
Using Simulation to Explore Distributed Key-Value Stores

for Exascale System Services
Ke Wang

Department of Computer Science
Illinois Institute of Technology

Chicago, IL, USA

kwang22@hawk.iit.edu

Abhishek Kulkarni
Department of Computer Science

Indiana University
Bloomington, IN, USA

adkulkar@cs.indiana.edu

Xiaobing Zhou
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

xzhou40@hawk.iit.edu

Michael Lang
Ultra-Scale Research Center (USRC)

Los Alamos National Laboratory
Los Alamos, NM, USA

mlang@lanl.gov

Ioan Raicu
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, USA

iraicu@cs.iit.edu

ABSTRACT

Most of HPC services are still designed around a centralized

paradigm and hence are susceptible to scaling issues. P2P services

have proved themselves at scale for wide-area internet workloads.

Distributed key-value stores (KVS) are widely used as a building

block for these services, but are not prevalent in HPC services. In

this paper, we simulate KVS for various service architectures and

examine the design trade-offs as applied to HPC workloads to

support exascale systems. Via simulation, we demonstrate how

failure, replication, and consistency models affect performance at

scale. Finally, we emphasize the general use of KVS to HPC

services by feeding real workloads to the simulator.

1. Introduction
Leadership-class systems have been managed using manual

approaches under a single management domain. Many HPC

services are designed around a centralized server hence suffer

from scalability problems. Such concerns suggest a move toward

scalable distributed system designs. The specific goal is to

evaluate the different distributed key-value store (KVS) designs

for exascale system services, such as job launch, I/O forwarding,

and monitoring. These services all need to operate on large

volumes of data in a consistent, resilient and efficient manner at

extreme scales. These requirements are consistent with those of

large-scale distributed data centers, such as Amazon, Facebook

and LinkedIn, in which, NoSQL data stores – Distributed Key-

Value Stores (KVS), in particular – have been used successfully.

We assert that by taking the particular needs of HPC into account,

we can use KVS for HPC services to help resolve many of our

consistency, scalability and robustness concerns. We have used

KVS to implement several real systems, such as a many task

computing execution fabric, MATRIX [1][2][3] where KVS is

used for task submission, dependency, and progress information;

and the fusion distributed file system, FusionFS [4], where the

KVS is used in tracking metadata.

2. A Taxonomy for KVS
We developed a four-dimensional taxonomy to classify and

specify these requirements. By combing these four dimensions,

we can define service architectures. The four components are:

Data Model defines how a service distributes and manages its

data, such as centralized and distributed manners with partitions;

Network Model dictates the interconnection topology of a

service’s components, such as structured and unstructured overlay;

Recovery Model specifies how a service deals with component

failures (fail-over, checkpoint-restart and roll-forward);

Consistency Model pertains to how rapidly data modifications

propagate across the servers. Depending on the data model, a

service can implement strong or eventual consistency.

Architectures from the taxonomy are depicted in Figure 1 and

Figure 2. ctree is a service architecture with centralized data model

and tree-based overlay network. dfc has distributed data model

with fully-connected overlay network whereas dchord is distributed

data model and has a Chord overlay network [5].

(a) csingle (b) csingle with failover

(c) ctree

3. Simulating Key-Value Stores
We simulate KVS with major components identified by the

taxonomy. Each simulation consists of millions of clients that

connect to thousands of shared servers. The workload for the

KVS simulation is a stream of PUTs and GETs. At this point,

each client connects to a server and sends synchronous blocking

requests as specified by a workload file. Servers are modeled by

two queues: a communication queue for sending and receiving

messages and a processing queue for handling incoming requests

that can be satisfied locally. Requests not handled locally are

forwarded to another server. The two queues are processed

concurrently, and the requests within one queue are processed

sequentially.

Figure 1: Centralized service architectures

Figure 4: dfc and dchord with different workloads

(a) dfc

(b) dfc (c) dchord

Figure 2: Distributed service architectures

The cost parameters of KVS simulation design are shown in

Figure 3. The time to resolve a query locally (tLR) and the time to

resolve a remote query (tRR) is given by tLR = CS + SR + LP + SS

+ CR. For dfc: tRR = tLR +2 (SS + SR); for dchord: tRR = tLR + 2k (SS

+ SR), where k is the number of hops to find the predecessor.

4. Performance Evaluation
We evaluate our simulation with various workloads from real

HPC services, such as monitoring, job launch, and I/O forwarding.

Each client submits 10 requests, the number of replicas is 3, the

failure/recover rate is 5 events/min, and we explore both strong

consistency (sc) and eventual consistency (ec) models. The results

for both dfc and dchord are shown in Figure 4. We see that for job

launch and I/O forwarding workloads, eventual consistency

performs worse than strong consistency. This is because these two

workloads have almost uniform random distribution for both

request type and the key. For the monitoring workload, eventual

consistency outperforms strong consistency because all the

requests are Put type. Another fact is that the efficiency of the

monitoring workload is the lowest because the key space is not

uniformly generated, which leads to poor load balancing.

5. CONCLUSION AND FUTURE WORK
The conclusions we draw are as follows: when the client requests

dominate the communication, dfc actually scales very well under

moderate failures (MTTF) with different replication and

consistency models, while dchord scales moderately with less

expensive overhead under failure events. Strong consistency is

more suitable for running read-intensive applications, while

eventual consistency is preferable for applications that require

high availability and fast response times. Future work includes

extending the simulator to cover more of the taxonomy.

Additionally, we will use the simulator to model other system

services and validate these at small scale, and then simulate at

much larger scales.

6. REFERENCES
[1] K. Wang et. al. Simmatrix:Simulator for many-task computing

execution fabric at exascale. ACM HPC 2013.

[2] I. Raicu et. al. Many-Task Computing for Grids and Supercomputers.

1st IEEE MTAGS workshop 2008.

[3] K. Wang et. al. MATRIX: MAny-Task computing execution fabRIc

at eXascale. 2013. Available from

http: //datasys.cs.iit.edu/projects/MATRIX/index.html.

[4] D. Zhao and Ioan Raicu. Distributedfile systems for exascale

computing. In Doctoral Showcase, SC’12, November 2012.

[5] I. Stoica et. al. Chord: A scalable peer-to-peer lookup service for

internet applications. SIGCOMM Comput, August 2001.

Figure 3: Cost parameters of KVS simulation design

