM have distinctly di↵erent architectures,

it is interesting to note that the latency of synchronization mechanisms steadily in-

creases on all the architectures as concurrency increases. For atomic instructions,

most architectures show a slow rise in the latency up to 8 threads and latency lin-

early increases after 8 threads whereas for mutex, spinlock and semaphor, latency

steadily goes up as concurrency level increases. Intel Broadwell, Haswell and Skylake

processors exhibit similar performance curve as threads are scaled up where as AMD

Ryzen, AMD Threadripper and AMD Epyc processors start with a slow increase in

latency up to 8 threads for all four types of locks and then the latency rapidly grows

as level as concurrency increases.

Intel Xeon Phi Knights landing with 64-cores shows interesting results. Al-

though latency increases up to 64 threads, the latency remains constant as more

threads are added. This behavior can be attributed to the round robin hyper-

threading implemented in Intel Xeon Phi (which is di↵erent than all the other pro-

cessor architectures evaluated in this paper). In x86 architectures, hyper-threading

allows each physical processor to be perceived as two separate logical processors within

the operating system by sharing the resources, which results in both hyper-threads

running simultaneously increasing contention on each core. Whereas, in Intel Xeon

Phi, every core alternates scheduling hardware threads at each cycle thereby not in-

creasing contention and resulting in a better performance as threads are scaled up to

more than the number of cores [41].

2.3 Summary

We were not surprised by these findings as it is well known that state-of-the-art

27

synchronization mechanisms do not scale beyond single digit concurrent threads [42].

These limitations are automatically imposed onto concurrent data structures that

are implemented using such synchronization mechanisms. Furthermore, use of such

concurrent data structures in modern parallel runtimes have significant overheads for

managing extremely fine-grained tasks. Even though at low concurrency these mech-

anisms only cost hundreds of cycles, these costs quickly grew to tens of thousands

and even hundreds of thousands of cycles at hundreds of threads. Our experience

with the cost of synchronization mechanisms at high concurrency along with the cost

of MPMC queues as a building block for parallel runtimes has motivated our inves-

tigation into methods to eliminate synchronization mechanisms in order to unleash

the full performance of many-core architectures under high concurrency.

28

CHAPTER 3

SCALABLE CONCURRENT QUEUES ON MODERN MANY-CORE
ARCHITECTURES

This work is motivated in large part by the significant latency gap observed

with SPSC and MPMC models. From the results presented in Section 2.2, it is

clear that having a single lock across all threads is not scalable and severely limits

parallelism across many threads. Using more locks is a better alternative which

will result in less contention and allow for more fine-grained parallelism. However,

more locks also means more CPU cache flushes to maintain cache coherency, which

could adversely impact the performance of locking code. A balanced locking scheme

with fewer locks (or no locks if possible) can support an ever increasing amount of

parallelism in concurrent programming. The key idea behind this work originates

from the significant loss in performance of MPMC queues as compared to SPSC

queues as observed in Section 2.1.

A simple concurrent SPSC queue can enqueue and dequeue items in less than

100 cycles. Independent SPSC queues per core could, in theory, scale linearly with

increasing core counts. Thus, we believe that an MPMC lock-less queue can be built

using SPSC queues by manipulating the task or data flow carefully.

We make the following contributions in this chapter:

1. We design and implement XQueue [39], a lock-less, relaxed-order MPMC queue

that uses multiple queues for improved locality without using locks or atomic

operations. We demonstrate the scalability of XQueue using microbenchmarks

measuring latency as low as 110 cycles and throughput as high as 1 billion op-

s/sec across today’s largest shared-memory systems from Intel, AMD, IBM, and

ARM up to 192-core scales. These numbers represent 6900X lower latencies and

3300X higher throughput compared to existing MPMC queue implementations.

29

2. We integrate XQueue into LLVM OpenMP and evaluate the performance im-

provements on 6 unmodified applications (Fib, FFT, Multisort, NQueens, Health

and Strassen) from the Barcelona OpenMP Task Suite (BOTS) as well as the

breadth first search (BFS) application from the GAP benchmark suite, Gaussian

Elimination algorithm and Symmetric Rank Update kernel from the PLASMA

numerical library [43]. We show that the combination of XQueue and LLVM

OpenMP is capable of delivering better scalability for fine-grained task-parallel

workloads with up to 6⇥ speedup compared to native LLVM OpenMP and 1⇥

to 4⇥ speedup compared to GNU OpenMP in most cases, and up to 116⇥

speedup in some cases.

3.1 XQueue: Lock-less Queueing Mechanism for Task-Parallel Runtime
Systems

We introduce XQueue [39], a novel lock-less MPMC, out-of-order queuing

mechanism that can scale up to hundreds of threads. XQueue uses B-queue [44]

as a building block. B-queue is a concurrent SPSC lock-free queue designed for

e�cient core-to-core communication. It is implemented without using any locks,

atomic operations, or barriers. The latency of queue operations in B-queue is as low

as 20 cycles. B-queue uses batching where both producer and consumer detect a

batch of available slots that are safe to use. Batching avoids shared memory access

and therefore improves performance. Several fast SPSC queues have been proposed

in recent years [45, 46, 47] and we aim to demonstrate that XQueue can be built with

any fast and scalable SPSC queue.

Figure 3.1 shows the architectural of XQueue on a 4-core system. The key idea

here is to have N SPSC concurrent queues per worker if there are N workers. There

is one master queue and N �1 auxiliary queues per worker, with N (equal to number

of workers) producers adding items into master queues. Every item is a void pointer

30

Figure 3.1. Architecture of XQueue on a 4-core machine with 4 queues per consumer.

that represents a task where a task could be a function pointer or data pointer. One

worker exists for dequeueing tasks from the master queue as well as the auxiliary

queues. A worker first tries to dequeue a task from the master queue. If a task

is dequeued successfully, it is processed immediately. The item when processed can

generate one or more items to be enqueued into the auxiliary queues of the other CPU

cores. Every worker distributes work to auxiliary queues in a round-robin fashion as

shown in Figure 3.1. A worker then tries to dequeue an item from its auxiliary queues

and dequeued items are processed immediately.

A simplified version of pseudocode for worker logic is outlined in Listing ??.

Since all queues in XQueue are concurrent SPSC queues, producer and consumer

threads can act concurrently processing items in the queues. The strategy of dis-

tributing work across queues (as shown in Figure 3.1) ensures that there is a only a

single producer and single consumer for every queue at any point in time. Due to

this design, locks can be completely avoided thereby reducing the latencies of queue

operations and improving overall performance.

31

Algorithm 1: Worker logic
Input: id coreId;

Input: next nextCoreId;

1 while 1 do

2 ret dequeueFromMaster(id, item);

3 if ret = SUCCESS then

4 retItem processItem(item);

5 if retItem 6= NULL then

6 enqueueToAuxiliary(next, retItem);

7 ret dequeueFromAuxiliary(id, item);

8 if ret = SUCCESS then

9 retItem processItem(item);

10 if retItem 6= NULL then

11 enqueueToAuxiliary(next, retItem);

12 next (next+ 1)%numCores;

13 if next == id then

14 next++;

3.1.1 Load balancing. In most parallel programming systems, it is a common

scenario to use multiple queues, one per worker, with work produced and consumed

locally by the workers/threads. Load balancing is commonly achieved by using tech-

niques like work stealing [48, 49]. While XQueue also uses multiple queues, it balances

load by the virtue of its design with N queues per core and consumer threads insert-

ing items into the auxiliary queues of all the other cores. This architecture enables

distribution of task graphs to multiple threads with minimal overhead due to the

lock-less design as compared to the state-of-the-art work stealing techniques which

primarily use locks or atomics to achieve synchronization.

In a task-parallel program, tasks can be modeled as a Directed Acyclic Graph

(DAG) which can be traversed based on inter-dependencies between the tasks. Task

graphs have a pool of ready tasks which can be processed by threads and subtasks

can be generated. The master and auxiliary queues and the communication between

them is modelled after the dynamic execution of a program where a task can generate

32

subtasks. In the case of XQueue with N workers and N queues per worker, as shown

in Figure 3.1, we employ a ring bu↵er topology for communicating between queues.

Essentially, the consumer thread of every set of queues acts as a producer thread of

N � 1 auxiliary queues of all the other threads. This pattern of task distribution

ensures optimal load balancing in terms of the number of tasks processed per worker.

However, this may not be the best fit for every scenario for various reasons, such as

data locality, task dependencies, and per task execution time. Optimal allocation of

work among various threads is known to be NP-hard, but, in the case of XQueue,

depending on the nature of work, the topology of connections between queues and

task distribution strategy can be changed to achieve best performance.

The load balancing mechanism in XQueue can be considered as a push-based

mechanism as opposed to pull-based work stealing approach. This primary di↵erence

impacts how initially imbalanced workloads are handled. For example, consider the

case of Fibonacci. Execution starts with a single task which recursively unfolds the

DAG as execution progresses. In the work stealing approach, idle workers randomly

try to steal tasks from other workers. This results in several failed steals and coupled

with the cost of locking for every steal, incurs significant overhead. On the other

hand, the push-based approach of XQueue handles this e�ciently with its round-

robin distribution without the use of locks, thus incurring minimal overhead. We

discuss the advantages and disadvantages of this approach in Section 3.2.

On modern many-core architectures, it is common to have multiple Non-

uniform memory access (NUMA) zones which impact the latency of memory opera-

tions from various cores. In XQueue, every worker allocates queues in its respective

NUMA zone.This ensures that any memory reads and writes from various threads

have the lowest latency possible. However, when tasks propagate through auxiliary

queues in the system, the latency of memory read/write is higher across NUMA

33

zones. With XQueue’s ring bu↵er design across N cores with N queues, some latency

is unavoidable due to the underlying architecture.

In summary, there is a lot of flexibility for defining the topology for task

distribution statically and dynamically during program execution with XQueue. If

the nature of the DAG and data access patterns are known, the task distribution can

be tuned to achieve best performance as compared to state-of-the-art work stealing

approaches.

3.1.2 XQueue Integration with the OpenMP Runtime. In order to extend

our research to real systems, we integrated XQueue into OpenMP [50] to enable

execution of unmodified OpenMP programs using XQueue. OpenMP’s tasking model

provides a way to e�ciently parallelize dynamic task graphs and recursive algorithms.

Several implementations of OpenMP exist: GNU OpenMP (for GCC) [51], LLVM

OpenMP [50], and Intel OpenMP. We chose to integrate XQueue into the LLVM

OpenMP due to its open source code and its superior performance as compared to

GNU OpenMP with fine-grained tasks [52].

Implementation: In the LLVM OpenMP tasking implementation, every

thread owns a queue and the enqueue/dequeue operations are protected by locks

implemented using Lamport’s bakery algorithm. We replaced the task queues in

OpenMP with multiple SPSC queues per worker to model XQueue. OpenMP imple-

ments a work-stealing scheduler. Every thread first checks it’s own queue for tasks. If

no tasks are found, a thread is randomly chosen to steal a single task. We replaced the

work stealing scheduler with the scheduler for XQueue as shown in Algorithm 1. In

our XQueue-enabled OpenMP implementation, every thread checks its own queue for

tasks. If no tasks are found, the scheduler checks all auxiliary queues. This process

of checking the master queue and auxiliary queues is repeated until a termination

condition is satisfied.

34

Optimizations: We applied few optimizations to the XQueue system dur-

ing integration with the OpenMP runtime. Since the core design of XQueue is to

have multiple queues per worker, at higher thread counts (hundreds), the latency

of checking all auxiliary queues can become significant and reduce the overall per-

formance. To solve this issue, we implemented a hinting mechanism where every

producer stores the ID of the last queue to which the task was pushed. This hint

can possibly be over-written by multiple threads writing to various queues, however

this simple mechanism reduces the latency of checking auxiliary queues many times.

For the applications we evaluate, this hinting mechanism gives better performance

while maintaining good load balancing. We have used physical cores available on the

machine for this evaluation by setting OMP PLACES environment variable to ’cores’

and OMP PROC BIND to ’close’, since not all applications can benefit from using

hardware threads.

3.2 Performance Evaluation

We evaluate the performance of XQueue using synthetic and real workloads.

For the purposes of evaluating XQueue independently, we developed a prototype

parallel runtime system that can process a dynamic task graph with task dependen-

cies using XQueue. We first evaluate XQueue individually using a series of micro-

benchmarks. We deployed XQueue on 13 systems (Table 2.1); we then picked the

system with the highest number of cores, the skylake-192 with 192-cores and 8 NUMA

zones to conduct deeper analysis.

3.2.1 Experiment Setup. We implemented three systems for the micro-benchmark

evaluation:

1. XQueue (SPSC) uses a single SPSC queue per worker.

2. XQueue (MPMC) uses an MPMC queue with a master queue per worker.

35

3. XQueue (Cilk Deque) uses a Cilk deque [16] with a separate queue per

worker.

Cilk deque is implemented as part of Cilk 5 multi-threaded language [16] and

uses a shared-memory, mutual-exclusion protocol called the THE protocol[53] for

implementing locks. This mechanism of locking is about 25% faster than hardware

locking primitives.

For the macro-benchmarks, we use the XQueue-enabled LLVM OpenMP im-

plementation with N queues per worker and N workers. We compare it with the

native LLVM OpenMP and GNU OpenMP libraries.

3.2.2 Micro-benchmark Performance Results. In each experiment we perform

1 billion enqueues/dequeues concurrently by varying the number of threads. We

consider a single operation to be the act of dequeing an item from the master queue

and executing the function to which that item points to. The function performs

a single NOP operation. The X-axis on all the figures represents the number of

producers/consumers.

Figure 3.2 shows the latency of queue operations on XQueue using lock-less

queue. Each queue operation takes around 110 to 400 CPU cycles on average on

all architectures considered. ARM ThunderX shows the lowest latency and IBM

Power9 shows the highest latency in these micro-benchmarks. Intel processors Sky-

lake, Haswell, Broadwell and Xeon Phi show latencies in the range of 180 to 300 CPU

cycles on average. The standard deviation is low across all architectures indicating

that XQueue with lock-less queue can scale up to hundreds of threads with latencies

as low as 110 to 400 cycles.

Figure 3.2.2 compares the latency of XQueue (SPSC) with Cilk Deque and

MPMC queues on skylake-192. Here, Cilk Deque/MPMC is a single queue shared

36

Figure 3.2. Average latency of enqueue/dequeue operations using XQueue (SPSC)

across all the workers. With 192 producers/consumers, latency of MPMC queue is

13⇥ the latency of Cilk deque. Cilk deque’s Dijkstra-like locking mechanism achieves

much lower latency than locks implemented using hardware locking primitives. How-

ever, the latency is much higher compared to XQueue which does not use any locks. It

is noteworthy that XQueue has relatively constant latency as we increase the number

of threads by two and half orders of magnitude, while Cilk deque and MPMC show

significant latency increases over the same scale.

Figure 3.2.2 is a log-log plot showing the throughput of XQueue using lock-

based and lock-less queues on the skylake-192 system. The throughput achieved on

this system with XQueue with lock-less queue is 1 billion operations per second with

all hyper threads being utilized. For XQueue using lock-based queue, the average

throughput achieved is 200 million operations per second and 397 million for the Cilk

37

Figure 3.3. Latency Comparison

deque. In the case of MPMC queue, each mutex lock is held for short intervals and

contention is low, but acquiring the lock has a cost which explains the 5⇥ gap in

performance as compared to XQueue with lock-less queue. Cilk deque also incurs

a cost for acquiring and releasing the lock (a 2.5⇥ gap), although the cost is lower

compared to mutex-based locks. As noted in Section 2.2 for MPMC queue, with high

contention on the mutex lock with more than 8 threads, throughput drops to about

300K operations per second on skylake-192 with 384 threads. In case of Cilk deque,

the throughput drops to 4 million operations per second. This clearly shows a 3300X

gap in throughput between XQueue with lock-less queue and single lock-based queue

with hundreds of threads.

The results obtained from micro-benchmarks using XQueue with lock-less

queue and lock-based queue are significant and show that this architecture can scale

38

Figure 3.4. Throughput Comparison

to at least hundreds of threads with any scalable concurrent SPSC queue implementa-

tion. It can be noted that these micro-benchmarks do not take into consideration the

cache e↵ects of task distribution to other cores in XQueue since there are no auxiliary

queues. Hence, this benchmark shows the lowest latency and highest throughput that

can be achieved, providing a baseline.

3.2.3 Queue Length Study. While the above microbenchmarks use homogeneous

tasks which run for the same amount of time, real applications typically have a mix

of fine-grained and coarse-grained tasks. We designed a benchmark to explore this

scenario. In this benchmark, the master worker receives N ⇥10 tasks (where N is the

number of workers) which run for 1 second each. The ideal time to execute these tasks

with perfect load balancing is 10 seconds. Also, every worker receives 8 million delay

tasks of length 0.1 microseconds, which should ideally execute within a second. The

39

idea behind this synthetic benchmark is to simulate starvation where load imbalance

exists between workers and some workers can become idle for long periods of time.

In case of X-OpenMP, steal requests need to be handled by busy workers to facilitate

work stealing and this benchmark is designed to understand how the runtime behaves.

Figure 3.5 shows the results obtained by running this benchmark. The plot shows

execution time by varying queue sizes in the runtime implementations to understand

the impact of queue size when a single worker is overloaded with work. Please note

that the queue sizes couldn’t be matched for X-OpenMP and LLVM implementations

since the latter requires powers of two for queue length. The execution time of this

synthetic benchmark for LLVM OpenMP shows that the performance of the runtime

is sensitive to queue size in such scenarios and starvation can occur. XQueue and X-

OpenMP can handle such load imbalances well due to the round-robin load balancing

where long-running tasks get distributed to all the workers. This experiment also

clearly shows that X-OpenMP is not sensitive to the size of the queue due to the

existence of multiple queues per worker. The queue sizes can be kept small, thereby

requiring less memory for the underlying runtime and achieve good performance.

3.2.4 Data Locality Study. In order to understand the performance of XQueue

on NUMA architectures, we evaluate the STREAM [54] memory benchmark. It is a

synthetic benchmark written in C and parallelized using OpenMP work sharing. The

benchmark measures sustainable memory bandwidth by performing basic operations

on large vectors. The vectors are big enough (10 million double precision floats)

to fit in the cache memory and over 90% of the data is accessed from the main

memory during the computation. We modified this benchmark to implement task-

parallel STREAM Triad where the main loop is divided into chunks and every chunk

becomes a task during execution.

We evaluate the benchmark using XQueue and compare with LLVM and

40

Figure 3.5. Execution Time (using 192 threads) of a synthetic benchmark with a
mix of fine-grained and coarse-grained tasks and varying queue sizes (legend shows
queue sizes in parentheses).

GNU implementations of OpenMP. Figure 3.6 shows the bandwidth achieved on

the skylake-192 machine by running the STREAM benchmark at varying concur-

rency levels. The peak memory bandwidth measured using Intel’s memory latency

checker tool [55] is about 110 GB/s within a single NUMA node and 16 GB/s across

nodes. The task-based version of STREAM benchmark distributes tasks across all

workers and achieves around 75% of the measured peak bandwidth across nodes. Re-

sults show that XQueue achieves 40-60% more bandwidth as compared to the work

stealing based LLVM’s implementation. GNU OpenMP achieves significantly lower

performance compared to XQueue and LLVM implementations.

3.2.5 Macro-benchmark Performance Results. To quantify the improve-

ments in real application workloads, we evaluate the speedup achieved using XQueue-

41

Figure 3.6. Memory Bandwidth obtained using STREAM Triad benchmark.

enabled LLVMOpenMP as compared to the native LLVMOpenMP and GNUOpenMP

libraries. We evaluate six out of nine applications from the BOTS benchmark suite [56]:

Fibonacci, FFT (Fast Fourier Transform), Multisort, NQueens, Health and Strassen’s

Matrix Multiplication, the Gaussian Elimination algorithm implemented using OpenMP

tasking and Symmetric Rank Update (dsyrk) kernel from the PLASMA numerical li-

brary [43]. Results are shown in Figure 3.7. We also evaluate the breadth first search

application from the GAP benchmark suite [57] with real-world social network graphs

such as those from Friendster and Twitter. Results are shown in Figure 3.10. The

application workloads are summarized in Table 3.1.

Fibonacci (Fib) computes the Nth Fibonacci number using recursive par-

allelism. While Fib is hardly a critical parallel application, it does have extremely

fine-grained tasks (e.g., addition of two numbers) with extremely large number of

42

Table 3.1. Application - number of tasks

Application Inputs(S,M,L,XL) Highest Task Count

Fibonacci 44, 46, 48, 50 40.7B

FFT 134M, 268M, 536M, 1B 128M

Multisort 134M, 268M, 536M, 1B 14M

Nqueens 14, 15, 16 1.1B

Health small, medium, large 126M

BFS friendster 79M

BFS twitter 40M

tasks, and thus exposes the limits of a tasking runtime in terms of granularity. Fig-

ure 3.7 shows the results obtained on skylake-192. OpenMP with XQueue achieves

3⇥ speedup as compared to the native LLVM and GNU versions for Fib(50). The

performance gap increases with problem size due to the increase in overhead of lock-

ing operations in the native OpenMP versions with more fine-grained tasks. Further

analysis using Intel Vtune Profiler showed that about 50% of the execution time is

spent in these operations which includes waits and atomics, where as this overhead

is negligible in the XQueue version due to the lack of locks or atomics. The overall

runtime overhead for managing fine-grained tasks of this application reduced from

over 90% to 29% of the CPU time when using XQueue.

Multisort sorts 32-bit randomly generated numbers using a fast parallel sort-

ing variation of mergesort. It uses a recursive algorithm with a base condition of

2048 numbers and they are sorted using serial quicksort and insertion sort is used for

arrays with less than 20 elements. The application scales well up to 96 threads for

43

all the runtimes and XQueue is faster for all problem sizes with 1.97⇥ speedup for

the largest problem size. However, the performance drops by 50% at 192 threads.

As shown in Figure 3.7, XQueue achieves similar performance compared to LLVM

and GNU versions using 192 threads. LLVM and GNU versions of OpenMP exhibit

high CPI (cycles per instruction) rate (0.5 for XQueue vs 24 for both LLVM and

GNU for the largest problem size) which is the result of waits, atomics, and locks in

the GNU/LLVM versions. However, since this application is heavily memory-bound,

the benefits of avoiding locks and lower CPI in XQueue are outweighed by the data

movement across cores, thereby resulting in no performance benefit.

Health simulates the Columbian Health Care System [58]. A list of potential

patients in a village with one hospital are simulated with several possibilities of getting

sick, needing treatment or reallocating to an upper level hospital. Every village being

simulated is run as a task. The di↵erent probabilities at each step cause indeterminism

and load imbalance. On skylake-192, the performance of this application is heavily

impacted due to remote memory accesses for moving the village data across NUMA

zones. Despite some load imbalance, XQueue achieves 6⇥ speedup compared to

LLVM variant and 4⇥ speedup compared to GNU variant using the large input data.

Fast Fourier Transform (FFT) computes the 1D FFT of a vector with

N complex values using the Cooley-Tukey Algorithm. This algorithm recursively

divides the FFT into several smaller Discrete Fourier Transforms (DFTs) creating

multiple tasks at each step. Although the XQueue version has the advantage of

reduced overhead due to lock-less queues, the task distribution su↵ers due to the

static round-robin placement of tasks resulting in similar overall execution time as

compared to other versions of OpenMP. Figure 3.8 shows the timeline view of the

OpenMP parallel region for the largest problem size, where green represents e↵ective

work and black represents the spin/wait/overhead time introduced by load imbalance.

44

It is noteworthy that OpenMP with XQueue with worse load balancing can still

achieve slightly improved performance (between 0.9⇥ to 1.2⇥) due to the smaller

overheads incurred by avoiding locks.

Figure 3.7. Speedup of XQueue over standard GNU and LLVM OpenMP implemen-
tations on the BOTS benchmarks on skylake-192 using 192 threads.

NQueens computes all the solutions for placing N queens on an N ⇥N chess

board such that no queens can attack each other. The algorithm prunes certain

branches of the tree that cannot reach the solution which creates load imbalance.

Figure 3.7 shows that the XQueue OpenMP achieves 4X speedup compared to the

GNU version. The performance loss in XQueue as compared to standard LLVM is due

to the significant load imbalance. On the other hand, GNU OpenMP incurs huge syn-

chronization overheads for managing fine-grained tasks (about 60% on skylake-192)

and the performance is significantly lower for GNU OpenMP compared to OpenMP

with XQueue.

Strassen’s Matrix Multiplication uses Strassen’s algorithm to multiply

45

(a) XQueue-enabled LLVM OpenMP

(b) Native LLVM OpenMP

(c) GNU OpenMP

Figure 3.8. Load balance of FFT on skylake-192

46

Figure 3.9. Performance of Strassen’s Matrix Multiplication benchmark using 8K
matrices on skylake-192 using 192 threads and varying tile sizes (lower is better).

two square matrices. It uses a recursive parallel divide-and-conquer approach where

the matrix is divided into smaller and smaller matrices at every step. When the base

condition is reached, matrix multiplication is computed using a sequential divide and

conquer approach. It is faster than standard matrix multiplication for large matrices.

Figure 3.9 shows the execution time of strassen’s algorithm using 8K ma-

trix size on skylake-192 system with 192 threads and varying base sizes. LLVM’s

implementation is 40 to 60% slower than XQueue for all the base sizes. GNU’s

implementation achieves the best running time of 4.4 seconds with 128 base size.

It is interesting to note that naive round-robin load balancing in XQueue is able

to achieve significant speedup compared to LLVM at high concurrency level of 192

threads. These results clearly show the significance of low synchronization overheads

to achieve better performance at high concurrency levels.

47

Breadth First Search (BFS) is a fundamental building block of many graph

algorithms: it checks the connectivity of the graph from given source vertices, visiting

one layer at a time. In order to demonstrate the applicability of XQueue using real-

world datasets, we evaluate the BFS application from the GAP Benchmark Suite [57]

using social network graphs such as Twitter and Friendster. The original implemen-

tation of BFS in the GAP benchmark leverages loop parallelism (LP) to parallelize

every level of the tree. We modified the code to use recursive task-based (TP) par-

allelism with a base condition of 1024 nodes to evaluate XQueue. We also evaluate

the extreme case with a base condition of 1 node, which creates several extremely

fine-grained tasks. Each data point is the average speedup obtained by running BFS

64 times from pseudo-randomly selected non-zero degree source vertices. The Twitter

graph has 61 million nodes and 1.47 trillion directed edges for a degree of 23 where

degree is the maximum number of edges connecting a vertex. The Friendster graph

has 65 million nodes and 3.61 trillion directed edges for a degree of 55.

Figure 3.10 shows the speedup achieved for both the test graphs on the skylake-

192 using 192 threads. For the Friendster graph with a base case of 1024 nodes,

GNU OpenMP scales well up to 24 threads and performance degrades at higher

concurrency levels. XQueue performs reasonably well at full scale of 192 threads as

compared to GNU and LLVM. XQueue achieves a speedup of 1.4⇥ for Friendster

and 3⇥ for Twitter graphs over GNU with base case of 1024 nodes. Execution times

for LLVM and XQueue are similar for Friendster and for Twitter, XQueue achieves

2.4⇥ speedup. For the base case of 1 node, while there is no significant performance

di↵erence between LLVM and XQueue, GNU’s performance su↵ers significantly (up

to 116⇥ slower) due to the overhead of managing fine-grained tasks. Since real social

network graphs are very unbalanced, they result in highly irregular memory accesses

and load imbalance. Compared to the original GAP BFS using loop parallelism,

XQueue achieves 1.9⇥ speedup using Friendster and 1.6⇥ speedup using Twitter with

48

192 threads, showing promise that the task-based parallel approach can be beneficial

for these types of workloads.

Figure 3.10. Speedup of XQueue over standard GNU and LLVM OpenMP imple-
mentations when applied to Breadth First Search from GAP Benchmark Suite on
skylake-192 using 192 threads.

Gaussian Elimination (GE) algorithm has several applications in Linear

Algebra and one of the most important applications is solving a linear system of

equations. We have implemented the algorithm without pivoting. In prior work,

we presented an analytical model for understanding the performance of this algo-

rithm [59]. Figure 3.11 shows the results obtained by executing GE algorithm using

16K matrix size on skylake-192 machine using 192 threads pinned to cores. Best

running time of this algorithm is achieved using XQueue and 128 base size. As an-

alyzed in our prior work, these block sizes perfectly fit in L2 cache on the skylake

machine and achieve best performance. With smaller base sizes, the number of tasks

is much higher and due to the cost of creating and managing the tasks, the perfor-

mance drops by about 10% for the base size of 64 and about 40% for 32 base size in

49

Figure 3.11. Performance of Gaussian Elimination algorithm using 16K matrix on
skylake-192 using 192 threads and varying base sizes (lower is better).

case of XQueue. The performance at smaller base sizes is also impacted by the lack of

dynamic load balancing in XQueue, however it is worth noting that XQueue achieves

the fastest running time inspite of the static load balancing. GNU’s implementation

significantly loses performance with extremely fine-grained tasks such as at base size

32. This behavior is consistent with other benchmarks evaluated in this paper and is

an area that can be improved.

Symmetric Rank Update is part of the Basic Linear Algebra Subprograms

(BLAS) specification [60] and is another important building block of several linear

algebra applications. For a given symmetric matrix, the algorithm computes updates

the upperlower part of the result matrix with the matrix product. The algorithm is

implemented as part of the Parallel Linear Algebra Software for Multicore Architec-

tures (PLASMA) numerical library [43]. PLASMA is a dense linear algebra library

50

Figure 3.12. Performance of Symmetric Rank Update (DSYRK) on skylake-192 using
192 threads and varying tile sizes (lower is better).

which implements a full set of BLAS routines using task-based parallelism. The algo-

rithm uses a tile-based approach where the matrix is divided into square blocks and

each tile is typically processed by a task.

Figure 3.12 shows the performance achieved in GFLOPS by running the

DSYRK kernel using 12K matrix and 96 threads on the skylake-192 server. This

algorithm only scales up to 4 sockets. XQueue clearly achieves highest performance

of 1230 GFLOPS with a tile size of 976 even with it’s naive round-robin load balancing

scheme. LLVM’s implementation achieves best performance of 1000 GFLOPS with

a tile size of 1008. These results shows evidence that higher performance can be

achieved by using finer-grained tasks if the parallel runtime systems has low overheads

for tasking.

Overall, our results show that there is significant room for improvement in

51

existing task-parallel runtimes and higher performance can be achieved by using lock-

less techniques presented in this paper. The results also demonstrate the need for

exploring the opportunities for finer-grained parallelism in existing algorithms for

achieving higher performance on modern machines at concurrency levels of hundreds

of threads. Improving load balancing could yield further performance improvements

similar in size to the improvements seen here.

3.3 Summary

XQueue is an extremely scalable lock-less MPMC out of order queuing system

which can be used in tasking runtimes to overcome the performance limitations due

to overhead of synchronization. Evaluation results show that XQueue is scalable up

to hundreds of threads of execution with up to 6900⇥ lower latencies and 3300⇥

higher throughput when compared to naive implementations. We integrated XQueue

with LLVM OpenMP and were able to achieve up to 6⇥ speedup compared to native

LLVM OpenMP and 1⇥ to 4⇥ speedup compared to GNU OpenMP in most cases

with up to 116⇥ speedup in some cases on applications from the BOTS benchmark

suite and BFS application from the GAP benchmark suite.

In our previous work, we explored various lock-based work stealing approaches

[61]. Since XQueue is built using lock-less approach, we cannot use the traditional

work stealing algorithms for dynamic load balancing. In the next part of this work,

we investigate lock-less work stealing [62] as a scalable mechanism for dynamic load

balancing with the aim to improve the current deterministic load balancing, broaden

the applicability of XQueue, and achieve better performance on modern machines

with hundreds of cores.

52

CHAPTER 4

X-OPENMP : EXTREME FINE-GRAINED TASKING USING LOCK-LESS
WORK STEALING

In Chapter 3, we introduced XQueue [39], a lock-less concurrent queueing

framework for task parallel runtime systems which enables extreme fine-grained task

parallelism. This is achieved by reducing the overheads of the underlying concurrent

data structures used in runtime systems. We demonstrated performance improve-

ments that could be obtained on modern architectures with hundreds of cores using

several benchmarks. However, XQueue framework relies on a static round-robin load

balancing strategy for distributing work across processors. While this approach to

push work eagerly to other workers can achieve modest load balancing, the lack of

dynamic load balancing can severely limit the performance of real-world workloads.

Load balancing is crucial to parallel applications as imbalances quickly lead

to sub-optimal execution times. Work stealing is typically used in most parallel run-

times and execution models for load balancing. Work stealing involves stealing work

from a random busy worker when a processor runs out of work. Traditional work

stealing implementations use lock-based approaches to steal work from concurrent

queues. These concurrent data structures do not scale up to hundreds of threads

on modern many-core architectures and exhibit significant overheads at high levels

of concurrency. Acar et al. explored a lock-less approach for work stealing by im-

plementing an algorithm that can steal work non-atomically [62]. We extend their

work on load balancing along with our prior work on lock-less concurrent parallel

framework [63] and propose a dynamic lock-less load balancing mechanism that can

provide significant performance improvements using real application workloads.

The main contributions of this chapter are:

1. We introduce X-OpenMP library [64] and propose a work stealing algorithm

53

that enables lightweight tasking and dynamic load balancing using lock-less

techniques.

2. We integrate our approach into LLVM’s OpenMP implementation which allows

existing applications written using OpenMP to leverage the lightweight tasking

proposed in this work.

3. We evaluate X-OpenMP using micro benchmarks, numerical kernels and unbal-

anced trees and demonstrate significant performance improvements using our

approach.

4.1 Motivation

In task-parallel runtimes, load imbalance is a significant performance limiting

factor. Several studies have shown the importance of dynamic load balancing in multi-

threaded applications [48, 65]. Dynamic load balancing enables better distribution

of work across the processors to achieve e�cient performance. In a multi-threaded

runtime, typically tasks are executed by a fixed number of workers. Every worker

owns a task pool and execute tasks from their pool. Any subtasks that are spawned

are inserted into the worker’s own task pool. When a worker runs out of tasks, it

randomly picks workers to steal tasks from. The amount of load balancing required

varies from application to application. Workers can steal a single unit of work at a

time, or two units, or half the amount of work from the victim’s task pool. Literature

has shown that asking two random workers for work is su�cient in most cases to

achieve exponential improvement in performance [66].

Figure 4.1 shows the timeline plot of the Unbalanced Tree Search (UTS) bench-

mark [67] executed using GNU’s implementation of OpenMP. The green dots indicate

e↵ective CPU time and the black dots indicate idle time. The plot shows a signifi-

cant load imbalance for this application where several workers (bottom of the figure)

54

Figure 4.1. Load Imbalance in Unbalanced Tree Search using 192 threads and GNU
OpenMP

are idle for most of the application run, and other workers are idle for a significant

amount of the time. The load imbalance results in a major slowdown in the execution

time of the application. The UTS benchmark is designed to understand the e�ciency

of dynamic load balancing in parallel runtime systems and this plot clearly highlights

the imbalance in existing task-based runtime systems. Processors are heavily under-

utilized resulting in poor overall performance. The simplest way to achieve load

balancing is to distribute work across workers in a round-robin fashion. While this is

easy to implement, real-world applications are dynamic in nature with varying com-

putational intensity and complexity. A naive round-robin load balancing approach

may not be su�cient for improving the performance of real-world workloads [68].

Multi-threaded systems use synchronization mechanisms like mutexes, semaphores,

spinlocks, or atomic operations [69, 70] to ensure thread safety and correctness. Con-

current data structures are the central building block of multi-threaded execution

models and work stealing relies heavily on these implementations. However, tradi-

tional synchronization mechanisms do not scale to hundreds of threads. The mutual

exclusion required to ensure correctness, consistency, and thread safety leads to se-

55

rialized concurrent accesses and adds unnecessary overheads. New approaches for

concurrent data structures are necessary to push the limits of scalability on modern

many-core architectures. Lock-free approaches [71, 72, 73, 74, 75] mitigate these over-

heads to an extent by using atomic operations which guarantee system-wide progress,

but literature has shown it is very di�cult to write correct lock-free code [76]. Lock-

less non-atomic updates to data structures are significantly faster compared to the

atomic variants and are the focus of our work.

One of the challenges of parallel execution models that use traditional work

stealing is the potential need for a large number of steals to achieve optimal load

distribution. When a runtime is initialized and workers are created, they start look-

ing for work and when no work is found in the local task pool, work stealing is

triggered. Studies have shown that several steal requests are generated at the begin-

ning and tail end of the execution [77]. Work stealing implemented using traditional

synchronization-based mechanisms tend to have huge overheads for stealing work.

Hence, work stealing should be triggered sparingly and only when necessary to avoid

unnecessary overheads.

4.2 X-OpenMP - eXtreme fine-grained tasking runtime

OpenMP is a popular standard for implementing parallel runtime execution

models. Task-based parallelism has emerged for exploiting dynamic parallelism from

applications on modern many-core and multi-core architectures. We introduce X-

OpenMP [64] with the goal of enabling extreme fine-grained parallelism for task-

parallel applications. We extend our work on XQueue and implement dynamic load

balancing to overcome the limitations of static round-robin load balancing.

4.2.1 Load Balancing. Static round-robin load balancing is limited for dynami-

cally unfolding task graphs due to the inability to load balance during the course of

56

application execution. Most multi-threaded runtime systems [16, 78, 17] use load bal-

ancing mechanisms like work stealing and work sharing in order to reduce the overall

execution time. Traditional work stealing mechanisms typically use synchronization

constructs to safely steal work from the victim’s queue. However, since XQueue uses

SPSC queues where queue operations are not protected using locks, there is a need to

design a lock-less algorithm that can perform dynamic load balancing of tasks using

work stealing.

4.2.1.1 Lock-less Work Stealing Using Wait. A mechanism that does not use

synchronization is required for implementing work stealing using XQueue. Intel’s x86

architectures have a memory model that supports Total Store Ordering (TSO) [79].

TSO guarantees that load and store operations to a memory location are in order

as issued by the processor. This memory consistency model provides an opportunity

to explore lock-less techniques on x86 architectures for implementing low overhead

concurrent data structures and load balancing mechanisms. Prior work has presented

an algorithm that does not require atomic read-modify-write operations for shared

memory work stealing [62] that works on total store memory architectures like Intel’s

x86. Processors communicate by reading and writing into memory locations non-

atomically. The details of the original implementation can be found in the technical

report [62]. We employed a modified version of this algorithm for work stealing in

X-OpenMP to implement dynamic load balancing. The implementation works as

follows. The algorithm requires two memory cells per worker where one cell holds a

combination of 40-bit round number (representing the round of work stealing) and

24-bit identifier (ID of the worker) packed into a 64-bit word and the other memory

cell holds a pointer to the stolen task. Algorithms 2 and 3 present the pseudocode

for victim and stealer threads. To perform work stealing, an idle thread (stealer) first

randomly picks a victim. As shown in Algorithm 3, the stealer first checks if the

victim is accepting requests. This is shown in the first line of the algorithm where

57

the 40-bit round number is extracted by using bit operations and compared with the

victim’s own round number. The steal request is valid only if the extracted round

number is less than the victim’s own round number. The stealer then takes a copy of

victim’s round number and writes its identifier packed with the round number into the

victim’s 64-bit memory cell. The stealer thread waits in a while loop until the copy

of its round number matches the victim’s round or a stolen task is received. While

waiting, it also writes a steal request to it’s own memory cell and leaves it unserved.

This self query makes sure no other steal requests come in to this thread since it is

idle. When a stolen task is copied by the victim to the stealer’s memory cell, the

stealer immediately breaks out of the while loop and executes the task. On the other

hand, a busy victim looks at it’s memory cell during a dequeue operation, as shown

in Algorithm 2, extracts the round number from the steal request and compares this

round number with its current round number. If it matches, the steal request is valid

and the victim dequeues a task from its queue and copies it to the stolen task memory

cell of the stealer. The victim increments it’s round number to invalidate any steal

requests coming in. The round is incremented in 2 scenarios: (1) when a steal request

is served and a task is copied to the stealer’s stolen task field; and (2) when victims’

queues are empty.

The pseudocode presents only the core logic leaving out the complex imple-

mentation specific details. The actual implementation also ensures that a stealer is

not able to steal requests from other threads while it is waiting to steal a task. Also,

this implementation works similarly to traditional work stealing mechanisms where a

stealer waits to steal a task from a victim.

The original algorithm in the technical report [62] is implemented for stealing

threads and waits forever in the while loop until a steal succeeds or is invalidated.

However, in the implementation of X-OpenMP, to ensure the application terminates

58

Algorithm 2: Work Stealing With Wait - Victim’s Logic
Data: local steal req thread� > steal req;

Data: round local steal req &((1 << 40)� 1);

1 if round == thread� > round then

2 ret dequeue(thread id, item);

3 if ret == SUCCESS then

4 stealer id local steal req >> 40;

5 threads[stealer id]� > stolen task item;

6 thread� > round++;

Algorithm 3: Work Stealing With Wait - Stealer’s Logic

1 if (victim� > steal req&((1 << 40)� 1) < victim� > round) then

2 round = victim� > round;

3 victim� > steal req = round+ (thread id << 40);

4 while round == victim� > round||thread� > stolen task 6= NULL

do

5 if (victim� > steal req&((1 << 40)� 1)) < round then

6 victim� > steal req = round+ (thread id << 40);

7 if (thread� > stolen task 6= NULL) then

8 return thread� > stolen task;

9 return NULL;

59

after executing the DAG, the worker breaks out of the loop after waiting for a certain

amount of time. The amount of time a worker waits to steal a task has a direct

impact on overall execution time. Due to the static load balancing, a worker waiting

to steal a task might get work from other workers and the worker needs to return to

executing tasks as soon as possible. In order to achieve better performance, the time

a worker waits to steal a task is dynamically adjusted based on the recent activity.

The concept is similar to exponential backo↵ in computer networks where feedback

is used to multiplicatively decrease the rate of some process in order to achieve an

acceptable rate [80]. In our model, the wait time is controlled by the number of

loop iterations, starting with a very small number and doubling every time a steal

request fails. If a steal request succeeds, the number of iterations is decreased by a

small amount in order to achieve the ideal number of iterations required for stealing.

E↵ectively, the wait time increases exponentially for failed requests and decreases

linearly for successful requests with the goal to achieve an optimal wait time. This

approach minimizes the number of failed steal requests while adjusting the wait time

to achieve better performance.

4.2.1.2 Lock-less Work Stealing Without Wait (Wait-Free). While the above

algorithm using dynamic wait time works like traditional work stealing algorithms,

the communication between workers in XQueue using SPSC queues can be used to

implement work stealing without waiting. The benefit of this approach is that it

eliminates the wait time while enabling load balancing using steal requests and queue

operations. As shown in Algorithm 5, it starts o↵ with the stealer submitting a steal

request to a random victim thread by writing a 64-bit word in the victim’s memory

cell. Instead of waiting in a while loop to receive a task from the victim, the stealer

immediately returns to the scheduler and checks its own queues for tasks. If no tasks

are found, it picks another random worker to submit a steal request.

60

On the victim’s side, if a steal request is received, the victim can take action

in both enqueue and dequeue operations. Algorithm 4 shows the pseudocode of the

dequeue operation. If the victim is trying to dequeue a task and a steal request is

received, the victim checks all it’s queues for a task, and it enqueues the task into the

stealer’s auxiliary queue instead of copying it to the stealer’s stolen task memory cell.

In case of an enqueue operation, if a steal request is received, instead of following

a round-robin order for distributing tasks, it enqueues the task into the auxiliary

queue of the stealer. If no steal request is found, the enqueue continues in a round-

robin fashion across all the workers. This approach of work stealing leverages the

existing connections between queues and workers for enqueue and dequeue and does

not require sophisticated waiting logic to ensure termination of the application.

Algorithm 4: Wait-Free Work Stealing - Victim’s Logic
Data: local steal req thread� > steal req;

Data: round local steal req&((1ULL << 40)� 1);

1 if round == thread� > round then

2 ret dequeue(thread id, item);

3 if ret == SUCCESS then

4 stealer id local steal req >> 40;

5 threads[stealer id]� > enqueue(item);

6 end

7 thread� > round++;

8 end

It is worth noting that the wait-free work stealing algorithm results in many

more steal requests being submitted than the wait-based approach, thereby resulting

in more successful steals and better load balancing in terms of the number of tasks. A

significant di↵erence between the traditional work stealing approach and the lock-less

61

Algorithm 5: Wait-Free Work Stealing - Stealer’s Logic

1 if (victim� > steal req&((1 << 40)� 1) < victim� > round) then

2 round = victim� > round;

3 victim� > steal req = round+ (thread id << 40);

4 return NULL;

5 end

approaches described above is that in the traditional approach, an idle worker is doing

all the work for stealing a task. However, in the case of the lock-less approach, a busy

worker is facilitating work stealing by checking it’s queues and pushing a task to the

stealer. This approach may slightly increase the overhead of tasking, however it is

not significant as we will show in the evaluation section. During a dequeue operation,

the worker is checking all the queues to dequeue tasks. In the case of dequeue with

no steal requests, one task needs to be removed, whereas if there is a steal request,

two tasks need to be removed from the queues, one for executing by itself and the

other for handing over to the stealer.

The wait-free lock-less work stealing algorithm is shown in the Figure 4.2. For

simplicity, we show two threads and two queues per thread where thread T0 can

enqueue into queue Q2 of thread T1 and T1 can enqueue into queue Q2 of T0. In

Figure 4.2-A, the stealer thread T0 checks it’s own queues for tasks during dequeue

operation. If no tasks are found, T0 writes a steal request into T1’s memory cell

as shown by the dotted red line. After putting a steal request, T0 checks if the

termination condition for the runtime is satisfied and if not, returns back to the

dequeue operation which is shown by the dotted red loop for dequeue. Victim thread

T1 checks for incoming steal requests during a dequeue operation. If a request is

received, thread T1 checks its queues for two tasks, one for executing itself and the

other for fulfilling the steal request. Only the stealing part is shown in the figure.

62

(a) A

(b) B

Figure 4.2. Wait-free work stealing in action - [A] shows the stealer putting a steal
request to the victim [B] shows the victim serving the steal request

63

Thread T1 dequeues an item and enqueues it to queue Q2 of thread T0. It then

increments it’s round value to allow other incoming steal requests. Also, thread T0

writes a self query using its own round number incremented by one into it’s own steal

request memory cell. This tells the other workers that steal requests are not currently

being accepted by this worker (as shown in Algorithm 3.

4.2.1.3 Considerations. X-OpenMP is designed using lock-less techniques to

overcome the high overheads of synchronization at high concurrency levels. This

approach requires several SPSC queues per worker to enable concurrent access and

to ensure a single thread enqueues and a single thread dequeues at any point in time.

Multiple queues in XQueue require more memory per worker as compared to a single

queue per worker in other OpenMP implementations, which becomes significant when

there are hundred’s of workers in the system. It is worth noting that the performance

is not sensitive to queue size as is the case with the native LLVM OpenMP. If the

queue size is very small, it results in many failing enqueues which in turn results

in few workers executing most of the tasks. We evaluated the X-OpenMP approach

using varying queue sizes and achieved similar performance with both small and large

queues due to the presence of multiple queues.

The original implementation of XQueue uses N2 queues where N is the number

of workers in the system. This is a limitation imposed by the static round-robin load

balancing strategy which can limit the scalability of the system. Our implementation

of work stealing enables dynamic load balancing which can be used to reduce the

number of queues required in order to achieve better performance. One strategy

would be to constrain the ring bu↵er of queues to be within a NUMA zone and load

balance dynamically across other NUMA zones. This was proposed by the authors

in prior work and our work in dynamic load balancing enables exploration of these

options with just minor changes to the current implementation.

64

4.2.1.4 Scheduling Logic. Our scheduling logic is similar to XQueue with some

additional logic for tracking the last successful victim. The worker first checks its

own queues for tasks. If no tasks are found, it randomly chooses a victim thread

to steal work from. A steal request is submitted to the victim and if the steal is

successful, the runtime tracks the victim’s ID for future steals. If the steal fails, the

saved victim ID is reset and the scheduler randomly picks another victim to steal

from. This is an optimization from the native LLVM OpenMP implementation that

we adopt for X-OpenMP. This optimization enables e�cient work stealing from an

overloaded worker.

If some workers are overloaded, instead of stealing one task at a time, multiple

tasks can be stolen to load balance quickly and e�ciently using less steal requests [77].

The wait-free work stealing approach submits several work stealing requests due to

the virtue of its design and we explore the performance by stealing one and two tasks

at a time to understand the overall impact on performance.

4.3 Performance Evaluation

We evaluate X-OpenMP using a set of synthetic benchmarks and real-world

applications. The microbenchmarks are specifically designed to understand the per-

formance of lock-less techniques described in our work for tasking and load balancing.

We evaluate 4 di↵erent implementations in X-OpenMP:

1. XQUEUE-STATIC - uses static round robin load balancing;

2. XOMP-DYNAMIC-WAIT - uses static load balancing and dynamic wait-based

work stealing;

3. XOMP-DYNAMIC-WAITFREE/ XOMP-DYNAMIC-WAITFREE-STEALONE

- uses static load balancing and dynamic wait-free work stealing, stealing one

task at a time;

65

4. XOMP-DYNAMIC-WAITFREE-STEALTWO - uses static load balancing and

dynamic wait-free work stealing, stealing two tasks at a time.

We compare the performance of X-OpenMP (XOMP) with native LLVM OpenMP

(OMP) and GNU OpenMP (GOMP). To quantify the performance improvements

in real application workloads, we evaluate strassen’s matrix multiplication from the

BOTS benchmark suite [56], cholesky factorization and symmetric rank-k update

routines from the PLASMA linear algebra library [43] and the Unbalanced Tree Search

benchmark [67]. All experiments are conducted on an Intel Skylake Server with 192

cores (384 hardware threads) at 2.1GHz with 8 sockets and 8 NUMA zones. This

server is part of the Mystic testbed [38]. We compiled all the benchmarks using

LLVM Clang version 11.0 and O3 optimization level and ran experiments on Ubuntu

20.04.4.

4.3.1 Microbenchmarks. To evaluate the overheads of tasking and to explore

the scalability of X-OpenMP with extremely fine-grained tasks, we implemented a set

of microbenchmarks inspired by the EPCC Benchmark Suite [81]. While the EPCC

benchmark suite contains benchmarks for measuring the overheads of tasking and

load balancing in OpenMP, these benchmarks are not su�cient for understanding

the performance of the lock-less techniques described in this work. For the purposes

of evaluation, each microbenchmark runs a loop that increments a variable for a

certain number of iterations as a task. The number of iterations is derived based

on the delay time specified in the benchmark by running a test loop. We refer to

this task as the delay task. For benchmarking X-OpenMP, we designed 3 di↵erent

microbenchmarks: (1) Tasking overhead - measures the overhead of launching a task

of a certain length; (2) Task Distribution - measures how the tasks are distributed

across workers when all workers are given an equal number of fixed length tasks; (3)

Work Stealing E�ciency - measures the e�ciency of work stealing when only the

66

Figure 4.3. Parallel Tasking Overhead on skylake-192 using 192 threads (lower is
better)

master worker receives all the tasks.

Figure 4.3 shows the overheads of tasking in microseconds for various versions

of OpenMP using 192 threads. In this benchmark, each worker processes 8 million

delay tasks where each task runs for a fixed length of 0.001 to 1 microseconds. The

experiment is repeated 20 times and the plot shows the average execution time. The

tasking overhead measured for X-OpenMP with static round-robin load balancing is

about 110 nanoseconds. The overhead of X-OpenMP with workstealing is about 150

to 200 nanoseconds. In native LLVM OpenMP, the tasking overhead is about 400

nanoseconds. GNU OpenMP exhibits significantly higher overhead for extremely fine-

grained tasks at about 20 microseconds for 1 nanosecond tasks, with the overhead

going down up to 2 microseconds for 1 microsecond tasks. These results clearly

illustrate that the overheads of tasking can be significantly reduced by using lock-less

67

Figure 4.4. Task Distribution on skylake-192 using 192 threads

concurrent queuing mechanisms.

Figure 4.4 shows a box plot of task distribution across workers for 20 runs

of 8 million fixed delay tasks using 192 threads. Every worker in the X-OpenMP

implementation with static load balancing executes the same number of tasks due to

the absence of dynamic load balancing. LLVM and GNU OpenMP versions spend

significant time in load balancing depending on the execution speed of each worker.

The tasking overhead plays a significant role in triggering work stealing, since higher

overhead for pushing tasks implies that the workers are idle for a long time which

triggers work stealing even when it is not necessary. X-OpenMP with wait-based and

no-wait workstealing approaches also steal tasks in order to load balance, however the

standard deviation is low compared to the native LLVM and GNU versions. Overall,

the execution time is directly correlated with the number of tasks executed by each

worker. Compared LLVM and GNU versions, X-OpenMP runs about 36% faster

in this microbenchmark. This slowdown is due to the overheads of enqueueing and

68

dequeuing in lock-based approaches used in LLVM and GNU versions.

Figure 4.5. Delta of Task Distribution using Work Stealing on skylake-192 using 192
threads (lower is better)

Figure 4.5 shows the e�ciency of work stealing across 192 workers. This

benchmark creates an OpenMP parallel region and the master thread runs a for

loop which creates 65K delay tasks with 0.1 microsecond delay. This experiment is

repeated 20 times and we count the total number of tasks processed per worker. The

plot shows the deviation from the ideal case (delta) of each worker based on the task

distribution across all the runs. The delta metric of each worker is calculated using

the formula:

Deltaworkeri =
|Tasksworkeri

�Tasksideal|
Tasksideal

The ideal case is when every worker runs an equal number of tasks which

implies the delta is zero. The delta for all versions of X-OpenMP is very close to

zero and for the native LLVM OpenMP version, the delta ranges between 0.0005

69

and 0.99. GNU OpenMP shows significant variance in the task distribution which

is also observed in the overall execution time and it runs about 5X to 10X slower

compared to the native LLVM and X-OpenMP versions. The main takeaway from

this benchmark is that lock-less implementations of work stealing perform similar to

traditional work stealing implementations.

While the above microbenchmarks use homogeneous tasks which run for the

same amount of time, real applications typically have a mix of fine-grained and coarse-

grained tasks. We designed a benchmark to explore this scenario. In this benchmark,

the master worker receives N ⇥ 10 tasks (where N is the number of workers) which

run for 1 second each. The ideal time to execute these tasks with perfect load bal-

ancing is 10 seconds. Also, every worker receives 8 million delay tasks of length 0.1

microseconds, which should ideally execute within a second. The idea behind this

synthetic benchmark is to simulate starvation where load imbalance exists between

workers and some workers can become idle for long periods of time. In case of X-

OpenMP, steal requests need to be handled by busy workers to facilitate work stealing

and this benchmark is designed to understand how the runtime behaves. Figure 3.5

shows the results obtained by running this benchmark. The plot shows execution

time by varying queue sizes in the runtime implementations to understand the im-

pact of queue size when a single worker is overloaded with work. Please note that the

queue sizes couldn’t be matched for X-OpenMP and LLVM implementations since the

latter requires powers of two for queue length. The execution time of this synthetic

benchmark for LLVM OpenMP shows that the performance of the runtime is sensitive

to queue size in such scenarios and starvation can occur. XQueue and X-OpenMP

can handle such load imbalances well due to the round-robin load balancing where

long-running tasks get distributed to all the workers. This experiment also clearly

shows that X-OpenMP is not sensitive to the size of the queue due to the existence

of multiple queues per worker. The queue sizes can be kept small, thereby requiring

70

less memory for the underlying runtime and achieve good performance.

Figure 4.6. Execution Time (using 192 threads) of a synthetic benchmark with a
mix of fine-grained and coarse-grained tasks and varying queue sizes (legend shows
queue sizes in parentheses).

4.3.2 Macrobenchmarks. To demonstrate the behavior of X-OpenMP in real

application scenarios, we chose benchmarks which are most studied, fundamental

and relevant to real-world HPC applications: a matrix multiplication benchmark,

two linear algebra routines, and an unbalanced tree search benchmark. We evaluate

these applications on the skylake machine with 192 cores using various versions of

X-OpenMP and compare with LLVM and GNU versions.

Strassen’s Matrix Multiplication [56, 82] is a parallel algorithm that

uses the divide and conquer approach to multiply two square matrices. A large

matrix is divided into smaller and smaller matrices by recursion. When the algorithm

reaches the base size, it computes the matrix multiplication using a divide and conquer

71

Figure 4.7. Scaling of Strassen’s Matrix Multiplication using 8K matrix on skylake-
192 (lower is better)

approach. The depth based cuto↵ value for divide and conquer algorithm is set to 3.

Figure 4.7 shows the scalability plot for Strassen’s matrix multiplication al-

gorithm. The experiment multiplies square matrices of size 8192x8192 using the re-

cursive algorithm and base condition is set to 256 since it gives the fastest execution

time for most implementations (see below). The results show that the implementa-

tion scales up to 96 threads and then performance degrades. GNU OpenMP is the

fastest and runs in 3.6 seconds using 96 threads, followed by XOMP-STATIC which

runs in about 5.9 seconds. The native LLVM version runs about 5% slower than X-

OpenMP using 96 threads. It is interesting to note that while GNU OpenMP scales

well beyond 96 threads, the LLVM OpenMP quickly degrades in performance.

Figure 4.8 shows the results obtained by running Strassen’s algorithm on an

72

Figure 4.8. Performance of Strassen’s Matrix Multiplication using 8K matrix and
varying base sizes on skylake-192 (lower is better)

8192x8192 matrix using 192 threads and varying base sizes for the matrix from 128

to 1024. The plot shows the average of three runs. The best performance is achieved

using base sizes of 256 and 512 in case of X-OpenMP. It is worth noting that X-

OpenMP using static load balancing is su�cient to achieve good performance for this

algorithm. Dynamic work stealing induced additional overhead increasing the overall

running time for this application, however the behavior is specific to this algorithm.

LLVM OpenMP is much slower compared to the other implementations for

Strassen’s matrix multiplication using 192 threads. At this concurrency scale, the

runtime incurs significant overheads due to wait time and synchronization which

results in high cycles per instruction rate. This algorithm is also highly memory

intensive and memory profile of the application showed high memory pressure on one

numa node compared to the others for all the runtimes.

73

Symmetric Rank-k Update (SYRK) [83] is an important building block

of many linear algebra algorithms and included in the Basic Linear Algebra Subpro-

grams (BLAS) specification [60]. The SYRK algorithm computes the upper or lower

part of the result of a matrix product where the given matrix is a symmetric matrix.

Parallel Linear Algebra Software for Multicore Architectures (PLASMA) numerical

library [43] is a dense linear algebra package which implements a full set of BLAS

routines using task-based parallelism. PLASMA library uses a tile-based approach

for the algorithms where the matrix is divided into square blocks and each tile is

typically processed by a task.

Figure 4.9. Symmetric Rank Update using 12K matrix on skylake-192 using 96
threads (higher is better)

Figure 4.9 shows the results obtained by running DSYRK on skylake-192 using

96 threads and varying tile sizes. The algorithm scales up to 4 sockets and 96 threads

on the skylake-192 server. X-OpenMP with static round-robin load balancing achieves

74

the highest floating point operations per second with 1229 GFLOPS at 976 tile size.

X-OpenMP with wait-based work stealing approach achieves 927 GFLOPS using 848

tile size. X-OpenMP with the wait-free approach and stealing two tasks at a time

achieves 979 GFLOPS using 736 tile size. The native LLVM version achieves 956

GFLOPS using 1024 tile size, however it is about 50% slower with smaller block

sizes. These results clearly illustrate the importance of low overhead tasking [4] for

achieving high performance on modern machines with hundreds of cores.

Cholesky Factorization (POTRF) of a symmetric positive definite matrix

is the factorization of the matrix into upper triangular and lower triangular matri-

ces with positive diagonal elements. Several prior works have explored task-based

Cholesky factorization algorithms and we evaluate the DPOTRF algorithm from the

PLASMA numerical library which is a tile-based implementation using OpenMP task-

ing. Cholesky factorization uses DPOTRF for factorization of a tile and uses three

kernels from the library for the algorithm: DGEMM (general matrix matrix multi-

plication), DTRSM (for solving a system with a triangular matrix) and DSYRK (for

rank-k update of the symmetric matrix).

Figure 4.10 shows the performance of Cholesky Factorization algorithm on

skylake-192 server using 12K matrix, 96 threads and varying tile sizes. The highest

performance of 911 GFLOPS is achieved using a tile size of 256. X-OpenMP with

wait-free work stealing performs best for this algorithm. Stealing two tasks instead of

one seems to achieve better performance for some tile sizes and overall the dynamic

work stealing highly improves the performance compared to native LLVM OpenMP.

It is worth noting that the native LLVM version achieves peak performance using tile

size of 352, and all versions of X-OpenMP achieve peak performance using a tile size

of 256. This clearly shows that the lightweight tasking and reduced synchronization

overheads can help speed up applications using tasks of much finer granularity than is

75

Figure 4.10. Cholesky Factorization on a 12K matrix on skylake-192 using 96 threads
(higher is better)

possible in today’s runtime systems. This also highlights the potential to explore over

decomposition of task-based applications to achieve maximum speed up on modern

architectures. The algorithm using GNU OpenMP takes a long time to execute and

it results in very low GFLOPS for both DPOTRF and DSYRK algorithms, hence we

have not included the results in the plots. We plan to explore the reason further and

include the results in the final revision.

Figure 4.11 shows the results obtained by executing Cholesky Factorization on

di↵erent matrix sizes on the skylake-192 server. The experiment is performed using

96 threads and 192 threads using native LLVM OpenMP and various X-OpenMP

implementations. As mentioned earlier, the current implementation of this algorithm

scales up to 96 threads and the performance drops significantly using 192 threads. X-

OpenMP consistently achieves 20% higher performance using 96 threads for all matrix

76

Figure 4.11. Cholesky Factorization using di↵erent matrix sizes and tile size of 256
on skylake-192 run using 96 and 192 threads (higher is better)

sizes evaluated. X-OpenMP using static load balancing and wait-free based single

task work stealing achieve high performance compared to the other implementations

of X-OpenMP.

Unbalanced Tree Search (UTS) [67] benchmark is designed to evaluate

the performance of dynamic load balancing in task parallel runtime systems. The

benchmark implements a version of UTS using OpenMP tasking where workstealing

is used to reduce the load imbalance between workers. We chose this benchmark

since it requires e�cient dynamic load balancing to achieve good performance. The

benchmark traverses all the nodes of a tree with a parameterized size and imbalance

and reports the total number of nodes in the tree. The benchmark provides sample

trees for the purposes of evaluation. We evaluate T3L which is binomial tree with

over 100 million nodes with 17844 tree depth and close to 90 million leaf nodes. We

77

report the results of running UTS using 96 threads and 192 threads on skylake-192

server.

Figure 4.12. Unbalanced Tree Search using 96 threads on skylake-192 (lower is better)

Figures 4.12 and 4.13 show the execution time of T3L using 96 threads and

192 threads on the skylake-192 server. As with the other benchmarks, UTS bench-

mark also scales up to 4 sockets and 96 threads on this machine using LLVM and

GNU OpenMP, X-OpenMP scales up to 192 threads. To understand the impact on

performance due to high tasking overheads at high levels of concurrency, we evaluated

the application using 96 threads and 192 threads. The plots show execution time of

UTS at varying levels of compute granularity. The granularity defines the amount of

compute for each task, with 1 being the finest granularity and 10 being the coarsest.

For all fine, medium and coarse grain tasks, X-OpenMP with static round robin load

balancing achieves the best execution time of 8.6 seconds, 9.9 seconds, and 11.8 sec-

onds respectively using 192 threads. GNU OpenMP incurs significant overheads with

78

Figure 4.13. Unbalanced Tree Search using 192 threads on skylake-192 (lower is
better)

this workload with about 40X slowdown across all granularities.

Figure 4.14 shows a part of the timeline plot of one execution of UTS using

T3L graph and X-OpenMP. The static round-robin load balancing coupled with dy-

namic work stealing achieve good task distribution across all the workers. Although

the nature of the workload is highly imbalanced, X-OpenMP achieves a reasonable

load balance and speed up compared to the other OpenMP implementations. These

results showcase the significance of better load balancing to achieve improved perfor-

mance. Using 96 threads, the best execution time is achieved using X-OpenMP with

static round robin load balancing at the finest granularity. For medium and coarse

granularities, X-OpenMP with wait-free load balancing and stealing one task at a

79

Figure 4.14. Unbalanced Tree Search using X-OpenMP and 192 threads on skylake-
192

time performs the best at 11.9 seconds and 13.1 seconds. X-OpenMP is 10X faster

than GNU OpenMP and 2X faster than LLVM OpenMP using 96 threads.

4.3.3 Results Discussion. This evaluation showed that static load balancing

mechanisms are suitable for some applications, while others require more dynamic

approaches. Configuring how many tasks to steal at a time is dependent on the

application and the computational complexity of the tasks. If tasks are of similar

lengths in terms of execution time, static round-robin load balancing along with

stealing one task at a time works well. For highly imbalanced applications, traditional

work stealing approaches can incur extremely high overheads due to synchronization

at higher concurrency levels. Such applications can benefit from lock-less approaches

presented in our work. Most state-of-the-art applications do not scale up to hundreds

of threads on modern architectures and the applications must be redesigned to achieve

further improvements in performance using extremely fine-grained tasks.

These experimental results clearly demonstrate the performance improvements

that can be achieved using lightweight tasking and reduced synchronization overheads.

80

The techniques presented in this work can be used to enhance existing parallel runtime

systems to improve the e�ciency of fine-grained parallelism on many-core architec-

tures.

4.4 Summary

We propose X-OpenMP as a framework to enable extremely fine-grained task

parallelism on modern shared memory architectures with hundreds of cores. We

extend our prior work on lock-less queuing mechanisms with static load balancing

and propose an algorithm for achieving dynamic load balancing using work stealing.

The work stealing algorithm in X-OpenMP does not require any atomicity for read,

write, and modify operations, and achieves competitive performance with state-of-

the-art implementations. X-OpenMP extends LLVM OpenMP using our techniques

described in this work. As a result, existing OpenMP applications can run unmodified

just by linking against the X-OpenMP library. We evaluate our approach using

workloads that are highly prevalent in HPC applications and are crucial for achieving

better performance in real-world scenarios. We demonstrate speedups of up to 40X

compared to GNU OpenMP and up to 2X compared to the native LLVM OpenMP

implementation.

81

CHAPTER 5

EFFICIENT EXECUTION OF DYNAMIC PROGRAMS USING DATA-FLOW
BASED PARALLEL PARADIGM

While our prior work explored light-weight tasking mechanisms in fork-join

based parallel runtime systems, the fork-join model imposes limitations for express-

ing parallelism in certain scenarios. We explore the limitations of fork-join based

parallelism by using two-way recursive divide-and-conquer algorithms as compared

to data-flow based parallelism. On shared-memory multicore machines, classic two-

way recursive divide-and-conquer algorithms are implemented using common fork-join

based parallel programming paradigms such as Intel Cilk+ or OpenMP. However, in

such parallel paradigms the use of joins for synchronization may lead to artificial

dependencies among function calls which are not implied by the underlying DP re-

currence. These artificial dependencies can increase the span asymptotically, and thus

reduce parallelism. From a practical perspective, they can lead to resource under-

utilization, i.e., threads becoming idle. To eliminate such artificial dependencies,

task-based runtime systems and data-flow parallel paradigms (e.g., Concurrent Col-

lections (CnC), PaRSEC, and Legion) have been introduced. Such parallel paradigms

and runtime systems overcome the limitations of fork-join parallelism by specifying

data dependencies at finer granularity and allowing tasks to execute as soon as de-

pendencies are satisfied. In this work [59], we investigate how the performance of

data-flow implementations of recursive divide-and-conquer based DP algorithms com-

pare with fork-join implementations. We have designed and implemented data-flow

versions of DP algorithms in Intel CnC and compared the performance with fork-join

based implementations OpenMP. Our experimental results show that the data-flow

based implementations of classic two-way DP algorithms provide a competing perfor-

mance in comparison with the corresponding fork-join implementations.

Dynamic Programming (DP) is an algorithm design technique that recursively

82

decomposes a problem into smaller overlapping subproblems. It solves each unique

overlapping subproblem exactly once and stores its result into the memory (DP ta-

ble) for further reuse. Theoretically and practically, DP improves the performance of

a recursive solution by preventing solving the repeating subproblems when they are

encountered later [84, 85, 86]. DP algorithms can be viewed as trading o↵ space-

e�ciency for reduced computation time [85]. DP is considered as one of the building

blocks in solving a variety of combinatorial optimization problems [87]. It has numer-

ous applications in di↵erent research and engineering areas, including computational

biology [88], molecular modeling [89], etc.

The most common approach to implement DP algorithms is to use a loop-

based program that populates the results into the underlying DP table cells itera-

tively. The recurrence relation of the DP specification enforces the correct ordering

of storage and retrieval of the results of the subproblems. Such implementations often

have good spatial locality and prefetching optimizations can be applied to gain further

performance. However, they do not perform e�ciently due to the lack of temporal

locality. As a result, to overcome the shortcomings of the loop-based DP algorithms,

researchers proposed tiled or blocked algorithms [90, 91, 92, 93] as well as standard

2-way recursive divide-&-conquer algorithms [94, 95]. Recursive divide-&-conquer DP

algorithms are, unlike the tiled programs, cache oblivious [96, 95] and cache adaptive

[97, 94]. Because of the heterogeneous nature of many modern supercomputers, stan-

dard 2-way (or any fixed r-way) recursive divide-&-conquer algorithms may su↵er

from the lack of performance portability and performance scalability on such super-

computers. Such important limitations led to the introduction and development of

parametric r-way recursive divide-&-conquer DP algorithms (r-way R-DP) to run

e�ciency on di↵erent architectures such as GPUs and distributed-memory parallel

machines [98, 99, 100, 101, 102]

83

5.1 Motivation

On shared-memory multicore machines, classic 2-way algorithms have been

implemented by fork-join based parallel programming paradigms such as Intel Cilk+

or OpenMP. However, in such parallel paradigms the use of joins for synchroniza-

tion may create artificial dependencies among function calls which are not implied

by the underlying DP recurrence. These artificial dependencies can increase the span

asymptotically, and thus reduce parallelism [103, 104]. From a practical perspec-

tive, they can lead to resource underutilization, i.e., threads becoming idle. Due

to such an important limitation, several researchers introduced task-based runtimes

[105, 106, 107, 108, 109] and data-flow parallel paradigms [110, 111, 112, 113]. Such

runtimes and paradigms which follow the data-flow model of execution and point-to-

point synchronization, overcome the limitations of fork-join parallel paradigms. Data

dependencies between tasks can be specified at finer granularity and tasks can exe-

cute as soon as the data becomes available (i.e., when dependencies are satisfied). In

this chapter, we investigate the application and e�ciency of running DP algorithms

on Intel Concurrent Collections (CnC) [114] which is one of the pioneering imple-

mentations of the data-flow based parallel paradigm. We compare the results with

implementations in OpenMP. Considering di↵erent execution parameters (e.g., algo-

rithmic properties such as recursive base size as well as machine configuration such

as the number of physical cores, etc), we explain in what scenarios data-flow based

implementation outperforms the fork-join based implementation. Considering Gaus-

sian Elimination without pivoting (GE) algorithm, we provide an analytical model

approximating the execution time of a DP computation. To summarize, followings

are the key contributions of this work:

• By summarizing some of the important di↵erences of fork-join based and data-

flow based parallel paradigms, we explain how a standard 2-way recursive divide-

84

&-conquer DP (2-way R-DP) algorithm is specified and developed in OpenMP

and Intel CnC. We explain how the CnC runtime executes the program [59].

• We explain how the use of joins for synchronizations in the fork-join (OpenMP)

implementations of R-DP algorithms introduces artificial dependencies which

leads to increase in span, reduction in parallelism and resource underutilization.

We explain how data-flow implementation can resolve the issue.

• We design, implement and analyze three important DP benchmarks in OpenMP

and Intel CnC: Gaussian Elimination without Pivoting, Smith-Waterman Local

Alignment, and Floyd Warshall’s All Pairs Shortest Path. We summarized the

lessons learned from the experiments. We compared the experimental results

and explained in what scenarios, each of the parallel paradigms outperform the

other.

• Due to the importance of data movement cost in the memory hierarchy, in order

to understand it better, for GE benchmark, we design an analytical model which

correctly predicts the trend in data movement cost obtained from experimental

results. The model can be easily extended to the other DP algorithms.

This chapter is organized as follows. Sec. 5.2 provides a background on CnC

model. Using the GE algorithm as a running example, Sec. 5.3 explains fork-join

based implementation (in OpenMP) as well as data-flow based implementation (in

Intel CnC) of the recursive divide-&-conquer DP algorithms. Experimental results

are provided in Sec. 5.4. This section explains under what circumstances data-flow

based implementation outperforms the fork-join based implementation and vice versa.

Sec. 5.5 concludes the chapter by summarizing the key points and mentioning the

future work.

85

5.2 Background

Concurrent Collections (CnC) [111] is a data-flow based parallel programming

model (originated from TStreams [115]). Di↵erent forms of parallelism, (including

task, data, loop, pipeline and tree) can be expressed using this model. The impor-

tant aspect of CnC is the idea of separation of concerns between application logic and

parallel implementation. A CnC program/specification can be viewed as a commu-

nication means (or an interface) between the domain expert1 and the tuning expert2.

This separation of concerns simplifies the task of the domain expert, as writing a

program in this language does not require any reasoning about parallelism or any

knowledge of a target architecture [116]. The domain expert does not specify how

operations are scheduled. The tuning expert (who can also be the domain expert)

does not need to have an understanding of the domain (e.g., physics, chemistry, etc).

S/he maps the CnC specification to a specific target architecture to be executed ef-

ficiently. Knobe and Burke [117] have introduced a tuning language within the CnC

paradigm. Through the concept of a�nity groups3, the tuning language enables the

tuning expert to map the implicit parallelism in the CnC domain specification on a

target platform.

The three main CnC concepts are step collections, item collections (or data

collections) and tag collections (or control collections). The CnC program is specified

as a graph of collections, communicating with one another. More precisely, a CnC

specification is a graph whose nodes are either step collections, item collections, or tag

1Whose interests and expertise in the application domain (e.g., finance, ge-
nomics, numerical analysis, etc) who does not necessarily have expertise in parallel
programming and performance tuning.

2Whose interests and expertise are in performance and parallel programming.

3An a�nity group is a set of computation that the tuner recommends to be
executed closely (in time and space).

86

Figure 5.1. Simple CnC Specification

collections, and the edges among them represent producer, consumer, and prescription

dependencies. These edges enforce the partial order among the operations [116]. The

relationships among the graph components are specified statically but during the

execution, for each static collection, a set of dynamic instances are generated. A step

collection corresponds to a specific computation (specified by the domain expert).

A tag collection is the main concept for control flow of the program. Each tag

collection is prescribed to a step collection, which means that putting tags into a tag

collection will cause CnC runtime to generate an instance of the corresponding step

collection, which will eventually execute with that tag instance as an input. Step

collections dynamically read and write data through putting/getting items into/from

item collections. From this perspective, the item collection can be considered as a

placeholder for intermediate (or final) results produced and consumed by instances of

the step collections. Figure 5.1 shows a simple example of a CnC specification [111].

In the listing 5.1, paired parentheses represent step collections, paired square

brackets represent item collections and finally tag collections are represented by paired

angled brackets.

A graphical representation of the above program is shown in Fig. 5.2. In this

representation, ovals represent step collections, rectangles represent item collections

and Hexagons represent tag collections. The term env in the figure is the environment,

87

which is the world outside of the CnC program and can be other threads or processes.

They can put item(s) into (input) item collections and also trigger the computation

by putting tag(s) into tag collections.

An instance of collections is identified by a unique tag. Item collections are

an associative container that are indexed by the unique tags. The tags usually have

meaning within the application, e.g., in a 2-D tiled computation, the tag hi, ji can

represent the coordinates of a tile. CnC preserves the dynamic single assignment4

property which is used in the proof of determinism of CnC programs5 [111]. The C++

implementation performs dynamic (run-time) checks to ensure that the execution ad-

heres to the single assignment rule. Budimlić et al. have argued that CnC programs

are Turing Complete [111] though they do not claim the absence of deadlocks. How-

ever, due to the deterministic property of CnC, deadlocks are straightforward to

identify and fix.

CnC has di↵erent implementations in di↵erent languages including C++, Java,

.NET, and Haskell. Since we use C++ implementations for our benchmarks, our focus

will be on the C/C++ implementation of CnC which has two variations [116]. One

is the X10-based [118] implementation from the Habanero project at Rice University.

The other one is Intel’s Concurrent Collections [114] which uses Intel’s Threading

Building Blocks (TBB).There are several advantages in using TBB. (1) through TBB

tasks, fine-grained parallelism is supported6. (2) TBB contains a rich set of e�cient

concurrent containers, including vectors and hash-maps. More importantly, (3) TBB

provides a scalable concurrent memory allocator [119]. High performance memory

4Due to this property, the item with index (or tag) i, once written, cannot be
overwritten.

5As long as step collections themselves are deterministic.

6TBB tasks are user-level function objects which are scheduled by TBB’s work-
stealing scheduler.

88

allocation is considered as one of the important bottlenecks in parallel computing.

The CnC implementation on TBB uses an object-oriented design methodology

[116]. The runtime provides class definitions for the three collections (TagCollec-

tion, StepCollection, and ItemCollection). A CnC graph contains objects that

represent the step collections, item collections, tag collections and their relationships.

A user-defined C++ functor represents a step collection. When a tag is put in a tag

collection, an instance of the prescribed step collection is created and mapped to a

TBB task. The TBB task can be spawned immediately upon prescription or delayed

until all the data dependencies are satisfied. Thus, the Get operation on an item

collection can be blocking or non-blocking. In case of a blocking Get, if the item to

be retrieved is not ready, the step collection instance is aborted and put in a separate

list associated with the failed Get to be re-executed later. When an item becomes

available, all the steps in the list, waiting for that item, get triggered to be executed.

Data items are created and retrieved by calling the Put and Get methods of Item-

Collection. The items are maintained in a TBB concurrent hash-map which are

accessed by indices/tags.

5.3 Classic 2-way R-DP Algorithms: Fork-Join based and Data-flow based
Implementations

5.3.1 Overview. In this section, we explain two di↵erent implementations of

the classic 2-way recursive divide-&-conquer DP algorithms (2-way R-DP) [95, 94]:

fork-join implementation in OpenMP and data-flow implementation in Intel CnC.

In this section, we explain how data-flow implementation eliminates the artificial

dependencies which exist in the corresponding fork-join implementation. Elimination

of such artificial dependencies leads to having finer-grained barriers in the execution

of the algorithm. In Section 5.4, we discuss under what scenarios, having finer-grained

barriers in the data-flow implementation can lead to a better parallelism and more

89

Figure 5.2. A graphical representation of the CnC program.

1void I GE(double ∗∗C, i n t N)

2f o r (k=0; k < N−1; ++k)

3f o r (i =0; i < N; ++i)

4f o r (j =0; j < N; ++j)

5i f (i>k && j>=k) C[i] [j]−=(C[i] [k]∗C[k] [j]) /C[k] [k] ;

Listing 4. Loop-based serial implementation of GE

e�ciency over the corresponding fork-join implementation.

For the rest of the chapter, we use Gaussian Elimination without pivoting

(GE) [86] as a running example which has DP-like structure. The GE algorithm has

applications in Linear Algebra. It solves systems of linear equations and performs LU

decomposition of symmetric positive-definite or diagonally dominant real matrices. A

system of (n�1) linear equations with (n�1) unknowns (x1, x2, ..., xn�1) is represented

by a (n ⇥ n) matrix C. In such a matrix, the rth row represents the equation
Pn�1

j=0 (C[r, j] ⇥ xj) = C[r, n]. Listing 4 shows the loop-based serial implementation

of the GE algorithm.

5.3.2 Fork-Join based Implementation of R-DP . Due to poor temporal local-

ity of the loop-based implementation, which leads to poor I/O e�ciency, researchers

have introduced recursive divide-&-conquer algorithms (2-way R-DP). Such algo-

90

rithms are theoretically and experimentally proven to be I/O e�cient [94, 95]. Fig. 5.3

shows part of the classic 2-way R-DP version of the GE algorithm. Computation

starts with function AGE. Function AGE recursively calls itself for updating the

top-left submatrix. Then it calls functions BGE and CGE in parallel to update the

top-right and the bottom-left submatrices, respectively. Then function DGE is called

to partially update the bottom-right submatrix and finally function AGE completes

updates of the bottom-right submatrix. Functions BGE, CGE, and DGE have similar

recursive specifications. It has been shown that such an algorithm can be automati-

cally generated from its corresponding loop-based code [94].

AGE(X00)

BGE(X01, X00, X00) CGE(X10, X00, X00)

DGE(X11, X10, X01,X00)

AGE(X11)

AGE(X)

Figure 5.3. Function A of 2-way R-DP GE algorithm.

Listing 5 shows the OpenMP implementation of function AGE depicted in

Fig. 5.3. The fork-join based implementation provided in Listing 5 comes with a struc-

tural property that limits its performance: synchronization points among the recursive

function calls, enforced by #pragma omp taskwait in OpenMP or cilk sync in In-

tel Cilk+, in the join sections of the program create artificial dependencies among

91

AGE(X11)

CGE(X21, X11, X11)
BGE(X12, X11, X11)

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

St
ag

e
6

St
ag

e
7

AGE(X)

sync point

sync point

sync point

sync point

Figure 5.4. Barriers prevent further potential parallelism

the function calls which are not implied by the underlying DP recurrence. These

artificial dependencies also exist in the sub-function calls and hence increase the span

asymptotically [103, 104] and thus reduce the parallelism. From a practical perspec-

tive, they can lead to resource underutilization, i.e., threads becoming idle. Fig. 5.4

illustrates the problem. In Fig. 5.4 synchronization points prevent function calls in

stages 5 and 6 to be executed in stages 2 and 3. The same problem exists in recursive

functions BGE, CGE, and DGE.

This problem has been identified and researchers have proposed algorithmic so-

lutions within the fork-join model to resolve this problem statically [103, 104, 98, 102,

99, 101]. However, the proposed solutions are too complicated to develop, analyze,

implement, and generalize. For example, they require hacking into a parallel runtime

[104] or coming up with timing functions that are not straightforward [103]). On the

other hand, task-based runtimes and data-flow parallel models provide a straightfor-

ward way to express the algorithms yet easily resolving the ine�ciency introduced

92

1void func A (double ∗∗ X, i n t input sz , i n t b lock sz ,

2i n t base sz , i n t i l b , i n t j l b , i n t k lb)

3i f (b l o ck s z <= base s z) // base case part

4f o r (i n t k = k lb ; k < k lb+b l o ck s z ; ++k)

5f o r (i n t i = i l b ; i < i l b+b l o ck s z ; ++i)

6f o r (i n t j = j l b ; j < j l b+b l o ck s z ; ++j)

7i f (k < i && k < j)

8X[i] [j] −= (X[i] [k] ∗ X[k] [j]) /X[k] [k] ;

9re turn ;

10// r e c u r s i v e part

11b l o ck s z /= 2 ;

12// Updating X11 (top− l e f t sub−matrix)

13func A (X, input sz , b lock sz , base sz , i l b , j l b , k lb) ;

14// In p a r a l l e l , updating X12 , and X21 sub−matr i ce s

15#pragma omp task

16func B (/∗Updating X12 , read ing from X11∗/) ;

17#pragma omp task

18func C (/∗Updating X21 , read ing from X11∗/) ;

19#pragma omp taskwai t

20func D (/∗Updating X22 , read ing from X11 , X12 , X21∗/) ;

21func A (/∗Updating X22∗/) ;

Listing 5. OpenMP version of function A in R-DP GE algorithm.

by synchronization points in the fork-join model. They overcome this limitation as

follows. Data dependencies can be specified directly at finer granularity and tasks

get executed as soon as its data dependencies are satisfied. We explain Intel CnC

implementation of the same algorithm in the next section.

5.3.3 Data-Flow based Implementation of R-DP . To implement the 2-way

R-DP in Intel CnC, by considering the recursive specification of function calls, we

figure out the data dependencies among them. For example, from the specification of

function AGE, we can conclude that functions BGE and CGE depend on the output

of AGE. Similarly, function DGE depends on the output of functions AGE, BGE, and

CGE.

93

1s t r u c t GEContext : pub l i c CnC: context<GEContext> {

2double ∗ dp tab l e ; i n t input sz , ba s e s z ;

3typede f pair<pair<int , int >, pa ir<int , int>> Col l ec t ionT ;

4// d e f i n i n g step / tag / item c o l l e c t i o n s , X in {A,B,C}

5CnC : : s t e p c o l l e c t i o n <FunctionX> funcX step ;

6CnC : : t a g c o l l e c t i o n<Col lect ionT> funcX tags ;

7CnC : : i t em co l l e c t i o n<Col lect ionT , bool> funcX outputs ;

8// cons t ructor , conta ing ing CnC graph in fo rmat ion

9GEContext (double ∗ dp t , i n t p sz , i n t b sz)

10: dp tab l e (dp t) , i npu t s z (p sz) ,

11ba s e s z (b sz) , funcX step (∗ t h i s) {

12// p r e s c r i b i n g /producing /consuming r e l a t i o n s h i p s

13// X in {A, B, C}

14funcX tags . p r e s c r i b e (funcX step ,∗ t h i s) ;

15funcX step . produces (funcX outputs) ;

16// consumes , de f i n ed based on the data dependenc ies

17funcB step . consumes (funcA outputs) ;

18funcB step . consumes (funcD outputs) ;

19// . . .

20}

21}

Listing 6. Intel CnC graph description of R-DP GE algorithm.

The CnC program has four step collections with one for each of the functions,

four tag collections with one for prescribing each of the step collections, and four

item collections. The item collections are used as means of synchronization among

the step collections to enforce fine-grained data dependency among the instances of

step collections. The high level structure of the CnC graph or program is depicted in

Listing 6.

In Listing 6, tag collections are templated by CollectionT which is pair <

pair < int, int >, pair < int, int >>. This data structure contains the information

which is needed for the functions to execute correctly. For example, for function

BGE which updates the tile [I, J] of size b by reading from the tile [I,K], the tag is

94

<<I,J>,<K,b>>. Item collections are templated by <CollectionT,bool>, which is

a mapping from the tile information <<I,J>,<K,b>> to Boolean indicating whether

the tile has been updated completely (and it is ready to be used by other functions).

For example, function BGE puts the mapping (<<I0,J0>,<K0,b0>> ! true) to the

item collection funcB outputs after completing the update on tile [I0, K0]. Such

put will trigger the execution of all other functions waiting for this tile.

Step collections are templated by C/C++ structs FunctionA, ..., FunctionD.

Each of these structs has a method called execute that takes the tag information

execInfo as the first argument as well as the GE context ctx as the second argument.

Based on the data dependencies among the kernels we complete the imple-

mentation of the execute method in each of the structs. As an example, we explain

method FunctionD::execute and others are implemented similarly. The imple-

mentation has been provided in Listing 7.

If the execution of function DGE reaches its base case, it updates the tile/block

with coordinate [I, J] by first reading from the tiles/blocks with coordinate [I,K],

[K, J], and [K,K] which are produced by kernels C, B, and A, respectively. These

three read-write dependencies can be enforced by using blocking get method on the

item collections funcC outputs, funcB outputs, and funcA outputs. Addition-

ally, since it is updating the tile [I, J], for K > 0, we need to ensure that the previous

call toDGE has finished its update on tile [I, J]. So, in order to enforce this write-write

dependency, we use blocking get method on the item collection funcD outputs. If

all the dependencies are met, the kernel updates the tile/block and put the item

<<I,J>,<K,b>>! true in the item collection funcD outputs. Otherwise, if the

function has not yet reached the base case, based on the recursive specification of

DGE, for each of the recursive function calls defined in its specification, irrespective

95

1s t r u c t FunctionD {

2/∗ Updating t i l e X by read ing the t i l e s updated by

3k e rn e l s C, B, and A ∗/

4i n t execute (const Co l l ec t ionT& execIn fo ,

5GEContext& ctx) const {

6i n t I = exec In f o . f i r s t . f i r s t ,

7J = exec In f o . f i r s t . second ,

8K = exec In f o . second . f i r s t ,

9b l o ck s z = exec In f o . second . second ;

10bool v ;

11i f (b l o ck s z <= ctxt . ba s e s z) { // base case

12// check ing write−wr i t e dependency

13i f (K > 0)

14{ ctx . funcD outputs . get ({{ I , J} ,{K−1, b l o ck s z }} , v) ; }

15// check ing read−wr i t e dependenc ies

16ctx . funcA outputs . get ({{K,K} ,{K, b l o ck s z }} , v) ;

17ctx . funcB outputs . get ({{K, J} ,{K, b l o ck s z }} , v) ;

18ctx . funcC outputs . get ({{ I ,K} ,{K, b l o ck s z }} , v) ;

19// Al l dependenc ies OK, execut ing the base case

20g e i t e r a t i v e k e r n e l (ctx . input sz , b l ock sz ,

21I , J , K, c tx t . dp tab l e) ;

22ctx . funcD outputs . put ({{ I , J} ,{K, b l o ck s z }} , t rue) ;

23}

24e l s e { // r e c u r s i v e part

25i n t t i l e s z = b l o ck s z /2 ;

26f o r (i n t kk = 0 ; kk < 2 ; ++kk)

27f o r (i n t i i = 0 ; i i < 2 ; ++i i)

28f o r (i n t j j = 0 ; j j < 2 ; ++j j)

29ctx . funcD tags . put ({{ I∗2+ i i , J∗2+ j j } ,

30{K∗2+kk , t i l e s z }}) ;

31}

32re turn CnC : : CNC Success ;

33}

34} ;

Listing 7. Struct functionD in CnC implementation of R-DP GE algorithm.

96

of their data dependencies7, it puts tags into the tag collection funcD tags to trigger

their executions.

5.3.4 Improving Intel CnC performance through Tuners. Intel CnC pro-

vides tuners that can pass hints to the runtime system on how to improve performance

[114]. One of them is the pre-scheduling tuner which enforces the execution of a step

on the same thread that puts the prescribing tag, only after all the data dependen-

cies are satisfied. This can improve performance by avoiding re-scheduling of a step

due to unavailability of the items. Another way of improving the performance is to

manually pre-declare all the dependencies, before the actual execution of updates in

the algorithm. In this way, the underlying scheduler can trigger tasks when all the

items are available. We have evaluated both approaches in order to tune the R-DP

computations and better understand the behavior.

5.4 Experimental Results

We implement the three following benchmarks in Intel CnC and OpenMP:

(1) Gaussian Elimination without Pivoting (GE). Section 5.3.1 contains a

detailed explanation of this benchmark. It is noteworthy that the GE with partial

pivoting does not have a DP-like structure [120] and going beyond DP algorithms is

part of the future works. (2) Smith-Waterman Local Alignment (SW). The

SW algorithm is used to determine the similarity between two DNA (or amino acid)

sequences [121]. (3) Floyd Warshall’s All Pairs Shortest Path (FW-APSP).

For each pair of vertices in a directed graph, the FW-APSP algorithm computes the

cost of the shortest path [86, 122].

5.4.1 Experimental Setup. The testbed for our experiments includes AMD Epyc

7Note that all the data dependencies are enforced using the blocking get
method

97

and Intel Skylake processors which are part of the Mystic testbed [38]. The AMD

Epyc 7501 machine has 2 sockets with 32 cores each, 8 NUMA zones, 32K L1, 512K

L2 and 8192K L3 caches, 130GB RAM and per socket memory bandwidth of 170

GiB/s. The Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz machine has 8 sockets

with 24 cores per socket, 8 NUMA zones, 32K L1, 1024K L2, 33792K L3, 768GB

RAM and a theoretical memory bandwidth of 119 GiB/s.

For our Intel CnC implementations, we used Intel CnC version 1.0.1 and com-

piled using gcc version 7.5.0, with the following flags:

-std=c++11 -O3 -march=native -mavx2 -lcnc -lrt -ltbb -ltbbmalloc.

We have optimized the algorithms by eliminating branches in the innermost

loop to enable vectorization. Naive implementation of SW uses (O(n2)) space and

we have optimized the algorithm to consume (O(n)) space for improving performance.

GNUOpenMP implementations are used in the benchmarks with OMP PLACES =cores

and OMP PROC BIND=close. For Intel CnC experiments, we set CNC NUM THREADS

to 64 on AMD Epyc and 192 on Intel Skylake servers.

5.4.2 Performance Results. The goal of our evaluation is to characterize the

behavior of R-DP computations under a data-flow execution model. With this in

mind, we designed 3⇥2⇥4⇥4 = 96 experiments, which include three benchmarks (GE,

SW and FW-APSP) to explore on two multicore machines, while varying the problem

parameters (problem size and base-case size). Our experiments show that even though

R-DP is meant to enhance the program’s locality, controlling and characterizing the

behavior in a data-flow model remains challenging. For each R-DP benchmark, we

implemented 4 versions:

• (Native-CnC) A base CnC program without scheduling hints.

98

• (Tuner-CnC) A CnC program with task scheduling hints by using CnC

tuners (discussed in Sec. 5.3.4).

• (Manual-CnC) A manually pre-scheduled CnC program

(discussed in Sec. 5.3.4).

• (OMP-Tasking) An R-DP program using OpenMP tasking.

It is worth mentioning that we also implemented the benchmarks using non-

blocking get approach [116] and noticed that the non-blocking get implementation

is profitable only for smaller block sizes. However, the best overall performance is

obtained by using blocking get approach.

Overall, our validation shows some high-level conclusions. First, R-DP data-

flow programs incur large runtime overheads on small block sizes. Second, large base

case sizes reduce potential run-time task scheduling options.

Figures 5.5 and 5.6 show the execution time of the GE benchmark on the two

machines. To understand the behavior of GE on these machines, due to the impor-

tance of the data movements in the memory hierarchy [123], we have developed an

analytical model to estimate the overall cost of cache misses and the data movements.

As the first step, we will compute the total number of tasks generated by the

recursive divide-and-conquer algorithm for GE. Observe that if the base case size

is set to 1 ⇥ 1, the total number of times the base case is reached will be equal to

the number of assignments made by the looping implementation of GE, which is:
Pn�1

k=0

Pn
i=k+1

Pn
j=k+1(1) =

1
3n

3+ 1
2n

2+ 1
6n. Now, if we coarsen the base case matrices

to m ⇥ m, clearly, the number of times such base cases will be reached, i.e., the

number of base case tasks generated by the recursive algorithm, will be:

99

Figure 5.5. Execution time of Gaussian Elimination on EPYC-64

1

3

⇣ n

m

⌘3

+
1

2

⇣ n

m

⌘2

+
1

6

⇣ n

m

⌘
(5.1)

Assuming a fair distribution of the tasks to the processors and among all the

cores, we know that the total number of tasks per processor is
l

total number of tasks
number of processors

m
.

Once reached, a base case task that works on matrices of size m⇥m will per-

form between 1
3m

3+ 1
2m

2+ 1
6m (inside func A) and

Pm�1
k=0

Pm
i=0

Pm
j=0(1) = (m+ 1)2m

(inside func D) assignments.

Considering the base-case implementation of the GE algorithm, which is the se-

rial implementation (in the Listing 4), we can compute the maximum number of cache

misses as follows. We know that the triply nested loop executes up to 8m�1k=0 8
m
i=08

m
j=0

iterations, while accessing memory cells C[i][j], C[i][k], C[k][j], and C[k][k]. Then,

100

Figure 5.6. Execution time of Gaussian Elimination on SKYLAKE-192

we proceed to count the total number of memory elements accessed for each distinct

array reference, divided by the cache line size L, and add them up to get an upper

bound on the total number of cache misses assuming that the cache cannot hold

more than three cache lines and thus has very limited temporal locality. The bound

is obtained as follows:

2
⇣Pm�1

k=0

Pm
i=0

lPm
j=0 8

L

m⌘
+
�Pm�1

k=0

Pm
i=0 1

�

+
�Pm�1

k=0 1
�
= m

�
1 + (m+ 1)

�
1 +

⌃
8m+8

L

⌥��
(5.2)

The first term in the summation above accounts for the maximum number of

cache misses incurred when accessing C[i][j] and C[k][j], the second term accounts for

C[i][k], and the third one for C[k][k]. Given this, the total number of cache misses for

101

each cache L1, L2, and L3, is approximated by adding up all the cache miss penalties

at each level of cache. Figures 5.5 and 5.6 show the cost estimated using this model.

The model assumes the recursion and looping overheads to be zero.

The ratio of the maximum cache misses estimated by the analytical model over

the actual cache misses (i.e., estimated max cache misses
actual cache misses) provides an interesting measure

of temporal locality. The larger this ratio the higher the temporal locality. For the

GE benchmark with the problem size 8K ⇥ 8K, we captured the actual cache misses

using the PAPI library [124] on SKYLAKE, and calculated this ratio. Table 5.1 shows

the ratios for di↵erent base case sizes. Considering the sizes of L2 and per-core L3

cache share (which are 1MB and 32MB, respectively), we observe that for the L2

and L3 caches, this ratio sharply drops for the base cases larger than 128⇥ 128 and

1024 ⇥ 1024, respectively. These two base cases (128 ⇥ 128 for L2 and 1024 ⇥ 1024

for L3) reflect the largest blocks (more specifically, three such blocks storing double

precision floats) that can fit into the L2 and L3 cache for GE on SKYLAKE.

Another important observation is that the execution times are significantly

lower with hardware prefetching turned o↵ for the CnC version. This is due to the

coarse-grained data-flow irregularity not allowing full usage of prefetched data, i.e. the

prefetcher bringing in data expected to be used, while (CnC) data-flow dependencies

essentially flushing the cache immediately after, causing unnecessary overheads.

The analytical model does not take into account the load imbalance due to the

data dependencies between the tasks causing the model to underestimate the cost.

However, in some cases, using maximum cache misses to calculate the estimated cost

causes the model to overestimate. The model also ignores overhead of scheduling

of large number of tasks which significantly increases the execution time in case of

Manual-CnC.

102

aaaaaaaaaaaaa
Base Size

L2 Cache L3 Cache

64 107.61 294.50

128 240.63 660.02

256 38.38 1637.20

512 7.97 5793.74

1024 6.13 8247.60

2048 5.96 127.06

Table 5.1. Ratio of the maximum estimated cache misses over the actual cache misses
for the GE benchmark with problem size 8K ⇥ 8K on SKYLAKE.

Another important observation from the figures is that for GE and FW-APSP

benchmarks, for a fixed computation resource, as we increase the size of the input, the

fork-join implementation (i.e,. OpenMP) outperforms the data-flow implementations

(i.e., intel CnC). This is due to the fact that for the smaller problem size, because

of the artificial dependencies that exists in the fork-join implementation, there are

not enough tasks generated by the OpenMP to keep all the processors busy and

does not have enough data locality. As a result, we have resource underutilization

issue. However, as the problem size gets larger, in spite of the existence of the artificial

dependencies, OpenMP is capable of generating enough tasks to feed all the processors

and we have less resource underutilization.

Figures 5.7 and 5.8 show the execution time of SW benchmark on EPYC-64

and SKYLAKE-192 systems. Regarding the SW benchmark, the issue of artificial

dependencies are so problematic that even for bigger problem sizes, still data-flow

103

implementation outperforms. The main reason is the artificial dependencies in the

fork-join implementation prevents the wavefront parallelism among the tasks, where

tasks operate on tiles along diagonals of the input matrix8.

Figure 5.7. Execution time of Smith-Waterman on EPYC-64

However, data-flow implementation can easily benefit from the wavefront par-

allelism as data dependencies are specified at a finer granularity and there is no

coarse-grain barrier synchronization for every wavefront computation.

Figures 5.9 and 5.10 show the results obtained for FW-APSP benchmark.

The analytical model described above for GE also applies to FW-APSP since both

the same computational complexity as GE (O(n3)) and similar data access patterns.

8In fork-join implementation, there is a barrier synchronization for every wave-
front computation

104

Figure 5.8. Execution time of Smith-Waterman on SKYLAKE-192

Best running time is achieved with block size of 128 and 256 for all the varia-

tions of Intel CnC as well as OpenMP.

While fine-grained scheduling and task placement has not been explored in

this work, we believe that leveraging other Intel CnC tuners such as compute on

and other forms of tasks pre-scheduling can lead to large performance improvements.

Such tuner can e↵ectively allow to pin specific tasks to execution locations (cores),

thereby minimizing potential inter-core and inter-NUMA data movement.

5.5 Summary

In this work, we discussed the two di↵erent paradigms of parallel programming

on shared-memory multicore machines: fork-join based and data-flow based parallel

paradigms. Focusing on DP algorithms, we explained the major performance bottle-

105

Figure 5.9. Execution time of Floyd Warshall’s Algorithm on EPYC-64

neck that exists in fork-join based model: Joins (e.g., cilk sync in Intel Cilk+ or

#pragma omp taskwait in OpenMP) in synchronization points introduce artificial

dependencies which are not implied by the underlying DP recurrence. These artificial

dependencies can increase the span asymptotically, and thus reduce parallelism. We

also explained how this performance issue can easily be eliminated by using data-

flow based parallel paradigms. Our experimental results indicate the fact that the

data-flow based implementations outperform the fork-join based implementations.

106

Figure 5.10. Execution time of Floyd Warshall’s Algorithm on SKYLAKE-192

107

CHAPTER 6

THE TEMPLATE TASK GRAPH (TTG): AN DATAFLOW PROGRAMMING
PARADIGM FOR IRREGULAR SCIENTIFIC APPLICATIONS

Our work in comparing data-flow to fork-join parallel programming shows

that data-flow parallel programming paradigm overcomes several limitations of the

fork-join programming model by allowing applications to specify data dependencies

at a finer granularity [125, 126, 127]. Fork-join parallelism can introduce artificial

dependencies in applications that are data-parallel and not task-parallel. Hence, it

is imperative to explore this space in order to cover a broader scope of applications

which are irregular and hard to speedup using existing parallel execution models.

Several data-flow based programming models exist today, one of them is Intel Con-

current Collections (CnC) [127]. In our prior work with Intel CnC, we identified

several limitations for expressing dataflow programs using the programming model:

(1) a successor task can be invoked by sending a tag, however the task itself needs

to call get to actually obtain the data. Get can be synchronous or asynchronous,

however this limits optimizations that can be applied in the runtime layer to optimize

data movement. (2) While development cost is a subjective measure, it requires a

substantial coding e↵ort to write data flow programs using CnC. There is a need

for a productive parallel programming language that can bridge the gap between

productivity and programmability on heterogenous architectures.

The main contributions of this work are:

• Introduction of TTG, a C++ API for implementing data-flow parallel programs.

Description of key features of TTG that serve as a backbone for implementing

heterogeneous execution of programs written in TTG [113, 2, 128].

• The evaluation of their implementation over di↵erent applications, and the com-

parison of the TTG implementation of these applications with the state of the

108

art implementation in other programming paradigms.

6.1 Motivation

This work is inspired by the advantages of data-flow based parallel program-

ming paradigm. The main advantages are: (1) specification of essential dependencies

between tasks maximizing the exploitable concurrency (2) reduced synchronization

due to flow of data between tasks. Also, today’s data-flow based programming lan-

guages [127, 12] involve significant programming costs due to explicit management of

data and execution throughout the program run.

This work is done as a part of the TESSE [113] project. It is a combined team

e↵ort and this dissertation includes the work I accomplished in this project. TESSE

stands for Task-based Environment for Scientific Simulation at Extreme Scale. This

project aims to address the twin challenges of programmer productivity and portable

performance for advanced scientific applications on modern day heterogeneous hard-

ware. Our focus is on irregular computations that are di�cult to compose and execute

e�ciently with current parallel programming paradigms.

As exemplified by the two paradigmatic science applications motivating TESSE

(fast tree-based computation on deeply refined numerical meshes, and block-sparse

tensor algebra in many-body quantum simulation), exploiting sparsity usually leads

to highly irregular fine-grained computation as well as highly data-dependent data/-

work flows that are very dynamic in nature. TESSE leverages dataflow programming

approach to be able to compose and execute irregular computations e�ciently on

heterogeneous architectures. The key innovation of TESSE is TTG, a dataflow pro-

gramming model inspired by earlier innovations such as Flow-Based Programming

(FBP).

109

6.2 Template Task Graph

TTG is implemented as a library using C++ and template metaprogramming.

TTG marries the ideas of flow programming models with the key innovations in the

PARSEC runtime [129, 112] for template-based compact specification of task graphs

namely Parameterized Task Graph (PTG) [130] in which edge represents the flow

of data which identifies the receiving task. The main goal of TTG is to support

compact specification of task graphs for e�cient distributed execution of dynamic

and irregular applications. Existing task-based programming interfaces only support

shared-memory parallel environments very e↵ectively, supporting a few distributed

memory environments and they do so by either discovering the entire DAG which

limits the scalability or introduce explicit communications between operations which

increases the complexity of programming. TTG aims to address these issues by

providing higher-level abstractions and supporting multiple runtimes to manage task

creation and execution. TTG stands out in the following areas: (1) specifying only

essential dependencies between operations maximizes exploitable concurrency and

opportunities for hiding latency by overlapping data motion and computation, (2)

making the data part of the flow a dataflow reduces the need for synchronization,

makes operations easier to reuse by eliminating the nonessential side e↵ects, and (3)

raising the level of abstraction (by abstracting the details of scheduling, underlying

resources), programs (often) become easier to write, easier to transform (thereby

supporting the development of domain specific languages), and easier to port.

TTG [113, 2] represents an algorithm as a data-flow graph (template task-

graph, TTG) composed of one or more nodes (template tasks) equipped with or-

dered sets of input and output terminals connected by directed edges. In the current

C++ implementation of TTG, template tasks, terminals, and edges are explicitly and

strongly typed. Edges encode all possible flows of messages. Each message consists

110

of a task ID and data; this idea builds on the concept of the Parameterized Task

Graph (PTG) [130]. The task ID represents the task (instance of a task template)

for which the data is intended. Thus, messages in the TTG model generally contain

both a control part (task ID) and data part, allowing to marry the control-flow and

data-flow paradigms. Pure control flow can be implemented by omitting the data

part, i.e., by using the null type (void) to represent the data part of the message.

Pure dataflow can be implemented analogously by using the null type to represent

the task ID.

Once every input terminal of a given template task has received one message

with the same value of task ID, a task is created with the data parts of the corre-

sponding messages. Tasks define a task body, which is a C++ method that will be

executed by the runtime system. TTG does not constrain the task bodies in any way

(i.e., the tasks can be arbitrary, not necessarily pure, functions) but any side e↵ects

may require additional synchronization to avoid data races. During its execution, the

task may deliver new messages to zero or more output terminals. Introducing the

data dependence into the control flow (i.e., by deciding whether a particular output

terminal will receive a message or not, or by making the task IDs of the outgoing

messages dependent on the data contents of the input messages) allows to imple-

ment general data-dependent task flows in TTG seamlessly. Thus, the message flow

through a TTG generates a set of tasks representing an application. Each TTG can

be viewed as encoding a set of possible directed acyclic graphs (DAGs) of tasks with

the actual DAG executed being dependent on the data flowing through it.

6.2.1 TTG Concepts. This section describes the key concepts of TTG.

• TaskId: A unique identifier for each task. For example, if computing in a loop,

it can be the loop identifier, if computing on text, it can be a string identifying

the line of the text, if computing on a 3D array, it can be the triplet of indices

111

to identify the element in the array. The TaskId is also used by the underlying

runtime for mapping tasks on to processors based on a user-defined process

map.

• Terminal: Each input argument and output result of a (template) task are ex-

posed to the programmer and runtime as a Terminal. A task propagates a

result or output value to a successor task by sending the value and the succes-

sor’s TaskId to the appropriate output Terminal. Broadcast to multiple values

of TaskId is supported. By default, an input Terminal is a single assignment

variable, this property being used by the runtime to determine when arguments

of a task are available. However, an input Terminal is programmable and, for

instance, could perform a reduction operation. If the number of expected input

values is fixed, the runtime can determine completion, but with variable length

(streaming) data either the user-provided reduction operation or a predecessor

task must finalize the argument.

• Edge: An Edge represents connection between the terminals. Output terminal

of a task can be connected to the input terminal of another task which forms

an edge. Currently terminals are identified by zero-based indexing. Multiple

terminals can be connected to a single terminal and vice versa. Recursion can

also be implemented by connecting the output terminal of a task to its own

input terminal.

• TemplateTask: This wraps a user-defined function with informal signature void

f(TaskId, Arg0, Arg1, ..., OutputTerminals). Again, each input argument is

exposed as a Terminal, and OutputTerminals is a tuple of the output terminals

(an alternative interface also provides the input arguments as a tuple of ref-

erences). The task associated with a specific TaskId is instantiated when any

input Terminal receives a value, and a task is marked ready for execution when

112

all arguments are received. If there are no arguments, the task must be created

either manually via a special method (invoke(TaskId))of the TemplateTask, or

via a pull operation which which is described below.

• Push versus pull: As seen so far, data must be pushed from a task’s output

terminal into a successor’s input terminal. However, many algorithms, such as

those operating on pre-existing data structures, can be more easily composed

and more e�ciently executed by pulling data as needed. This is accommodated

by connecting terminals via a pull-Edge. When a task is instantiated, the

runtime checks each input terminal to see if its value should be pulled, in which

case the necessary predecessor task (the TaskId of which is computed from the

current task’s TaskId via a user-defined function) is instantiated. This can be

done recursively and lightweight operations, such as reading a value from local

memory, can be directly invoked to avoid the overhead of task creation.

6.2.2 Wavefront Traversal Example Using TTG. To illustrate the TTG con-

cepts, we consider the well-known algorithm for wavefront traversal and whose TTG

implementation is shown in listings 8 and 9 [113].

Figure 6.1(b) illustrates its template task graph. Input to this algorithm is a

2D matrix which is divided into blocks. The algorithm consists of separate template

tasks with varying number of input blocks for handling starting, corner and middle

cases of the input matrix during wavefront traversal. Each task type is represented

by a node in TTG, with two additional nodes representing reading of the input data

(INITIATOR) and writing the output data (result).

The input is an N ⇥N matrix divided into blocks, and we reuse a 2D example

provided by Cpp-Taskflow [17] with a 5-point stencil for which computation on block

B[i][i] requires data from all four neighbors B[i�1][j], B[i][j�1], B[i+1][j], B[i][j+1]

113

0,0

1,0

2,0

3,0

0,1

1,1

2,1

3,1

0,2

1,2

2,2

3,2

0,3

1,3

2,3

3,3

(a) Flow of computation

INITIATOR
out0 out1 out2 bottom-right0 bottom-right1 bottom-right2

input bottom-right
WAVEFRONT0
toporleft result

input toporleft bottom-right
WAVEFRONT1

recur output1 output2 result

input left top bottom-right
WAVEFRONT2

left top result

result
FINALIZER

(b) graph using dataflow

Figure 6.1. 2D Wavefront Computation

114

1ttg::Edge <pair <int ,int >,BlockMatrix <double >> input0 (" input0"),

2input1 (" input1"),

3input2 (" input2"),

4toporleft (" toporleft"),

5output1 (" output1"),

6output2 (" output2"),

7result (" result ");

8Edge <Key , std::vector <BlockMatrix <double >>> bottom_right0 (" bottom_right0 "),

9bottom_right1 (" bottom_right1 "),

10bottom_right2 (" bottom_right2 ");

11

12auto i = initiator(m, input0 , input1 , input2 ,

13bottom_right0 , bottom_right1 , bottom_right2);

14auto s0 = make_wavefront0(stencil_computation <double >,

15n_brows , n_bcols , input0 , toporleft , bottom_right0 , result);

16auto s1 = make_wavefront1(stencil_computation <double >,

17n_brows , n_bcols , input1 , toporleft ,

18bottom_right1 , output1 ,

19output2 , result);

20auto s2 = make_wavefront2(stencil_computation <double >,

21n_brows , n_bcols , input2 , output1 ,

22output2 , bottom_right2 , result);

23auto res = make_result(r2, result);

24

Listing 8. Select elements of the C++ code specifying the TTG implementation of
wavefront traversal in 6.1(b)

115

but only has task dependencies on B[i� 1][j] and B[i][j� 1]. Figure 6.1(a) shows the

task dependencies between the blocks — blocks with same color can run concurrently.

Computation starts at the top-left and sweeps the grid diagonally.

Listings 8 and 9 illustrate how the TTG is composed by connecting inputs

and outputs of each task template to the edges (represented in C++ by ttg::Edge).

Note that each output terminal may be attached to one or more input terminals.

Each task template is typically composed from a free or lambda function by calling

ttg::make tt. Listing 9 shows how the wavefront task template is implemented.

The free function (or lambda) implementing a task body receives as its arguments

the task ID (if non-void), input data (if non-void), and the tuple of output terminals

(ttg::Out; The function body performs arbitrary computation on the data and, if

needed, “sends” the data to the output terminals via ttg::send (if intended to be an

input for a single task) or ttg::broadcast (if intended to be an input for multiple

tasks. Since the edges, input, and output terminals are all explicitly parameterized

by the type of data they transport the type safety of TTG’s edges and task templates

is checked at compile time. Note that the graph built by connecting the nodes that

represent task types via edges includes cycles and thus does not represent directly

the DAG of tasks. It is during the execution, when tasks are instantiated with their

task IDs, that the DAG of task is constructed, distributed across processes, by each

task instance that discovers a new task instance.

Every template task can have a di↵erent type for the TaskId. Also, the appli-

cation user does not need to worry about data synchronization since protecting access

is under TTG’s control. TTG can take advantage of the C++ language features for

optimizing the data motion.

Once a task template receives all inputs needed for a given task ID the task is

scheduled for execution. The process on which a given task will be executed is speci-

116

1template <typename funcT , typename T>

2auto make_wavefront0(const funcT& func , int MB , int NB ,

3Edge <Key , BlockMatrix <T>>& input ,

4Edge <Key , BlockMatrix <T>>& toporleft ,

5Edge <Key , std::vector <BlockMatrix <T>>>& bottom_right ,

6Edge <Key , BlockMatrix <T>>& result) {

7auto f = [func , MB, NB](const Key& key , const BlockMatrix <T>& input ,

8const std::vector <BlockMatrix <T>>& bottom_right ,

9std::tuple <Out <Key , BlockMatrix <T>>, Out <Key , BlockMatrix <T>>>& out) {

10auto [i, j] = key;

11int next_i = i + 1;

12int next_j = j + 1;

13

14BlockMatrix <T> res = func(i, j, MB, NB, input ,

15input , input , bottom_right [0], bottom_right [1]);

16

17send <0>(Key(i, next_j), res , out);

18send <0>(Key(next_i , j), res , out);

19

20send <1>(Key(i, j), res , out);

21};

22

23return make_tt(f, edges(input , bottom_right),

24edges(toporleft , result), "wavefront0", {"input", "bottom_right "},

25{" toporleft", "result "});

26}

Listing 9. Implementation of one of template tasks for the wavefront traversal

117

fied by a user-defined function mapping task IDs to process ranks. Note that creation

and execution of tasks is entirely abstracted out in TTG. Thus, TTG can be viewed

as a higher-level abstraction for a low-level task runtime. Current implementation of

TTG can use one of two task runtimes for distributed task execution: PaRSEC and

MADNESS.

Streaming
Terminal

U

T

UTTA T TTBU

*{N-1}

Figure 6.2. TTG streaming terminal with input T, output U, and a size of N. The
reduction operation of the terminal will be called N � 1 times on input from TTA
before before a task of TTB will be eligible for execution [2]

6.2.3 Streaming Terminals. Each input terminal could receive only one message

for a given task ID under the original design of TTG. Due to this restriction, some

algorithms produce task templates with many input terminals. For example, a 1D

Jacobi would only require 3 input terminals: the state of the task at the previous

iteration as well as the state of the left and right neighbors. However, a 2D Jacobi

requires 5 to 9 inputs (depending if neighbors on the diagonal need to be considered),

and a 3D Jacobi quickly becomes un-manageable through explicit input terminals

defined as independent variables in the user code. In this work, we listed this restric-

tion by making all input terminals capable of receiving a stream of messages for every

task ID. The input messages are reduced (e.g., concatenated) using a user-provided

function U ⌦ T ! U reducing a pair of values into a single value. Each incoming

message is processed in a light-weight manner (i.e., without spawning a task) until

either the prescribed number of messages has been received or the input terminal

is programatically “finalized” for the given task ID (see 6.2). An example for using

118

1std::function <const Key (const Key&)> get_inputindex_func =

2[n_brows , n_bcols](const Key& key) {

3return key;

4};

5

6auto container_keymap = [local_row_count](const Key &key) {

7return key.first / local_row_count;

8};

9

10Edge <Key , BlockMatrix <double >> block("block", true ,

11{m, get_inputindex_func , container_keymap });

12

Listing 10. Creating Pull Terminals

streaming terminals will be provided later in 6.3.3.

6.2.4 Pull Terminals as Generator Terminals. As described above, terminals

can be marked as push or pull based on whether the data is pushed by a task to its

successor task or pulled into a terminal by a task after its creation. In TTG, every

operation with di↵erent number of input dependencies requires a separate template

task. However, some applications require data from various sources purely for com-

putation, and do not necessarily imply a data dependency for execution of the task.

The original model of TTG only allowed for data to be PUSHed to subsequent tasks

via terminals. In order to push data from di↵erent sources for computation, a ’reader’

task is required which when run, instantiates all the tasks it can push data to, which

is not required and can pose resource limitation issues. Tasks should be created when

the data dependencies are satisfied. If data can be PULLed by a task when necessary,

we can defer running the ”reader” tasks until needed.This functionality enables im-

portant optimizations to directly call the reader source to access the data without

tasking overhead. Data can be pulled greedily(at task creation time) or lazily (when

all other inputs are available) to control resource utilization.

119

Every pull task requires a template task to be defined. EDGE can be used to

define pull terminals as shown below in Listing 10. A pull template task can contain

0 or 1 pull terminals as input. The Key of the puller task is sent as input to the pull

task to invoke the task. If the pull task itself has a pull terminal as input, this would

walk through the DAG in a reverse manner until necessary data is pulled. TTG can

invoke pull tasks using a callback mechanism. The callback is registered when an

Edge is created. As shown in listing 10, registering a pull template task as a data

source requires a Container to be passed into the Edge constructor along with a

mapper function that maps the TaskId to the index into the container as well as a

keymap for identifying the process to locate the data.

6.2.5 Pure Tasks. Pure tasks are a variation of pull terminals where the template

task can return data instead of calling a send function to push the data to the

successor task. Pure tasks can be seen as a natural way of writing functions and the

runtime internally calls send to forward the data to the requested successor. This

functionality has several use cases: (1) can be used to implement distributed data

structures (2) enables split phase implementation required for devices like GPU where

a send operation cannot be directly called from a GPU kernel, but after the kernel

completes execution, the host code can make the decision of where to send the data.

6.2.6 TTG Execution Backends. TTG is a higher level of abstraction over

tasking runtimes. The current implementation of TTG creates tasks which can be

handled by any low-level tasking runtimes in general. The runtime that manages the

task scheduling and resource management is referred to as a TTG backend. Currently

TTG works with two backends that can run on both shared-memory and distributed-

memory platforms: PaRSEC and MADNESS. The MADNESS backend served as an

early proof of concept for TTG, with the PaRSEC backend targeted to serve as the

main vehicle for e�cient performance-portable operation on distributed and hetero-

120

geneous platforms. The feature set required to implement TTG is not unique to these

two backends and is available in other runtimes (e.g., UPC++), thus implementation

of additional backends for TTG should be straightforward.

MADNESS parallel runtime [131] is a general-purpose numerical environment

for reliable and fast scientific simulation. It enables massive parallelism for dense and

sparse tensor algebra and has evolved into a powerful general-purpose environment

for task-based composition of a wide range of parallel algorithms on distributed data

structures as varied as irregular trees in MADNESS and the sparse tensors in the

TiledArray framework [132]. MADNESS provides an SPMD model with a single

logical main thread per process, a thread pool to execute tasks, and a thread dedicated

to serving remote active messages. MADNESS can be configured to use its own

thread pool implementation, or to use Intel TBB or PaRSEC. An application in the

MADNESS runtime can be viewed as a dynamically constructed DAG, with futures

as edges.

PaRSEC [133] is a widely adopted runtime in scientific applications. PaRSEC is

designed to support many Domain Specific Languages (DSLs) or Application Pro-

gramming Interfaces (APIs): PTG and DTD. PTG is similar to TTG in that you specify

the task classes and their inputs as terminals and data flows through them. It is less

flexible, because one cannot send from within a task, so dynamic refinement etc is

quite tedious to do. DTD on the other hand is like OpenMP tasks but in a global scope.

And it requires discovery of the full global task graph, which limits scalability. It has

a C frontend, so it is easier to use. TTG combines aspects of both: the scalable task

discovery of PTG with the the easier to use API and provides the highest flexiblity of

all of the available DSLs and APIs. TTG reuses the scheduler, communication and

termination detection features of PaRSEC.

121

This work in TTG helped improve the e�ciency and scalability of the MAD-

NESS and PaRSEC backends, but without impacting the correctness and capability

of TTG, and support a full set of TTG features. A nice feature of TTG is that all

programs can be developed independent of the runtime backend and can be linked to

the required runtime as required.

6.3 Benchmarks

We implemented a set of algorithms, with varying degree of irregularity in

their data and computation traits, using C++ implementation of the TTG program-

ming model. The performance was evaluated against reference implementations using

traditional programming models or, where available, against existing state-of-the-art

implementations.

6.3.1 Test Setup. We performed our evaluation on two systems. The Hawk

system is a Hewlett Packard Enterprise Apollo9 installed at the High Performance

Computing Center Stuttgart (HLRS) in Stuttgart, Germany, consisting of 5,632 dual-

socket 64-core AMD EPYC 7742 nodes equipped with 256GB main memory and

connected through a Mellanox Infiniband HDR 200 fabric. The Seawulf system is a

Linux cluster installed at StonyBrook University10 and consists of a variety of nodes

equipped with Intel CPUs. In particular, we used up to 32 dual-socket Intel 20-

core Xeon Gold 6148 CPUs with 192GB main memory connected using a Mellanox

InfiniBand FDR network. The used software configuration for both systems are listed

in 6.1.

6.3.2 Floyd-Warshall All-Pairs-Shortest Path (FW-APSP). The FW-APSP

algorithm finds the shortest path between every pair of vertices in a directed graph.

9https://www.hlrs.de/systems/hpe-apollo-hawk/

10https://it.stonybrook.edu/help/kb/understanding-seawulf

122

Software Hawk Seawulf

MPI Open MPI 4.1.1, UCX 1.10.0 Intel MPI 20.0.2

Compiler GCC 10.2.0 GCC 10.2.0

HWLOC 1.11.9 1.11.12

MKL 19.1.0 20.0.2

Table 6.1. Software configurations

It is among the most fundamental graph algorithms and has several applications in

computer networks, logic programming, optimizing compilers, model-checking, social

media, transportation, among others.

Prior work proposed di↵erent optimization techniques to improve the perfor-

mance of the algorithm. Venkataraman et al. proposed a single-level tiled algorithm

to improve the I/O complexity [90]. Javanmard et al. extended it to a recursive

multi-level tiled algorithm to run e�ciently on distributed-memory machines as well

as GPUs [98, 101]. In the recursive multi-level tiled algorithm, the first level of tiling

is used to distribute the underlying adjacency matrix among processes and further

parallelism and I/O e�ciency were achieved by recursive sub-tiling. Nookala et al.

[59] implemented a data-flow version of the standard two-way recursive divide-and-

conquer FW-APSP algorithm in Intel CnC [127] and compared the performance with

a fork-join implementation in OpenMP. They showed that a data-flow implementa-

tion outperforms its fork-join counter-part when, due to artificial dependencies, the

fork-join implementation fails to generate enough subtasks to keep all processors busy

and does not have enough data locality to compensate for the lost performance.

As shown in 6.3, the parametric recursive algorithm has four kernels (A, B,

123

Iteration k = 0

A

C

C

C

B

D

D

B

D

D

D

B

D

D

D

D A

C

D D

Iteration k = 1

B B

CD

D

D DD

B

C

D D

Figure 6.3. Flow of data among di↵erent kernels in blocked FW-APSP algorithm.

C, and D) that each compute the minimum shortest path within the input tiles of the

adjacency matrix. Kernel A is only applied to the tiles on the diagonal, followed by

kernels B and C applied to the respective row and column. The results of kernels B

and C are used as input for kernel D, which is applied to the panels on both sides of

the current row and column. In the multi-level MPI+OpenMP implementation, the

exchange of super-tiles along rows and columns is performed using MPI broadcast op-

erations while the application of the operations to the sub-tiles is done using OpenMP

tasks. In TTG, on the other hand, a single-level 2D block-cyclic distribution of tiles

is used and tiles are broadcast to all successor operations independent of other tiles.

The MPI+OpenMP implementation of [98] puts significant constraints on the avail-

able process configurations by requiring process numbers that are both square and

multiples of 2. This constraint was later discussed in [99, 101] and virtual padding

is mentioned as a potential solution to this constraint but the distributed-memory

implementation was not discussed. While the TTG implementation of the benchmark

does not have these constraints, in the interest of comparability we decided to run

the same configuration for both MPI+OpenMP and TTG.

6.4 depicts the strong-scaling behavior of both the TTG and MPI+OpenMP

implementation on a 32k matrix with di↵erent block sizes. The data shows that the

TTG implementation clearly outperforms the MPI+OpenMP implementation up to

124

16 nodes by a factor of almost 2, with TTG running on top of PaRSEC further scaling

to 64 nodes for block sizes of 64 and 128. TTG running on top of MADNESS benefits

from larger tile sizes, presumably due to the lower number of tiles to communicate,

but is limited in its scalability.

For TTG running on top of PaRSEC, smaller block sizes lead to better scal-

ability. At 256 nodes, however, TTG using blocks of size 128 reaches its scalability

limit: (32k128) = 256 blocks in each dimension distributed across
p
256⇥ 16 = 64 pro-

cesses per dimension results in 256
64 = 4 blocks per process, less than the number of

threads. Unfortunately, an issue in Open MPI prevented us from running with block

sizes of 64 with TTG on top of PaRSEC on 256 nodes. However, we expect TTG to

further scale to 256 nodes once this issue is resolved.

Figure 6.4. Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on Hawk using 16 processes per node, 8 threads each (block sizes
in square brackets).

Figure 6.5 shows the strong-scaling behavior on SeaWulf using a 32K matrix

with block sizes 128 and 256. TTG implementations outperform the MPI+OpenMP

implementation on up to 32 nodes by a factor of 4. TTG with MADNESS performs

similar to the PaRSEC version with 256 tile size as compared to 128 tile size due to

125

Figure 6.5. Strong scaling of the Floyd-Warshall benchmark using TTG and
MPI+OpenMP on SeaWulf using 2 processes per node, 20 threads each (block
sizes in square brackets).

less communication with larger tiles. The running time for benchmarks with 64 tile

size exceeded the time-limit and hence are not included in the plot.

6.3.3 Multi-Resolution Analysis (MRA). This benchmark computes adap-

tively the order-10 multiwavelet [134, 135] representation of 3-D Gaussian functions

(exponent 30, 000) to precision of 10�8 with Gaussian centers distributed randomly

in a [�6, 6]3 volume. This random distribution leads to substantial clustering and

hence load imbalance that is only partially addressed by over-decomposition using a

task ID map that randomly distributes function tree nodes (and their children) across

processes at some target level of refinement. Empirically, the load imbalance is o↵set

by the reduction of communication.

The MRA computation on each function commences by adaptively projecting

into the multiwavelet basis by recurring down until the local representation error is

below the truncation threshold. The resulting data structure is a 3D spatial tree

that extends down about 6 levels of adaptive dyadic refinement. Subsequently, the

126

fast wavelet transform (compression) and inverse transform (reconstruction) are per-

formed and the norm of the function is also computed for verification purposes. Work

and data flow down the tree in the projection and reconstruction steps, and flows up

the tree for compression. In the compression operation, a parent node needs coe�-

cients from its 23 = 8 children. The code is templated by the number of dimensions,

making this a perfect use case of streaming terminals so that a single terminal can

process children in arbitrary dimensions. Prior to streaming terminals, the example

had to employ complex C++ templates to manage a variable and potentially large

number of terminals. The native MADNESS implementation computes on each tree

in parallel, but there is an explicit barrier after each computational step (projection,

compression, reconstruction, norm) as the in-memory data structure is completed.

In contrast, the TTG implementation eliminates all inessential barriers and streams

data through the entire DAG and never stores an explicit representation of all trees.

The transition between algorithms that ascend and descend implies that there is a

moment for each tree for which all data is stored (as arguments of pending tasks),

but computation on other trees proceeds independently in the TTG implementation.

The streaming terminal feature is essential for expressing the MRA numerical

calculus algorithms, such as the compress operation, in a manner independent of the

number of dimensions d. Since the number of inputs to a compress task is 2d, changing

d would require changing the flowgraph. Listing 11 shows how streaming terminal can

be used to implement accumulation of the input node data sent to the compress task.

Each compress task expects exactly 2d inputs, hence the size of the stream expected

by the input terminal can be passed directly to the set input reducer method.

Figures 6.6 and 6.7 show the results of strong-scaling MRA using TTG and

native MADNESS on Seawulf up to 32 nodes and on Hawk up to 64 nodes. TTG over

PaRSEC clearly outperforms TTG over MADNESS and native MADNESS on both

127

1reduce_leaves_tt ->template set_input_reducer <0>(

2/* the reduction operator */

3[](FunctionReconstructedNode <T,K,NDIM > &&a,

4FunctionReconstructedNode <T,K,NDIM > &&b)

5{

6a.neighbor_coeffs[a.key.childindex ()] = a.coeffs;

7a.is_neighbor_leaf[a.key.childindex ()] = a.is_leaf;

8a.neighbor_sum[a.key.childindex ()] = a.sum;

9a.neighbor_coeffs[b.key.childindex ()] = b.coeffs;

10a.is_neighbor_leaf[b.key.childindex ()] = b.is_leaf;

11a.neighbor_sum[b.key.childindex ()] = b.sum;

12return a;

13},

141 << NDIM /* the number of reductions to perform */

15);

Listing 11. Accumulation of child nodes using a streaming terminal on input terminal
0 of the reduce leaves tt task template in the MRA benchmark.

Figure 6.6. Strong scaling MRA: 4 to 32 nodes with 120 functions on Seawulf , using
2 processes per node with 20 threads each.

128

Figure 6.7. Strong scaling MRA: 8 to 64 nodes with 400 functions on Hawk , using 8
processes per node with 16 threads each.

machines. The benchmark uses plain-old-data (POD) structures for node data and

the performance of TTG over MADNESS su↵ers due to data copies and high commu-

nication overhead as compared to the e�cient communication in TTG over PaRSEC

which avoids unnecessary copying of data. The native MADNESS implementation

scales up to 32 nodes on both machines. However, it reaches the scalability limit

due to the existence of barriers at every step of the computation and re-allocation

of data. We are investigating methods for reducing the communication overheads in

TTG over MADNESS.

6.4 Summary

Template Task Graph is an emerging flowgraph programming model that aims

to lower the complexity of performance-portable parallel programming of (especially,

irregular) complex applications by abstracting many details of the underlying task

scheduling and execution as well as associated data and resource management. As

a part of this work, we introduced streaming terminals, pull terminals and pure

tasks functionality which lays the foundation for supporting heterogenous architec-

129

tures using TTG. Our evaluations show high performance and scalability, on par and

sometimes exceeding the performance of state of the art implementations in other

programming paradigms.

130

CHAPTER 7

RELATED WORK

In this chapter, we talk about existing work in the areas of many task computing,

concurrent data structures and parallel runtime systems and how they di↵er from our

work.

7.1 Many Task Computing

In the recent years, the use of scheduler based on many-core or heterogeneous

architectures for general or for specific applications has been widely studied [136, 137].

S. Yamagiwa et al. [136] propose a GPGPU streaming based on distributed com-

puting environment; S. Nakagawa et al. [137] provide a new middleware capable of

out-of-order execution of works and data transfers using stream processing. Other

works [138, 139] follow a similar strategy based on streaming to minimize data trans-

fers overhead. S. Kato et al. [140] introduce TimeGraph, a GPU scheduler composed

by two di↵erent GPU scheduling policies which allow to interrupt the low priority

tasks execution in order to execute higher priority tasks within a real-time multi-

tasking environments for video applications. Similar to the previously mentioned

works and considering that the GPUs in a cluster are not usually fully utilized, Du-

ato et al. [141] present their rCUDA, a middleware that enables CUDA remoting

over a commodity network by allowing to use CUDA-compatible GPUs installed in

a remote computer, as, they were installed in the computer where the application

is being executed. Also, V. J. Jiménez et al. [142] present a sort of predictive run-

time scheduling which supports several scheduling algorithms in order to choose the

appropriate platform (Multicore, GPU, . . .) in which the algorithm would be better

executed, resulting in almost fully usage of CPU/GPU-like systems, with a peak time

reduction of 40% with respect to only using the GPU. Basically most of the afore-

mentioned works take advantage of overlapping memory transfers among CPU and

131

GPU memories with single kernel executions.

With the aim of exploiting MTC on many-core, other authors [143, 144] have

studied the e�ciency of this new feature. Merged task, maybe the first MTC ap-

proach on GPUs, allows us to run several independent kernels over the same GPU

simultaneously. It was presented by M. Guevara et al. [145] and P. Valero-Lara et

al. [146]. Posteriorly, C. Gregg et al. [147] and K. Zhang et al. [148] included a sched-

uler which can select the best matching among tasks before running. Additionally, P.

Valero-Lara et al. [149] applied this strategy to di↵erent GPU architectures to obtain

the most convenient architectural features for running concurrent kernels. After that,

in [150], it is proposed a new heterogeneous (CPU-GPU) scheduler in which groups of

independent blocks of tasks were e�ciently managed to fully use CPU-GPU and re-

duce the overhead of memory transfers. More recently, S. Krieder et al. [23] presented

GeMTC, a CUDA based framework which allows MTC workloads to run e�ciently

on NVIDIA’s GPUs. P. Nookala et al. [151] adapted this framework (GeMTC) to ef-

ficiently use the particular features of Intel Xeon Phi and evaluate MTC applications

on Intel accelerators. The above mentioned works relate to our early work using Intel

Xeon Phis which motivated us to explore parallel runtime systems for fine-grained

tasking in general.

7.2 Concurrent queues

Several researchers have proposed concurrent queue implementations. Scog-

land et al. [152] presented the characterization of various concurrent queues on many-

core architectures and proposed a high-throughput queue specifically engineered for

many-core architectures. Schweizer et al. [71] performed detailed analysis of x86

atomic instructions on various architectures and discovered that atomics prevent in-

struction level parallelism and that latency depends on architectural properties such

as the coherence state of the accessed cache lines. Scott et al. [73] proposed a lock-

132

free queue algorithm for machines that provide atomic primitives. Cache-friendly

concurrent lock-free queue (CFCLF) [74] is a lock-free queue that employs a matrix

for the queue structure, reducing core-to-core communication overhead and making

it cache e�cient. BQ [75] is a lock-free queue that exploits batching to gain better

performance. Morrison et al. [153] proposed a concurrent nonblocking linearizable

FIFO queue using atomic FAA that outperforms CAS based implementations by up

to 2⇥.

7.3 Parallel runtime systems

Most parallel runtime systems and execution models, such as OpenMP [50],

Charm++ [154], and Swift/T [14], use concurrent queues for sharing data be-

tween threads or processes. OpenMP’s task construct [155] enables task-based paral-

lelism. Charm++ demonstrates about 10-20% improvement in performance by using

optimization techniques like lock-free queues, CPU a�nity, and memory manage-

ment [156]. Recently, Cpp-taskflow [17] emerged as an alternative to OpenMP task

parallelism for C++.

Numerous e↵orts to provide a similar level of abstraction via a fine-grain task-

based dataflow programming exist, adding to those that have transitioned from a

grid-based workflow toward a task-based environment. Some of the recent task-

based runtimes like Legion [125], StarPU [157], HPX [158], CnC [127], OmpSs [159],

DASH [160], PaRSEC [133] and MADNESS [131] act as an intermediary between the

hardware resources and a programming paradigm, language or API to isolate applica-

tion developers from the underlying hardware. Some of these programming interfaces

have nascent support for distributed execution, e.g., recent versions of the OpenMP

specification [12] introduce the task and depend clauses which can be employed to

express control flow graphs. OpenMP is widely used and supports homogeneous,

shared memory systems, and its target extension to support accelerators is quickly

133

gaining traction. A limitation of the OpenMP model is that distributed memory

and inter-node communication need to be explicitly implemented with the use of an

external communication library.

In OmpSs, tasks are discovered by a single thread and executed by worker

threads. The model allows nesting of tasks in individual nodes to relieve the main

thread; however it may su↵er from scalability issues on large scale distributed systems.

HPX aims to overcome these challenges by replacing explicit communica-

tions and synchronizations with asynchronous communication between nodes and

lightweight control objects, allowing applications to exploit fine-grained parallelism

within the context of a global address space.

Legion, on the other hand, describes logical regions of data and uses those

regions to express the dataflow and dependencies between tasks, and defers to its

underlying runtime, REALM [161], the scheduling of tasks, and data movement across

distributed heterogeneous nodes.

To the best of our knowledge, we are the first to explore lock-less strategies in

concurrent programming where data can be carefully manipulated to avoid the use of

locks. Furthermore, existing runtime systems have not focused on the e�cient support

of fine-grained tasks, resulting in sub-optimal application execution, a problem that

will only get worse with larger many-core architectures.

7.4 Load Balancing

Several researchers have proposed various load balancing mechanisms [48, 49].

Blumofe and Leiserson et al. introduced work stealing and proved that it is superior

to work sharing [68]. Quintin et al. proposed hierarchical work stealing for exploiting

data locality to achieve speed up compared to classical work stealing algorithms [162].

Various parameters of work stealing have been explored in the literature and Michael

134

et al. showed that two random choices for work stealing exponentially improves per-

formance and is su�cient to achieve good load balancing [66]. Several applications

implement their own load balancing mechanisms in order to achieve ideal perfor-

mance on various architectures. Unbalanced Tree Search benchmark [67] implements

a work stealing mechanism for e�cient dynamic load balancing and by varying key

work stealing parameters, the authors expose important tradeo↵s between the gran-

ularity of load balance, the degree of parallelism, and communication costs. Recently

Shiina et al. introduced “Almost Deterministic Work Stealing” which addresses the

issue of data locality by making scheduling almost deterministic [163]. All mecha-

nisms proposed in the literature for multi-threaded runtimes rely on concurrent data

structures and synchronization mechanisms for achieving dynamic load balancing. In

contrast, our work explores lock-less techniques for achieving comparable dynamic

load balancing by using non-atomic memory updates.

7.5 Dataflow Programming

Sbirlea et al. introduced an intermediate graph representation for macro-data-

flow programs (DFGR). It is an extension to the CnC model [164]. DFGR enables

programmers to express programs at a high level with data-flow graphs as an in-

termediate representation. DFGR graphs consist of step nodes for computation and

item nodes for data, which are partitioned into collections by unique tag. DFGR

improves the e�ciency by expressing what items are read and written to each step

(through tag functions [165]). It is used as an abstraction to map the application for

extreme-scale systems and run on heterogeneous architectures including GPUs/FP-

GAs, distributed-memory clusters, etc.

Later, they have proposed a polyhedral compiler framework, Data-Flow Graph

Language (DFGL) which uses DFGR to represent dependencies [166]. The framework

applies polyhedral analysis on dependencies to perform two important legality checks

135

(single assignment rule and potential deadlocks) as well as applying automatic loop

transformation, tiling, and code generation of parallel loops with coarse-grained and

fine-grained synchronizations. DFGL framework compiles the input graph program

into Habanero-C, which is an extension to C language built on top of CnC. The

framework uses the ROSE compiler [167] to also generate OpenMP-4 compatible code,

including task-level parallelism. They used Smith-Waterman, Cholesky factorization,

Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) and

some stencil kernels from PolyBench as their benchmarks. Their experimental results

show that the DFGL versions optimized by their framework can deliver up to 6.9⇥

performance improvement relative to OpenMP versions of the benchmarks.

There are several experimental studies that have been done illustrating per-

formance and scalability of the CnC model. Chandramowlishwaran et al. [168]

evaluated two dense linear algebra algorithms: (1) asynchronous-parallel Cholesky

factorization and (2) ”higher-level” partly-asynchronous generalized eigensolver for

dense symmetric matrices. For both benchmarks, they showed that their CnC imple-

mentations match or exceed the Intel Math Kernel Library (MKL) implementation.

They also compared their CnC implementations with other parallel models including

ScaLAPACK with shared-memory MPI, OpenMP, Cilk+, and PLASMA 2.0, on Intel

Harpertown, Nehalem, and AMD Barcelona systems. For the C++ implementation,

Budimlić et al. [111] has used Dedup, a benchmark from PARSEC benchmark suite

[169] and compared the performance of CnC implementation and pthread implemen-

tation. They showed that the CnC implementation outperforms the pthread imple-

mentation for two reasons. First, in the pthread implementation, the load imbalance

exists between the stages of the computation. Second, the pthread implementation,

unlike the CnC implementation, has data locality (to a thread) issue. They also

considered Cholesky Factorization as another case study and showed speed-up with

respect to increase in the number of threads. Liu and Kulkarni implemented the

136

proxy application, LULESH in CnC model and have shown that with step fusion

and tiling optimizations, the implementation outperforms the original implementa-

tion with good scalability (38⇥ speed up) for up to 48 processor machines [170].

7.6 Flowgraph Programming

Flowgraphs, while ubiquitous as general models of computation (e.g., in com-

pilers), have recently become featured as first-class concepts in programming mod-

els and languages aimed at high performance. Control-flow graph models include

Taskflow [171], CUDA graphs [172]; TensorFlow [173] and Dask [174] APIs support

dataflow graphs; Intel TBB [175] includes support for both control flow and dataflow

graphs; CnC [127] and Legion [125] can support control or dataflow graphs through

data partitioning and mapping. The most direct influence on TTG was Parametrized

Task Graph, a programming model supported by PaRSEC in which computation is

represented as flows of tuple-indexed data through an operation graph. Almost all of

these programming models are implemented as C++ libraries. Most implementations

limit the support for flowgraphs to shared memory setups, or use explicit communi-

cations transformed in tasks to simulate the flowgraph in a distributed setting. The

Hume flowgraph DSL focuses on real-time embedded systems [176]. The S-NET

DSL [177] is an orchestration language of tasks, strictly decoupling implementation

and parallelism.

137

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this work, we explored task-based parallel programming in shared-memory

and distributed-memory environments. We presented approaches to achieve lightweight

tasking in today’s parallel runtime systems and designed X-OpenMP as a prototype.

We believe that X-OpenMP creates the opportunity to transparently accelerate many

applications with fine-grained parallelism. Our work in this area of task-based paral-

lel runtime systems creates new avenues for exploring lock-less techniques in the High

Performance Computing space. We plan to evaluate real-world scientific applications

in Computational Biology, Materials Science, Computational Chemistry, and Astro-

physics using X-OpenMP to demonstrate the performance improvements achievable

in parallel runtimes as a step towards exascale goals.

With emerging heterogeneous architectures, there exists a significant gap be-

tween programmer productivity and programmability today. It takes significant e↵ort

to write a single program that can execute seamlessly on CPUs, GPUs, FPGAs, etc.

We presented TTG with a goal to bridge this gap of programmer productivity and

programmability. We have extended prior work in TTG and added the ability for

various types of terminals and pure tasks which serve as a foundation for supporting

heterogenous architectures in the near future. Several

Our work in X-OpenMP opens up avenues for exploring lightweight tasking

in several tasking runtimes and domains. We plan to explore applications that can

be over-decomposed into many finer-grained tasks by rethinking the algorithms to

achieve improved performance using the techniques presented in this paper. We also

would like to investigate the applicability of lock-less programming techniques in Intel

TBB [175], GNU OpenMP [51], as well as the Parsl parallel programming library [13]

in order to further broaden the applications that could take advantage of the proposed

138

techniques.

With respect to TTG, a big body of current work is about enabling TTG

with MADNESS backend to run on GPUs. We are looking into implementing data

structures for e�cient execution on NVIDIA as well as AMD GPUs using Unified

Memory as the initial target. Future work will also consider extensions to simplify

data injection in the DAG of tasks, to better manage memory and network utilization,

to provide some degree of Quality-of-Service with regard to the computation and

communication scheduling, and to support heterogeneous platforms. We are also

interested in adding more runtime backends to TTG in future with X-OpenMP being

one of the options.

This high-risk/high-reward research is geared towards yielding transformative

improvements in the ease and e�ciency of programming parallel machines at every

scale. This project has made contributions that realized productive, implicitly parallel

high-level languages optimized for single node deployments with many-core architec-

tures to support fine-grained parallelism measured in cycles. Scientist should be able

to write a program once, run it at any suitable scale, and have it seamlessly use the

most appropriate granularity for each component of the hardware. We anticipate that

the innovations shown through this work is broadly applicable to improving existing

parallel programming systems such as OpenMP, OneAPI, and Parsl, in terms of ef-

ficiency in executing fine grained parallelism. Target hardware included Intel/AMD

x86, ThunderX/2 ARM, and IBM Power9. By enabling e�cient support of fine-

grained parallelism across the growing range of hardware and scales seen in modern

and future architectures, we believe this work will enhance the productivity of parallel

programmers for developing performance-portable applications as processor architec-

tures push towards ever growing number of processor cores and hardware threads.

139

BIBLIOGRAPHY

[1] J. Je↵ers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Pro-
gramming. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1st ed.,
2013.

[2] J. Schuchart, P. Nookala, M. M. Javanmard, T. Herault, E. F. Valeev,
G. Bosilca, and R. J. Harrison, “Generalized flow-graph programming us-
ing template task-graphs: Initial implementation and assessment,” in 2022
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 839–849, IEEE, ©[IEEE. Reprinted, with permission, from Joseph
Schuchart, Mohammad Mahdi, Thomas Herault, Edward F Valeev, George
Bosilca, Robert J Harrison, Generalized Flow-Graph Programming Using Tem-
plate Task-Graphs: Initial Implementation and Assessment, IEEE International
Parallel and Distributed Processing Symposium 2022], 2022.

[3] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu,
R. Colwell, W. Dally, and J. Dongarra, “DOE advanced scientific computing
advisory subcommittee (ASCAC) report: top ten Exascale research challenges,”
tech. rep., USDOE O�ce of Science (SC)(United States), 2014.

[4] M. A. Heroux, L. McInnes, D. Bernholdt, A. Dubey, E. Gonsiorowski, O. Mar-
ques, J. D. Moulton, B. Norris, E. Raybourn, and S. Balay, “Advancing scientific
productivity through better scientific software: Developer productivity and soft-
ware sustainability report,” tech. rep., Oak Ridge National Lab.(ORNL), Oak
Ridge, TN (United States), 2020.

[5] D. Geer, “Industry trends: Chip makers turn to multicore processors,” Com-
puter, vol. 38, no. 5, pp. 11–13, 2005.

[6] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Proceedings of the 38th
Annual International Symposium on Computer Architecture, ISCA ’11, (New
York, NY, USA), pp. 365–376, ACM, 2011.

[7] M. Själander, M. Martonosi, and S. Kaxiras, Power-E�cient Computer Ar-
chitectures: Recent Advances. Synthesis Lectures on Computer Architecture,
Morgan and Claypool Publishers, Dec. 2014.

[8] P. Valero-Lara, “Multi-gpu acceleration of dartel (early detection of
alzheimer),” in Cluster Computing (CLUSTER), 2014 IEEE International Con-
ference on, pp. 346–354, Sept 2014.

[9] P. Valero-Lara, “A gpu approach for accelerating 3d deformable registration
(dartel) on brain biomedical images,” in Proceedings of the 20th European MPI
Users’ Group Meeting, EuroMPI ’13, (New York, NY, USA), pp. 187–192,
ACM, 2013.

[10] P. Valero, J. L. Sánchez, D. Cazorla, and E. Arias, “A gpu-based implemen-
tation of the mrf algorithm in itk package,” The Journal of Supercomputing,
vol. 58, no. 3, pp. 403–410, 2011.

[11] TOP500.org, “TOP500 List June 2015.”

140

[12] OpenMP Architecture Review Board, “OpenMP Application Programming In-
terface. Version 5.2.,” tech. rep., Nov. 2021.

[13] Y. Babuji, A. Woodard, B. Cli↵ord, Z. Li, D. S. Katz, R. Chard, R. Kumar,
L. Lacinski, J. Wozniak, I. Foster, M. Wilde, and K. Chard., “Parsl: Pervasive
parallel programming in python,” in HPDC’19, (New York, NY, USA), ACM,
June 2019.

[14] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. L. Lusk, and I. T.
Foster, “Swift/t: scalable data flow programming for many-task applications,”
in PPOPP’13, 2013.

[15] M. Wilde, I. Raicu, A. Espinosa, Z. Zhang, B. Cli↵ord, M. Hategan, S. Kenny,
K. Iskra, P. Beckman, and I. Foster, “Extreme-scale scripting: Opportunities
for large task-parallel applications on petascale computers,” Journal of Physics:
Conference Series, vol. 180, p. 012046, Jul 2009.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the cilk-5
multithreaded language,” in PLDI’98, pp. 212–223, 1998.

[17] G. G. Tsung-Wei Huang, Chun-Xun Lin and M. Wong, “Cpp-Taskflow: Fast
task-based parallel programming using modern c++,” IPDPS’19, pp. 974–983,
2019.

[18] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and su-
percomputers,” in 2008 workshop on many-task computing on grids and super-
computers, pp. 1–11, IEEE, 2008.

[19] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: A many-core x86 architecture for visual computing,”
in ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, (New York, NY, USA),
pp. 18:1–18:15, ACM, 2008.

[20] P. Nookala, S. Dimitropoulos, K. Stough, and I. Raicu, “Evaluating the sup-
port of mtc applications on intel xeon phi many-core accelerators,” in 2015
IEEE International Conference on Cluster Computing, pp. 510–511, IEEE,
©[2015] IEEE. Reprinted, with permission, from [Serapheim Dimitropoulos,
Karl Stough, Ioan Raicu, Evaluating the support of mtc applications on in-
tel xeon phi many-core accelerators, IEEE International Conference on Cluster
Computing 2015], 2015.

[21] P. Valero-Lara, P. Nookala, F. L. Pelayo, J. Jansson, S. Dimitropoulos, and
I. Raicu, “Many-task computing on many-core architectures,” Scalable Com-
puting: Practice and Experience, vol. 17, no. 1, pp. 32–46, 2016.

[22] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz, B. Grimmer,
I. T. Foster, and I. Raicu, “Design and evaluation of the gemtc framework for
gpu-enabled many-task computing,” HPDC’14, 2014.

[23] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz, B. Grimmer,
I. T. Foster, and I. Raicu, “Design and evaluation of the gemtc framework for
gpu-enabled many-task computing,” in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing, HPDC
’14, (New York, NY, USA), pp. 153–164, ACM, 2014.

141

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” in OSDI’04, (San Francisco, CA), pp. 137–150, 2004.

[25] M. Zaharia, R. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
and I. Stoica, “Apache spark: A unified engine for big data processing,” CACM,
vol. 59, pp. 56–65, 11 2016.

[26] K. Sato, C. Young, and D. Patterson, “An in-depth look at google’s first tensor
processing unit (tpu),” 2017.

[27] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-
memory programming,” IEEE Computational Science and Engineering, vol. 5,
no. 1, 1998.

[28] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and I. Stoica, “The case for tiny tasks in compute clusters,” in
HotOS’13, 2013.

[29] D. R. Butenhof, Programming with POSIX threads. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997.

[30] M. Khiszinsky, “C++ library of lock-free containers and safe memory reclama-
tion schema,” 2006.

[31] I. Rickards, J. Donner, S. Vigna, W. Brown, and C. via the C Programming Fo-
rum, “Liblfds,” 2009.

[32] S. A. Bahra., “Concurrency kit,” 2011.

[33] H. Sutter, “Lock-free code: A false sense of security,” 2008.

[34] H. Sutter., “Writing lock-free code: A corrected queue,” 2008.

[35] H. Sutter., “Writing a generalized concurrent queue,” 2008.

[36] H. Sutter., “The trouble with locks,” 2005.

[37] R. Rodrigues and S. Bhogavilli, “Lockless queues,” May 2012. Patent No.
US8443375B2, Filed Dec 14th., 2009, Issued May. 14th., 2012.

[38] A. I. Orhean, A. Ballmer, T. Koehring, K. Hale, X.-H. Sun, O. Trigalo, N. Har-
davellas, S. Kapoor, and I. Raicu, “Mystic: Programmable systems research
testbed to explore a stack-wide adaptive system fabric,” in GCASR’19, 2019.

[39] P. Nookala, P. Dinda, K. C. Hale, K. Chard, and I. Raicu, “Enabling extremely
fine-grained parallelism via scalable concurrent queues on modern many-core
architectures,” in 29th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1–
8, IEEE, ©[2021] IEEE. Reprinted, with permission, from [Peter Dinda, Kyle
C Hale, Kyle Chard, Ioan Raicu, Enabling Extremely Fine-grained Parallelism
via Scalable Concurrent Queues on Modern Many-core Architectures, 29th In-
ternational Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems 2021], 2021.

[40] P. Nookala, P. Dinda, K. C. Hale, K. Chard, and I. Raicu, “Xqueue - a lock-
less queueing mechanism for task-parallel runtime systems (under review),” in
Transactions on Emerging Topics in Computing (TETC), IEEE, 2023.

142

[41] “Intel® 64 and ia-32 architectures software developer’s manual,” 2018.

[42] P. Nookala and I. Raicu, “Xtask - extreme fine-grained concurrent task invo-
cation runtime,” in Illinois Institute of Technology, Department of Computer
Science, PhD Oral Qualifier, 2017.

[43] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Yamazaki,
A. YarKhan, M. Abalenkovs, N. Bagherpour, et al., “Plasma: Parallel linear
algebra software for multicore using openmp,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 45, no. 2, pp. 1–35, 2019.

[44] J. Wang, K. Zhang, X. Tang, and B. Hua, “B-queue: E�cient and practical
queuing for fast core-to-core communication,” IJPP, vol. 41, pp. 137–159, Feb
2013.

[45] K. Mitropoulou, V. Porpodas, X. Zhang, and T. M. Jones, “Lynx: Using os and
hardware support for fast fine-grained inter-core communication,” in ICS’16,
2016.

[46] X. Meng, X. Zeng, X. Chen, and X. Ye, “A cache-friendly concurrent lock-free
queue for e�cient inter-core communication,” in ICCSN’17, IEEE, 2017.

[47] S. Arnautov, P. Felber, C. Fetzer, and B. Trach, “Ffq: A fast single-
producer/multiple-consumer concurrent fifo queue,” IEEE, 2017.

[48] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
“Scalable work stealing.,” in SC’09, 2009.

[49] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first schedul-
ing policies for terminally strict parallel programs,” in Proc. of the 23rd IEEE
International Parallel and Distributed Processing Symposium, vol. 10, 2009.

[50] O. A. R. Board, “Openmp®: Support for the openmp language.”

[51] G. team, “Gomp: An openmp implementation for gcc.”

[52] A. Podobas, M. Brorsson, and V. Vlassov, “Scheduling for improved data-driven
task performance with fast dependency resolution,” in IWOMP’14, (Salvador,
Brazil), pp. 45–57, Springer, September 2014.

[53] E. W. Dijkstra, “Solution of a problem in concurrent programming control,” in
CACM 1965, vol. 8, p. 569, 1965.

[54] J. D. McCalpin et al., “Memory bandwidth and machine balance in current
high performance computers,” IEEE computer society technical committee on
computer architecture (TCCA) newsletter, vol. 2, no. 19-25, 1995.

[55] “Intel® memory latency checker v3.9a.” https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-
memory-latency-checker.html. Accessed: 2022-10-25.

[56] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade�, “Barcelona
openmp tasks suite: A set of benchmarks targeting the exploitation of task
parallelism in openmp.,” in ICPP’09, pp. 124–131, 2009.

[57] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-first
search,” in SC’12, pp. 1–10, Nov 2012.

143

[58] S. R. Das and R. M. Fujimoto, “A performance study of the cancelback protocol
for time warp,” in SIGSIM Simul., vol. 23, pp. 135–142, 1993.

[59] P. Nookala, Z. Ahmad, M. M. Javanmard, M. Kong, R. Chowdhury, and R. Har-
rison, “Understanding Recursive Divide-and-Conquer Dynamic Programs in
Fork-Join and Data-Flow Execution Models,” in 2021 IEEE International Par-
allel and Distributed Processing Symposium Workshops (IPDPSW), pp. 407–
416, IEEE, ©[2015] IEEE. Reprinted, with permission, from [Ahmad, Zafar
and Javanmard, Mohammad Mahdi and Kong, Martin and Chowdhury, Rezaul
and Harrison, Robert, Understanding Recursive Divide-and-Conquer Dynamic
Programs in Fork-Join and Data-Flow Execution Models, IEEE International
Parallel and Distributed Processing Symposium Workshops 2021], 2021.

[60] I. S. Du↵, M. A. Heroux, and R. Pozo, “An overview of the sparse basic linear
algebra subprograms: The new standard from the blas technical forum,” ACM
Transactions on Mathematical Software (TOMS), vol. 28, no. 2, pp. 239–267,
2002.

[61] C. Lehman, P. Nookala, and I. Raicu, “Scalable load-balancing concurrent
queues in modern many-core architectures,” in SC19, (Denver, CO), ACM,
2019.

[62] U. A. Acar, A. Charguéraud, S. Muller, and M. Rainey, “Atomic Read-Modify-
Write Operations are Unnecessary for Shared-Memory Work Stealing,” research
report, Sept. 2013.

[63] P. Nookala, P. Dinda, K. C. Hale, K. Chard, and I. Raicu, “Enabling extremely
fine-grained parallelism via scalable concurrent queues on modern many-core
architectures,” in 2021 29th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS),
pp. 1–8, IEEE, 2021.

[64] P. Nookala, K. Chard, and I. Raicu, “X-openmp – extreme fine-grained tasking
using lock-less work stealing (under review),” in Transactions on Parallel and
Distributed Systems (TPDS), IEEE, 2023.

[65] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for mul-
tiprogrammed multiprocessors,” Theory of computing systems, vol. 34, no. 2,
pp. 115–144, 2001.

[66] M. Mitzenmacher, “The power of two choices in randomized load balanc-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 10,
pp. 1094–1104, 2001.

[67] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng,
“Uts: An unbalanced tree search benchmark,” in International Workshop on
Languages and Compilers for Parallel Computing, pp. 235–250, Springer, 2006.

[68] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations
by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 720–748,
1999.

[69] D. Tudor, R. Guerraoui, and V. Trigonakis, “Everything you always wanted to
know about synchronization but were afraid to ask.,” in SOSP’13, 2013.

[70] M. L. S. John M. Mellor-Crummey, “Algorithms for scalable synchronization
on shared-memory multiprocessors,” in TOCS’91, 1991.

144

[71] H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of atomic oper-
ations on modern architectures,” in 2015 International Conference on Parallel
Architecture and Compilation (PACT), pp. 445–456, IEEE, 2015.

[72] M. Chabbi, A. Amer, S. Wen, and X. Liu, “An e�cient abortable-locking proto-
col for multi-level numa systems,” in Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 61–74,
2017.

[73] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms,” in PODC’96, 1996.

[74] X. Meng, X. Zeng, X. Chen, and X. Ye, “A cache-friendly concurrent lock-free
queue for e�cient inter-core communication,” in ICCSN’17, 2017.

[75] G. Milman, A. Kogan, Y. Lev, V. Luchangco, and E. Petrank, “Bq: A lock-free
queue with batching,” in SPAA’18, pp. 99–109, 2018.

[76] H. Sutter, “The trouble with locks,” 2005.

[77] K. Wang, A. Kulkarni, M. Lang, D. Arnold, and I. Raicu, “Exploring the de-
sign tradeo↵s for extreme-scale high-performance computing system software,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 4, pp. 1070–
1084, 2015.

[78] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren, “Intro-
duction to upc and language specification,” Tech. Rep. CCS-TR-99-157, IDA
Center for Computing Sciences, May 1999.

[79] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-tso: a
rigorous and usable programmer’s model for x86 multiprocessors,” Communi-
cations of the ACM, vol. 53, no. 7, pp. 89–97, 2010.

[80] B.-J. Kwak, N.-O. Song, and L. E. Miller, “Performance analysis of exponential
backo↵,” IEEE/ACM transactions on networking, vol. 13, no. 2, pp. 343–355,
2005.

[81] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite for openmp
tasks,” in International Workshop on OpenMP, pp. 271–274, Springer, 2012.

[82] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turnbull,
“Implementation of strassen’s algorithm for matrix multiplication,” in Super-
computing’96: Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting, pp. 32–32, IEEE, 1996.

[83] J. A. Calvin, C. A. Lewis, and E. F. Valeev, “Scalable task-based algorithm for
multiplication of block-rank-sparse matrices,” in Proceedings of the 5th Work-
shop on Irregular Applications: Architectures and Algorithms, pp. 1–8, 2015.

[84] R. Bellman, “The theory of dynamic programming,” tech. rep., Rand corp santa
monica ca, 1954.

[85] S. S. Skiena, The algorithm design manual: Text, vol. 1. Springer Science &
Business Media, 1998.

[86] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2009.

145

[87] V. T. Paschos, Concepts of Combinatorial Optimization, Volume 1. John Wiley
& Sons, 2012.

[88] D. Gusfield, Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge university press, 1997.

[89] J. Klepeis, M. Ierapetritou, and C. Floudas, “Protein folding and peptide dock-
ing: A molecular modeling and global optimization approach,” Computers &
chemical engineering, vol. 22, pp. S3–S10, 1998.

[90] G. Venkataraman, S. Sahni, and S. Mukhopadhyaya, “A blocked all-pairs
shortest-paths algorithm,” Journal of Experimental Algorithmics (JEA), vol. 8,
pp. 2–2, 2003.

[91] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
PLDI’1991, pp. 30–44, 1991.

[92] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data locality with loop
transformations,” ACM TOPLAS, vol. 18, no. 4, pp. 424–453, 1996.

[93] F. Irigoin and R. Triolet, “Supernode partitioning,” in POPL’1988, pp. 319–
329, 1988.

[94] R. Chowdhury, P. Ganapathi, J. J. Tithi, C. Bachmeier, B. C. Kuszmaul, C. E.
Leiserson, A. Solar-Lezama, and Y. Tang, “Autogen: Automatic discovery of
cache-oblivious parallel recursive algorithms for solving dynamic programs,”
ACM SIGPLAN Notices, vol. 51, no. 8, pp. 1–12, 2016.

[95] R. A. Chowdhury and V. Ramachandran, “Cache-oblivious dynamic program-
ming,” in Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 591–600, 2006.

[96] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in FOCS’1999, IEEE, 1999.

[97] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and
S. McCauley, “Cache-adaptive algorithms,” in SODA’14, 2014.

[98] M. M. Javanmard, P. Ganapathi, R. Das, Z. Ahmad, S. Tschudi, and
R. Chowdhury, “Toward e�cient architecture-independent algorithms for dy-
namic programs,” in International Conference on High Performance Comput-
ing, Springer, 2019.

[99] M. M. Javanmard, Z. Ahmad, M. Kong, L.-N. Pouchet, R. Chowdhury, and
R. Harrison, “Deriving parametric multi-way recursive divide-and-conquer dy-
namic programming algorithms using polyhedral compilers,” in Proceedings of
the 18th ACM/IEEE International Symposium on Code Generation and Opti-
mization, pp. 317–329, 2020.

[100] M. M. Javanmard, Z. Ahmad, J. Zola, L.-N. Pouchet, R. Chowdhury, and
R. Harrison, “E�cient execution of dynamic programming algorithms on apache
spark,” in CLUSTER’2020, pp. 337–348, IEEE, 2020.

[101] M. M. Javanmard, Parametric Multi-Way Recursive Divide-and-Conquer Algo-
rithms for Dynamic Programs. PhD thesis, State University of New York at
Stony Brook, 2020.

146

[102] M. M. Javanmard, P. Ganapathr, R. Das, Z. Ahmad, S. Tschudi, and R. Chowd-
hury, “Toward e�cient architecture-independent algorithms for dynamic pro-
grams: poster,” in Proceedings of the 24th Symposium on Principles and Prac-
tice of Parallel Programming, pp. 413–414, 2019.

[103] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi, “Provably e�cient
scheduling of cache-oblivious wavefront algorithms,” in Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 339–350,
2017.

[104] Y. Tang, R. You, H. Kan, J. J. Tithi, P. Ganapathi, and R. A. Chowdhury,
“Cache-oblivious wavefront: improving parallelism of recursive dynamic pro-
gramming algorithms without losing cache-e�ciency,” in Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pp. 205–214, 2015.

[105] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in SC’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and
Analysis, pp. 1–11, IEEE, 2012.

[106] M. Kong, L.-N. Pouchet, P. Sadayappan, and V. Sarkar, “Pipes: a language
and compiler for task-based programming on distributed-memory clusters,” in
SC’2016, pp. 456–467, IEEE, 2016.

[107] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical task-based
programming with starss,” The International Journal of High Performance
Computing Applications, vol. 23, no. 3, pp. 284–299, 2009.

[108] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: the new ad-
ventures of old x10,” in Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java, pp. 51–61, 2011.

[109] G. Bosilca, D. Genet, R. J. Harrison, T. Herault, M. M. Javanmard, S. Brook,
C. Peng, and E. Valeev, “Tensor contraction on distributed hybrid architectures
using a task-based runtime system,” 2018.

[110] A. Pop and A. Cohen, “Openstream: Expressiveness and data-flow compilation
of openmp streaming programs,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1–25, 2013.

[111] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Pals-
berg, D. Peixotto, V. Sarkar, F. Schlimbach, et al., “Concurrent collections,”
Scientific Programming, vol. 18, no. 3-4, pp. 203–217, 2010.

[112] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Don-
garra, “Parsec: Exploiting heterogeneity to enhance scalability,” Computing in
Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[113] G. Bosilca, R. J. Harrison, T. Herault, M. M. Javanmard, P. Nookala, and
E. F. Valeev, “The template task graph (ttg)-an emerging practical dataflow
programming paradigm for scientific simulation at extreme scale,” in 2020
IEEE/ACM Fifth International Workshop on Extreme Scale Programming Mod-
els and Middleware (ESPM2), pp. 1–7, IEEE, ©[IEEE. Reprinted, with per-
mission, from George Bosilca, Robert J Harrison, Thomas Herault, Mohammad
Mahdi Javanmard, Edward F Valeev, The Template Task Graph (TTG)-an

147

emerging practical dataflow programming paradigm for scientific simulation at
extreme scale, IEEE/ACM Fifth International Workshop on Extreme Scale Pro-
gramming Models and Middleware (ESPM2) 2020], 2020.

[114] “Intel (r) concurrent collections for c/c++.” https://icnc.github.io/.

[115] K. Knobe and C. D. O↵ner, “Tstreams: A model of parallel computation (pre-
liminary report),” tech. rep., Technical Report HPL-2004-78, HP Labs, 2004.

[116] Z. Budimlic, A. Chandramowlishwaran, K. Knobe, G. Lowney, V. Sarkar, and
L. Treggiari, “Multi-core implementations of the concurrent collections pro-
gramming model,” in CPC’09: 14th International Workshop on Compilers for
Parallel Computers, 2009.

[117] K. Knobe and M. G. Burke, “The tuning language for concurrent collections,”
in 16th Workshop on Compilers for Parallel Computing, 2012.

[118] P. Charles, C. Grotho↵, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. Von Praun, and V. Sarkar, “X10: an object-oriented approach to non-
uniform cluster computing,” Acm Sigplan Notices, vol. 40, no. 10, pp. 519–538,
2005.

[119] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg, “Mcrt-
malloc: a scalable transactional memory allocator,” in Proceedings of the 5th
international symposium on Memory management, pp. 74–83, 2006.

[120] R. A. Chowdhury and V. Ramachandran, “The cache-oblivious Gaussian Elimi-
nation Paradigm: theoretical framework, parallelization and experimental eval-
uation,” TCS, vol. 47, no. 4, pp. 878–919, 2010.

[121] T. F. Smith, M. S. Waterman, et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

[122] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[123] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the energy
cost of data movement in scientific applications,” in IISWC’2013, pp. 56–65,
IEEE, 2013.

[124] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance
data with papi-c,” in Tools for High Performance Computing 2009, pp. 157–
173, Springer, 2010.

[125] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in Supercomputing, 2012.

[126] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra, “PTG: An
abstraction for unhindered parallelism,” Proceedings of WOLFHPC’14, pp. 21–
30, 2014.

[127] Z. Budimlić and K. Knobe, “CnC: A Dependence Programming Model,” in
Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme
Scale Computing, DFM’16, ACM, 2016.

148

[128] J. Schuchart, P. Nookala, T. Herault, E. F. Valeev, and G. Bosilca, “Push-
ing the boundaries of small tasks: Scalable low-overhead data-flow program-
ming in ttg,” in 2022 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 117–128, ©[IEEE. Reprinted, with permission, from Joseph
Schuchart, Thomas Herault, Edward F Valeev, George Bosilca, Pushing the
Boundaries of Small Tasks: Scalable Low-Overhead Data-Flow Programming
in TTG, IEEE International Conference on Cluster Computing (CLUSTER)
2022], 2022.

[129] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Don-
garra, “Dague: A generic distributed dag engine for high performance comput-
ing,” Parallel Computing, vol. 38, no. 1-2, pp. 37–51, 2012.

[130] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra, “Ptg: an ab-
straction for unhindered parallelism,” in 2014 Fourth International Workshop
on Domain-Specific Languages and High-Level Frameworks for High Perfor-
mance Computing, pp. 21–30, IEEE, 2014.

[131] R. J. Harrison, G. Beylkin, F. A. Bischo↵, J. A. Calvin, G. I. Fann, J. Fosso-
Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C. Hill, J. Jia,
J. S. Kottmann, M. Y. Ou, L. E. Ratcli↵, M. G. Reuter, A. C. Richie-Halford,
N. A. Romero, H. Sekino, W. A. Shelton, B. E. Sundahl, W. S. Thornton,
E. F. Valeev, Á. Vázquez-Mayagoitia, N. Vence, and Y. Yokoi, “MADNESS:
A multiresolution, adaptive numerical environment for scientific simulation,”
SIAM J. Sci. Comput., vol. 38, no. 5, pp. S123–S142, 2016.

[132] J. Calvin and E. Valeev, “TiledArray: A massively-parallel, block-sparse ten-
sor framework written in C++.” https://github.com/ValeevGroup/tiledarray,
2018.

[133] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Dongarra,
“PaRSEC: A programming paradigm exploiting heterogeneity for enhancing
scalability,” Comp in Sc. and Eng., vol. 99, p. 1, 2013.

[134] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive Solution of Par-
tial Di↵erential Equations in Multiwavelet Bases,” Journal of Computational
Physics, vol. 182, no. 1, pp. 149–190, 2002.

[135] B. Alpert, Sparse Representation of Smooth Linear Operators. PhD thesis, Yale
University, 1990.

[136] S. Yamagiva and L. Sousa, “Design and implementation of a stream-based dis-
tributed computing platform using graphics processing units,” 4th Int. Conf.
Computing Frontiers (CF’07), pp. 197–204, 2007.

[137] S. Nakagawa, F. Ino, and K. Hagihara, “A middleware for e�cient stream
processing in cuda,” Computer Science - Research and Development, vol. 16,
pp. 197–204, 2010.

[138] J. Gómez-Luna, J. González-Linares, J. I. Benavides, and N. Guil, “Perfor-
mance models for cuda streams on nvidia geforce series,” J. Parallel Distrib.
Comput., vol. 72, no. 9, pp. 1117–1126, 2012.

[139] B. van Werkhoven, J. Maassen, F. Seinstra, and H. Bal, “Performance models
for cpu-gpu data transfers,” CCGRID, pp. 11–20, 2014.

149

[140] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph: Gpu
scheduling for real-time multi-tasking environments,” In Proceedings of the 2011
USENIX Annual Technical Conference (USENIX ATC’11), 2011.

[141] J. Duato, J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti, “Performance
of cuda virtualized remote gpus in high performance cluster,” the 40st Interna-
tional Conference on Parallel Processing (ICPP), pp. 365–374, 2011.

[142] V. J. Jiménez, L. Vilanova, I. Gelado, G. F. M. Gil, and N. Navarro, “Predic-
tive runtime code scheduling for heterogeneous architectures,” the 4th Interna-
tional Conference on High Performance Embedded Architectures and Compilers
(HiPEAC), pp. 19–33, 2009.

[143] J. Lima, T. Gautier, N. Maillard, and V. Danjean, “Exploiting concurrent gpu
operations for e�cient work stealing on multi-gpus,” 24rd International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 75–82, 2012.

[144] J. Kreutz, “Dgemm-tiled matrix multiplication with cuda,” Jülich
Forchungszentrum, 2013.

[145] M. A. Guevera, C. Gregg, K. Hazelwood, and K. Skadron, “Enabling task
parallelism in the cuda scheduler,” In Proceedings of the Workshop on Pro-
gramming Models for Emerging Architectures (PMEA), in conjunction with the
ACM/IEEE/IFIP International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), 2009.

[146] P. Valero-Lara and F. L. Pelayo, “Towards a more e�cient use of gpus,” Com-
putational Science and Its Applications (ICCSA) Workshops, pp. 3–9, 2011.

[147] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained resource shar-
ing for concurrent gpgpu kernels,” In Proceedings of the 4th USENIX Workshop
on Hot Topics in Parallelism (HotPar), 2012.

[148] Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the gpu,”
SIGPLAN Not., vol. 45, pp. 127–136, Jan. 2010.

[149] P. Valero-Lara and F. L. Pelayo, “Analysis in performance and new model for
multiple kernels executions on many-core architectures,” IEEE International
Conference on Cognitive Informatics (ICCI*CC), pp. 189–194, 2013.

[150] P. Valero-Lara and F. L. Pelayo, “Full-overlapped concurrent kernels,” in Archi-
tecture of Computing Systems. Proceedings, ARCS 2015-The 28th International
Conference on, pp. 1–8, VDE, 2015.

[151] P. Nookala, S. Dimitropoulos, K. Stough, and I. Raicu, “Evaluating the support
of mtc applications on intel xeon phi many-core accelerators,” in International
Conference on Cluster Computing, CLUSTER ’15, 2015.

[152] T. R. Scogland and W.-c. Feng, “Design and evaluation of scalable concurrent
queues for many-core architectures,” in Proceedings of the 6th ACM/SPEC In-
ternational Conference on Performance Engineering, pp. 63–74, 2015.

[153] A. Morrison and Y. Afek, “Fast concurrent queues for x86 processors,” in
PPOPP’13, (New York, NY, USA), pp. 103–112, PPoPP, 2013.

150

[154] L. Kalé and S. Krishnan, “Charm++: A portable concurrent object oriented
system based on c++,” in OOPSLA’93, 1993.

[155] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang, “The design of openmp tasks,” in TPDS’09,
vol. 20, IEEE, 2009.

[156] C. Mei, G. Zheng, F. Gioachin, and L. V. Kalé, “Optimizing a parallel runtime
system for multicore clusters: A case study,” in TeraGrid’10, 2010.

[157] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU: A unified
platform for task scheduling on heterogeneous multicore architectures,” Conc.
Comp. Pract. Exper., vol. 23, pp. 187–198, 2011.

[158] T. Heller, H. Kaiser, and K. Iglberger, “Application of the ParalleX execution
model to stencil-based problems,” Computer Science - Research and Develop-
ment, vol. 28, no. 2-3, pp. 253–261, 2013.

[159] A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta, “A Proposal
to Extend the OpenMP Tasking Model with Dependent Tasks,” Intl. Journal
of Parallel Programming, vol. 37, no. 3, pp. 292–305, 2009.

[160] J. Schuchart and J. Gracia, “Global Task Data-Dependencies in PGAS Appli-
cations,” in High Performance Computing, Springer International Publishing,
2019.

[161] S. J. Treichler, Realm: Performance Portability through Composable Asyn-
chrony. PhD thesis, Stanford University, 2014.

[162] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in European Con-
ference on Parallel Processing, pp. 217–229, Springer, 2010.

[163] S. Shiina and K. Taura, “Almost deterministic work stealing,” in Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–16, 2019.

[164] A. Sbirlea, L.-N. Pouchet, and V. Sarkar, “Dfgr an intermediate graph represen-
tation for macro-dataflow programs,” in 2014 Fourth Workshop on Data-Flow
Execution Models for Extreme Scale Computing, pp. 38–45, IEEE, 2014.

[165] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, and V. Sarkar, “Mapping a data-flow
programming model onto heterogeneous platforms,” ACM SIGPLAN Notices,
vol. 47, no. 5, pp. 61–70, 2012.

[166] A. Sb̂ırlea, J. Shirako, L.-N. Pouchet, and V. Sarkar, “Polyhedral optimizations
for a data-flow graph language,” in Languages and Compilers for Parallel Com-
puting, pp. 57–72, Springer, 2015.

[167] “The pace compiler project.” http://pace.rice.edu/.

[168] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Performance evaluation
of concurrent collections on high-performance multicore computing systems,”
in 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pp. 1–12, IEEE, 2010.

151

[169] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the 17th
international conference on Parallel architectures and compilation techniques,
pp. 72–81, 2008.

[170] C. Liu and M. Kulkarni, “Optimizing the lulesh stencil code using concur-
rent collections,” in Proceedings of the 5th International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance Comput-
ing, pp. 1–10, 2015.

[171] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System,” IEEE TPDS,
pp. 1–1, 2021.

[172] “CUDA programming guide - CUDA graphs.”
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.htmlcuda-
graphs, 2021.

[173] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al., “Tensorflow: A system
for large-scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pp. 265–283, 2016.

[174] M. Rocklin, “Dask: Parallel computation with blocked algorithms and task
scheduling,” in Proceedings of the 14th python in science conference, vol. 130,
p. 136, 2015.

[175] A. Kukanov and M. J. Voss, “The foundations for scalable multi-core software
in intel threading building blocks.,” Intel Technology Journal, vol. 11, no. 4,
2007.

[176] K. Hammond and G. Michaelson, “Hume: A domain-specific language for real-
time embedded systems,” in Proceedings of the 2nd International Conference
on Generative Programming and Component Engineering, GPCE ’03, (Berlin,
Heidelberg), p. 37–56, Springer-Verlag, 2003.

[177] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net: Cluster and Grid
Computing without the Hassle,” in 2012 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid 2012), 2012.

